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The boundary conditions at the interface between a superfluid liquid and a solid are derived 
phenomenologically. The boundary conditions that are obtained extend, in particular, the Ka- 
pitza resistance to the case when viscous stresses are present in the liquid and the solid. They can 
be used to describe the melting of 4He. 
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The form of the boundary conditions at the interface 
between a solid and a liquid are of interest for many prob- 
lems connected with crystal growth. Recently, this question 
has taken on added significance in connection with the dis- 
covery of melting waves on the boundary of solid and liquid 
4He at low temperatures.' However, there is no systematic 
and complete derivation of the conditions at the interface 
between a superfluid liquid and a solid. The present work is 
devoted to the phenomenological derivation of such condi- 
tions, starting from the conservation laws and the second 
law of thermodynamics. A similar approach was used by 
Landau and Khalatnikov in the derivation of the equations 
of the hydrodynamics of a superfluid liquid (see, for exam- 
pie, Ref. 2), and also by Andreev and Kompaneets3 in the 
derivation of the conditions on the free surface of superfluid 
helium. 

In this work we consider the liquid in the hydrodynam- 
ic approximation, and the solid in the approximation of elas- 
ticity theory. Processes of heat transfer in the solid are con- 
sidered in the hydrodynamic approximation for a phonon 
gas, both in the presence and absence of umklapp processes. 

The situation is somewhat more complicated in the case 
of umklapp processes on the interface. Near the surface of 
the solid, the periodic arrangement of the atoms in the crys- 
tal leads to a violation of translational symmetry in the liq- 
uid, so that the surface excitations should be classified ac- 
cording to the tangential quasimomentum. Here, just as in 

transition to the case of intensive umklapp processes reduces 
to the exclusion of the quasimomentum from the number of 
independent variables on which the surface an volume ener- 
gies depend and to a corresponding simplification of the for- 
mulas. 

1. CONSERVATION LAWS ON THE INTERFACE 

We choose the surface of the phase separation, as is 
usually done, such that surface mass is absent. This can al- 
ways be done since the volume densities of the solid and the 
liquid are different. Then we can no longer represent the 
other additive quantities (energy, entropy and so on) in the 
form of volume integrals of the corresponding densities, but 
we must also take the specific surface part into considera- 
tion. Formally, this is equivalent to the addition, to the regu- 
lar part of the corresponding density (for example, the ener- 
gy density E ) of a singular surface part: 

Here 6, is a generalized "simple layer" function, the vehicle 
for which is the surface of phase separation. If we assume 
that an arbitrary parametrization 6 "(a = 1,2) is given at the 
interface, such that at an arbitrary instant of time t the sur- 
face represents the geometric set of points r'(6 ",t ), then the 
generalized function 6, (r,t ) can be represented in the form 

6. (r, t )  = 6 (r-r' (Ea,  t )  ) g"' dZga,  J (1.2) 
the case of the interior of the solid, the case of negligibly 

whereg is the determinant of the metric tensor of the surface 
small number of umklapp processes can be achieved, i.e., the 

gap. Here and below, the Greek symbols denote surface in- 
case in which the surfacer is smooth. 

For the interface between liquid 4He and an arbitrary dices running over two values. 
The flux densities of the considered additive quantities solid, this is a strong assumption which at most can be real- 

also contain similar singular parts. The energy flux Q, for ized only for special crystallogrphic faces. In the case of the 
example, has the form interface between 4He liquid and solid, if the melting process 

is dissipationless in the strict sense at low temperatures, as is Q=Qv+QbS8. (1 .3)  
assumed in Ref. 1, the surface excitations are delocalized We now consider the derivation of the differential form 
and propagate freely. Such a quantum interface cannot itself of the law of conservation of energy for the interface. For this 
lead to umklapp processes in the tangential direction, and purpose, we use its integral form for the arbitrary region V' 
the situation in which they are absent should be achieved at with boundary r: 
very low temperatures. The criteria for the existence of umk- 
lapp processes will naturually be different for the interface - d J E ~ v + ~ Q ~ s = o .  
and for the interior of the solid. at V ,  

