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We study the instability of the phonon spectrum of a "compressed" Bose system with a conden- 
sate. We show that the phonon instability is caused by a preceding roton instability that occurs 
when the roton minimum is lowered with increasing pressure. 
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1. INTRODUCTION 

It is well known that the quantum liquids 3He and 4He 
change to a crystalline state when the pressure is increased. 
It was indicated in Ref. 1 that a periodic structure differing 
from the usual crystalline state can exist if the interaction 
between the particles is long range and possesses sufficiently 
large Fourier components of the potential v, < 0 (attraction) 
in some interval of momentum transferp -p,. The possibil- 
ity for the formation of such crystals, called coherent ones, 
was studied in Ref. 1 using the model of a "compressed" 
system (characteristic momentum transfer p, small com- 
pared to the reciprocal of the distance between the particles 
n'I3, energy of interaction small compared to the kinetic en- 
ergy, but the average potential energy per unit volume of the 
order of or larger than the kinetic energy). The transition of 
the system into an inhomogeneous state usually corresponds 
to the occurrence of an instability of the homogeneous state 
relative to arbitrarily small density perturbations which vio- 
late the homogeneity. 

The compressed model was used in Ref. 2 to analyze the 
behavior of a quantum liquid near the point of the absolute 
instability of the homogeneous phase. For a Bose system in 
the Bogolyubov approximation the instability is connected 
with the vanishing of the roton minimum when the density 
increases after which the Green function pole enters the non- 
physical region. The energy of the system then ceases to cor- 
respond to a local minimum and the homogeneous state 
turns out to be unstable with respect to short-wavelength 
density perturbations. However, this does not agree with the 
experimental situation, as the roton minimum in 4He de- 
creases only insignificantly when the pressure is increased 
up to crystallization. It was noted in Ref. 2 that an exact 
picture of the occurrence of the instability differs from the 
Bogolyubov picture in two respects: 1 )  the short-wavelength 
instability starts at a nonzero value of the roton minimum 
A,  #O; 2)  the roton instability precedes the phonon one con- 
nected with it: as n-tn, (i.e., as A-A,) the roton region 
makes a negative divergent contribution to the elasticity so 
that in some point n = n' < n,  (in the immediate vicinity of 
n, )  the sound speed 

u= (n/rn) (dp/dn)  " 
vanishes. Thus, in the true termination point of the homo- 
geneous phase the phonon pole frequencies become imagi- 

nary after passing through zero. This result was obtained in 
Ref. 2 indirectly as a consequence of thermodynamic rela- 
tions. In the present paper it is confirmed by a direct study of 
the phonon spectrum in the framework of the same model. 

2. THE BOGOLYUBOV-ZUBAREV HAMlLTONlAN AND THE 
GREEN FUNCTION 

To study the phonon section of the spectrum it is con- 
venient to use a modification of the Bogolyubov-Zugarev 
technique developed in Refs. 3 to 6. Its salient feature is that 
the self-energy parts to all orders of perturbation theory are 
proportional in the long-wavelength limit to the external 
momentum. Thus, in contrast to the Belyaev technique one 
is guaranteed the correct behavior of the spectrum for small 
momenta, regardless of which subsequence of diagrams is 
summed. 

The Hamiltonian of the system is written in the form 

~ a z = ~ i o + ~ i ,  

where 

& 0 = 8 0 ~ +  EB (k) bk+bk, 
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here v, is the Fourier transform of the interaction potential; 
b, and b ,+ the particle annihilation and creation operators 
satisfying the usual commutation relations for bosons; 
P(123) denotes a cyclical permutation of the indexes; 
yc (k, ,k2,k3), y, (k,,k,,k3) are symmetrical in (k,,lc3). In con- 
trast to the Belyaev technique we take here for H, the xua- 
dratic part of the Bogolyubov-Zubarev Hamiltonian H,, 
whileAhe remaining terms are considered as a perturkation 
with HI the non-Hermitean part of the Hamiltonian HBz: 

The unperturbed Green function is given by the expres- 
sion 

and for the exact Green function G (p) we can write down a 
matrix Dyson equation4 which is shown graphically in Fig. 
1. 