(1.4) 
r 

In our phenomenological approach, we shall basically 
consider the case of the absence of umklapp processes. The Substituting formulas (1.1)-(1.3) in (1.4), transforming the 
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second term by the Ostrogradskii-Gauss theorem, carrying 
out differentiation of the generalized functions, performing 
several integrations by parts, and using the identity4 

we obtain 

Here the index Y denotes the normal components of the 
three-dimensional vectors, while the index a denotes the 
components of their tangential parts in the curvilinear co- 
ordinates g "; the square bracket with subscripts denotes the 
difference of the corresponding quantities in the liquid and 
in the solid, taken on the opposite sides of the interface; V, 
represents coordinate differentiation; 

w = ( a r f / a t )  ,a 

is the velocity of motion of the surface; 

~ ~ ~ = ~ ~ a ~ ~ ~ ~ / a ~ ~ a p  
is the covariant tensor of curvature of the surface (it should 
not be confused with the Riemann curvature tensor or with 
the Ricci tensor): 

is the generalized function of the "double layer," the vehicle 
for which is the interface. 

Since integration in (1.5) is carried out over an arbitrary 
region V ', the integrand should vanish identically. Setting its 
regular part and also the densities of the generalized func- 
tions entering into it ("simple layer" and "double layer") 
equal to zero, we obtain the traditional form of the law of 
energy conservation outside of the phase boundary: 

dEv/dt+div Qv=O, 

the explicit form of the part of the surface energy flux normal 
to the boundary: 

QIV=EswV 

and the desired differential form of the energy conservation 
law for the interface between the two phases: 

Here we have used the notation 

for the operation of differentiation with respect to the time, 
which is independent of the choice of the parametrization 
ga. We note that the Eq. (1.6), introduced in the arbitrary 
curvilinear coordinates on the surface, has invariant form. If 
we choose the surface parametrization 6 such that wU-0, 

then a*/& = (a/& ) ,; therefore, in what follows, we shall 
operate with such a parametrization and shall not make dif- 
ferences in the notations for the partial derivative (the final 
results will be valid in the case of arbitrary parametrization). 

We can similarly derive for the interface the equation 
for mass conservation 

Where it is taken into account that the surface mass is zero; 
the equation of entropy production 

with a positive-definite surface dissipation function R, on 
the right side, the equation of momentum conservation and 

also find the components of the corresponding fluxes normal 
to the boundary in explicit form: 

Herep is the density of the material, jk is the mass flow (mo- 
mentum density), S is the entropy density, Fk is the entropy 
flux, ff ik is the momentum flux. In Eqs. (1.9), the tensor of 
the surface momentum flux is projected on the surface and is 
referred to curvilinear coordinates only relative to the sec- 
ond index. 

In the following, we shall limit ourselves in the expres- 
sion for the entropy to terms that are quadratic in the veloc- 
ities. Accordingly, we can confine ourselves in the momen- 
tum conservation law to terms linear in the velocities. 
Taking it also into account that 

and considering the projections on the normal and on the 
tangential plane, we obtain 

The expressions for the volume currents in a superfluid 
liquid2 have the form 

where q; is the dissipative part of the heat flow, h is the 
dissipative term in the hydrodynamic equation for the super- 
fluid velocity, r: is the viscous stress tensor, p is the chemi- 
cal potential of the liquid. 

The expressions for the volume currents in the solid 
must be written down in Eulerian coordinates with accuracy 
to quadratic terms in the energy. It is simplest to obtain them 
by using the Galilean transformation from the system in 
which the given element of the solid is at rest to the laborato- 
ry system: 
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Here dk is the elastic stress tensor, ek is the viscous stress 
tensor in the solid (see Ref. 5). We have introduced here the 
drift velocity of the phonons vph which, in the case of absence 
of umklapp, can take on an arbitrary value (in the case of the 
presence of umklapp processes, vph = v, and the entire heat 
flow reduces to the purely dissipative term a). Further, f=kis 
the viscous stress tensor in the phonon gas of the solid (see 
Ref. 5). 

2. THERMODYNAMIC RELATIONS ON THE INTERFACE 

The most important physical problem is the establish- 
ment of the number of independent thermodynamic varia- 
bles on which the surface energy E, depends. These variables 
correspond to the independent thermodynamic variables 
which can be specified in equilibrium at the interface. 

As such variables, we can choose the temperature of the 
surface T,, the surface elastic stress tensor 4 (only the tan- 
gential components of this tensor can differ from zero6), the 
tangential component vf of the velocity of superfluid motion 
of the liquid, the tangential component v: of the velocity of 
the solid and the drift velocity of the surface excitations V, 
which at equilibrium is identical to the tangential compo- 
nents vi  and v h  of the velocity of the normal motion of the 
liquid and of the drift of the phonons of the solid. The separa- 
tion, as an independent variable of the velocity V, which is 
not identical with v:, is equivalent to the assumption of the 
absence of umklapp processes on the boundary. 

We limit ourselves first to the case in which the energy 
of the surface does not depend on its orientation relative to 
the crystal axes. The liquid density is not included in the 
number of independent variables, since under equilibrium 
conditions it should be determined by the remaining varia- 
bles. We shall adhere to the traditional point of view that at 
T #O, the flows of mass and heat through the boundary are 
nondissipative. In this connection, at equilibrium, the nor- 
mal components of all the velocities are identical with the 
velocity of movement of the boundary and are not indepen- 
dent variables. 

It  is convenient to write down initially the expression 
for the differential energy E j in a system of coordinates 
moving with velocity vf . In this system, the energy will de- 
pend not on the velocities but on their invariant differences. 
As arguments of E :, we choose quantities that are thermo- 
dynamically conjugate to those chosen above, namely: the 
surface entropy S,, the tangential part of the strain tensor uQ, 
the Galilean invariant surface momentum j, and the surface 
quasimomentum P, . Then 

~ E , ' = T , ~ S , + X " ~ U ~ ~ ~ +  (V-v,') dP,+ (V-v,') dj,. (2.1) 

The tensor B can be written in the form 

Z"=-AGtij+a,ij, AXE,-S,T,, 

thus isolating in explicit fashion the diagonal part connected 
with the surface tension. 

The relation (2.1) can be regarded as the definition of the 

velocity V as the derivative of the energy with respect to the 
momentum, and the surface quasimomentum P, as a quanti- 
ty thermodynamically conjugate to the invariant difference 
V - v:. The physical meaning of the quantities ~ and P,, 
introduced by the relation (2. I), will be seen from the results 
that follow. 

With the help of the Galilean transformation 
E, = E :  + (vij,) we can obtain from (2.1) the form of the 
thermodynamic identify in the laboratory system of coordi- 
nates: 

We note that the attempt to introduce as independent 
arguments of E, some other quantities (for example, the nor- 
mal components of the strain tensor) in the considered 
scheme inevitably leads to the result that at thermodynamic 
equilibrium, the quantities that are conjugate to them turn 
out to be expressed in terms of other thermodynamic varia- 
bles: this means that it was not possible to consider them as 
independent arguments of Es . 

We must differentiate the relation (2.3) with respect to t 
at fixed values of the parameters on the surface. Here the 
question arises as to how the strains u; on different inter- 
faces, corresponding to different Lagrangian coordinates in 
the solid, are related. We adopt the viewpoint that the mov- 
ing interface "inherits" the strain tensor, in spite of the cry- 
stallization from the liquid. This means that the crystallizing 
particles adjust themselves to the elastic strains, so that the 
crystal grows in a deformed manner and the strain tensor 
remains continuous, together with its first derivatives. In the 
opposite process of melting, such an assertion is obvious. 
Thus the relation (2.3) must be differentiated exactly as is 
done in elasticity theory. 

It is convenient to represent the derivative of E, in the 
form 

d ~ ,  ds BE, 
Es-vCG - . 

a t  agU dt J g= 

The surface energy E, depends on the tangential part of the 
strain tensor in the Lagrangian system of coordinates and it 
is natural to raise the index in this set of coordinates with the 
help of the metric tensor of the unstrained state gu = Su. This 
means that the strain energy can be regarded as a function of 
ub only,in accord with the usual formula of elasticity theory 
dE  = d ' d ~ ~ / ~ .  The tangential components are determined 
with the help of the normal 3 to the surface, also in Lagran- 
gian coordinates and, consequently, 

It is convenient to express the Lagrangian set of coordinates 
such that at a given instant of time to (when differentiation is 
carried out), it is identical to the Eulerian Cartesian set of 
coordinates. The transition from one set of coordinates to 
the other is brought about by means of the matrix 

B,m=&-m/ar,', B,"' ( t o )  =67,  

where r"' is the Eulerian Cartesian coordinate and r', are the 
Lagrangian coordinates. 
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The expression for the derivative of the energy contains 
only the tangential and symmetrical part of the derivative 

From the derivative d "/dt we can separate the material deri- 
vatived /dt along the path of the particles of the solid, so that 
in our special curvilinear coordinates it has the form 

The quantity du,,/dt is expressed, according to a well- 
known theorem of elasticity theory, in terms of the covariant 
derivatives of the velocity of a solid: 

d ~ , l l d t = ' / ~  (V,,u,,i - Vlu,,) . 

The tangential part of the covariant derivative V, v,,, under- 
stood in the three-dimensional sense, after separation of the 
covariant surface derivative connected with the Christoffel 
symbols with the normal index (see, for example, Ref. 4), 
takes in the curvilinear coordinates on the surface the form 
Vavcp - v;Kap, where Kap is the surface curvature tensor 
introduced previously, and V, denotes covariant differenti- 
ation in the metric of the surface. The differentiation of A f 
can also be carried out by following only the tangential with 
respect to the lower index part of the obtained expression 

For differentiation of the covariant components of the vec- 
tor v in Lagrangian coordinates, it is convenient to express 
these components in terms of the same components in Euler- 
ian coordinates Gp = B Y, and then differentiate the factors 
separately. After transition to the curvilinear surface coordi- 
nates, this yields 

This latter calculation is especially simple with our special 
choice of surface coordinates 6 ,". 

Finally, transforming to arbitrary curvilinear coordi- 
nates on the surface, we obtain 

a a 
=Ha' [ ~ , v . ~ - v . ~ ~ , ~ -  (u:-w')- ila6-2ua -(v;-ii.') . a dta 1 

(2.5) 
Substituting (2.3) in (2.4) and using (2.5), we obtain the 
expression for arbitrary surface energy: 

(2.6) 
Since we are limiting ourselves to terms that are quadratic in 
the velocities, the index { ," is unimportant for the derivatives 
of j,", P ,", and us, . 

3. FORM OF THE SURFACE CURRENTS AND OF THE 
DISSIPATION FUNCTION 

Substituting in the equation of energy conservation (1.6) 
the equations of continuity (1.7), of momentum conservation 
(1.9), of entropy production (1.8), the expression (2.6) for 
dEs /at, the explicit expressions for the volume flows ( 1.12) 
and (1.13), using the usual equation for the superfluid veloc- 
ity' 

and transforming to the curvilinear surface coordinates in 
all terms, we can rewrite the energy conservation equation in 
the form 

dT8 
-t [ U ~ , ~ - V , ] ~ , " ' - ~  (FSm-S ,  V " )  - ( V,-v,,) 

b 

- ( l l s a f i + ~ 8 a p )  ( O z V R - ~ v R n p ) .  

where 

pC= (E,-T,S,-0,") /p,. 

In the right side of (3.2) we have left our terms connected 
with dissipative heat flows in the liquid and the solid, which 
are known to be small in comparison with the other terms. 

Requiring that the dissipation-free part of the entropy 
flow be determined by the drift velocity of the excitations V, 
and that the dissipative function not contain terms propor- 
tional to ( V  - US), we can note that (3.2) is satisfied identical- 
ly if Pf satisfies the equation 

and the surface energy flux Q ," and the surface dissipative 
function R, have respectively the forms 
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Here 

P C  ( P L )  = (Ec-TcSc+pL) /pot 

and the dissipation-free and the dissipation terms are sepa- 
rated in the entropy and momentum flows: 

F.a=S,Va+$a, l I , ae= -~ ,aB+~ .aB .  

We note that the surface flows enter into the conservation 
laws under the integral sign. Therefore, retention in (3.4) and 
(3.5) of the dissipative surface terms P,e0, f is an exag- 
geration of the accuracy, since it requires, in the volume 
flows, account of terms of higher order in the small free path 
length of the excitations than in the usual hydrodynamic 
approximation. However, at low temperatures, as is noted in 
Ref. 3, when the excitations are frozen in the volume, these 
terms can be important. 

Equation (3.3) does not have the form of a conservation 
law. This can be attributed to an inappropriate choice of the 
quantity P,. If we choose the quantity PP = P," + J: and use 
the law of momentum conservation (1. lo), we obtain the 
modified equation 

According to this equation, the quantity PP is conserved if 
we can neglect the dependence of the entropy on the strain 
(similar to the law of conservation of the quasimomentum in 
the volume of the crystal5) and, in addition, viscous stresses 
are lacking in the liquid at the interface. Correspondingly, 
this equation takes the form 

for the undeformed solid. Here the term 

can be called the tensor of the flow of tangential quasimo- 
mentum on the surface, and the quantity P;" the surface 
density of quasimomentum. Equation (3.6) shows that the 
separation boundary is a source of quasimomentum with 
density-dLV. On the interface of a solid with a vacuum, 

= 0, i.e., the quasimomentum is conserved. 
The formulas obtained above correspond to the case of 

the absence of umklapp processes. In order to proceed to the 
case of intense umklapp processes, we must omit Eq. (3.3), 
since P," is large and is not a thermodynamic variable, and 
set f y=O for the same reason. Moreover, at equilibrium, 
V = v, can be connected only with dissipative processes. As 
a result, for intense umklapp processes on the surface, we 
shall have, in place of (3.4) and ( 3 4 ,  

Qla= (E,gae-a,ae) vCB-2 (AgaE-a,56) 

(v$-wV)  u ~ e +  (pL+h)  jpf T.t#a+r.5Bv.B, (3.4') 

The entropy flux in this case will be equal to F," = S,v," + qF. 
The transition to the case of intense umklapp processes 

in the volume of a solid is trivial under these conditions. It is 
necessary to set the stress in the phonon gas of the solid equal 
to zero, f = 0, and regard the heat flow as a purely dissipa- 
tive process, substituting in (3.5') 

S, (up,'-wv) -+S,(V,'+~,'/S,T,-W'), 

whereq, is the heat flow connected with the thermal conduc- 
tivity of the solid. In what follows, we shall consider only the 
case of the absence of umklapp processes, keeping it in mind 
that the formulas for the opposite limiting case can be ob- 
tained by the method shown above. 

We can obtain similar but more complicated expres- 
sions for Q ," and R, if we take into account the dependence of 
E, on the orientation of the surface relative to the crystal 
axes. We shall not write them out in the general case, but 
limit ourselves to the remark that if we neglect the strain 
terms (which can almost always be considered as small), then 
the entire difference reduces to the fact that there is an added 
term - (JA /dp,)(v: - w'), in the energy flux, and in the 
first curly bracket the expression for R, is replaced by 

Here 

and differentiation of A with respect to the normal vector d 
that defines the orientation of the surface, is by implication 
carried out at constant positions of the crystallographic 
axes. 
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In lowest order theory of irreversible processe~,~ the If there is no flow of mass through the boundary and we 
positiveness of the dissipation function R, requires the exis- can neglect effects connected with surface excitations (the 
tence of a linear connect ion between the expressions in the classical face of the 4He crystal or the interface between He 
curly brackets in formula (3.5) (which can be understood as I1 and an ordinary solid), then the expressions (3.9) reduce to 
the quantities X = - dS/dx) and the coefficients that stand the condition 
in front of them (which play the role of the quantitiesx). This 

Q.=-c [ ( T ~  + TL~"-PL~) sL 
- ( + S,  ) 1 * leads to kinetic equations of the form 

where the CU satisfy the conditions of positiveness of the 
quadratic form C,,XiS, and are symmetric. 

The total number of kinetic coefficients Cu, whose in- 
troduction is required by the dissipation function of the form 
(3.5), is close to one hundred in the case of an anisotropic 
surface. In the case of an isotropic surface, their number is 
24, while the boundary conditions (in which we omit terms 
connected with the derivatives of surface quantites) have the 
form 

j,'-p,wv=-CllAp-C12ATL-8-CLSAT(i-C, 

S L ( v ; - - w V )  =-CIzA~t -C22ATL-s -C23ATSSee  (3.8) 

S ,  (v~ , ,~ -w ' )  =-C13Ap-C23ATL-,-C331TSSe, 

where 

for scale quantities and 

for vector quantities. 
The conditions (3.7) [written down partially in (3.8) and 

(3.9)] together with the conservation laws (1.6), (1.7), and 
(1.10) and Eq. (3.3'), which describe the change in the surface 
quasimomentum, form a complete set of boundary condi- 
tions. If, as it is assumed in the theory of crysallization 
waves, C,, = w at low temperatures, we obtain the condi- 
tion Ap = 0, which generalizes the well-known condition of 
Herring. 

The two remaining equations of (3.8) generalize the re- 
lations which describe the Kapitza jump. This generaliza- 
tion consists of introducing the surface temperature, which 
differs both from the temperature of the liquid and from the 
temperature of the solid. Moreover, the expression with tem- 
perature jumps contains terms that are connected with the 
components ry of the viscous stress tensor and with the dis- 
sipative term h from Eq. (3. l), and also with the components 
f of the dissipative part of the flow of quasimomentum of 
the phonon gas of the solid. The appearance in (3.8) of the 
component of the viscous stress tensor is by its nature a ther- 
momechanical effect. 

which must replace the ordinary relation for the Kapitza 
jump Q v  = - C(T, - T,), which is valid only in the ab- 
sence of dissipative stresses. 

CONCLUSION 

The phenomenological approach to the derivation of 
the boundary conditions on the interface between a solid and 
a superfluid liquid allows us to establish their general form 
without leading to any conflict with the conservation laws 
and the second law of thermodynamics. In the equilibrium 
limit, when the velocity of motion of the boundary is vanish- 
ingly small and dissipation is absent, the Herring formula for 
the equilibrium of the melt and the crystal follows from the 
obtained formulas, as well as the usual conditions of equality 
of temperature and trangential velocities. In the presence of 
viscous stresses, both in the liquid and in the gas of phonons 
of the solid, the obtained formulas take into account both the 
dissipative additions to the Herring formula and the addi- 
tional terms in the coupling of the temperature jump with 
the thermal flow through the interface (the Kapitza jump). 
An assumption as to the presence or absence of umklapp 
processes is not essential and the correspondiqg boundary 
conditions can be written down in both limiting cases. 
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