The normal and anomalous Green functions are given 
by the formulae 

G ( P )  = ( E + E B ( P )  + L ( P ) )  I M ( p ) ,  (7) 
 PI = - ~ 1 z ( p ) / ~ ( p ) ,  Q P )  = - ~ 2 1 ( p ) / ~ ( p ) ,  

M ( p )  =le-' l?(Zi1--Z2,)1 2 - [ e B ( p )  + ' / 2 ( Z i , + Z T 2 ) l  '+ Zi2ZZ1.  

In contrast to the expressions obtained by Belyaev7 the BO- 
golyubov spectrum occurs in (7) instead of the gee parJicle 
spectrumwhilethe Z ,,(p) # Z,,(p) [andtherefore G (p) # G (p)] 
because the Hamiltonian is non-Hermitean. The energy 
spectrum of the system is determined by the poles of the 
Green functions from the equation 

M ( p )  =O. 

FIG. 1 .  
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FIG. 2. 

3. EQUATION FOR THE RENORMALIZED VERTICES 

The very general form of the graphs for Zik is a loop 
with a renormalized three-particle vertex and the exact 
Green functions (Fig. 2). In the first approximation the ex- 
pressions for Z, were found in Refs. 3,4: 

Zyj ( k , ~ )  is obtained from 88 (k,o) by replacing all internal 
lines with the opposite ones. 

The first-order diagrams for Elk can be made more 
complicated in three ways to find the higher-order diagrams: 
a) by "dressing" the Green functions; b) by renormalizing 
the point vertices; c) by "dressing" the functions and renor- 
malizing the vertices (see, respectively Figs. 3a,b,c). The re- 
normalization of the vertices leads to the occurrence of 
graphs of a purely "ladder" type, of a "web" type, and mixed 
graphs (respectively, Figs. 4a,b,c). 

We consider the compressed Bose system satisfying the 
conditions 

Studying the effect of the roton instability on the phonon 
section of the spectrum we shall assume that the external 4- 
momenta in 2, are small ( I kl -0, w -0) while all internal 
ones are close to the "roton" values [E  = E, (p,), Ipl = p, 
wherep, is a characteristic momentum corresponding to the 
roton section of the spectrum]. 

FIG. 3. 
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FIG. 4. 

The first approximation for the self-energy part is a sum 
of terms of the form 

( y ,  and y,  are vertices from the set y,  , y,, y,, y,). The main 
contribution to the integral over p comes from the region 
Ipl -pot as Ikl-0 and both intermediate momenta p and 
p - k are then close top, in order of magnitude. As Ikl-4 
we use for y approximate expressions retaining in them the 
lowest powers of k: 

Substituting (6) and (12) into ( 1  1 )  and expanding ~ , ( p )  near 
the roton minimum: 

we get after integration over the frequency an approximate 
estimate for the loop: 

(13) 

We used the fact that ~ , ( p ) z A ,  in the region lpl -p ,  and 
assumed that n was sufficiently close to nf, = &O(p0)/2I vpo 1. 
In that case 

d3p-pomAB. ( (p-PO) '<AB'/cB). 
I P ~ " P O  

Separating in (13) the small dimensionless parameter a 

FIG. 5. 

we get for Z!.i)(k) the final estimate 

xi:' (k) --a (klc,) (8'' (po) /AB) 'EO (PO). (14) 

We note that Xik a k which guarantees a phonon type of 
spectrum. 

The integral over the intermediate momenta is propor- 
tional to the product of the small parameter a and the factor 
( E ~ ( ~ ~ ) / A , ) ~  which diverges as n-n;. Higher-order dia- 
grams can be split into two classes. We put diagrams with a 
ladder-type vertex in the first one. In our approximation 
each integration over d 3p in them leads to the occurrence of 
an additional factor a ( ~ ~ ) p , ) / A , ) ~ ,  whereas in the diagrams 
of the second class with web-type vertices such an integra- 
tion gives a factor a ( ~ O ( p , ) / d , ) ~  which has a lower power of 
divergence and the contribution from those diagrams is thus 
less than the one from the diagrams from the first class. We 
consider, for instance, two third-order diagrams (Fig. 5a,b). 
For the diagram of Fig. 5a the main contribution comes from 
the region 

while for the diagram of Fig. 5b there is added to these condi- 
tions yet another one: Jp, - p, ]  -p, which leads to a corre- 
sponding diminution of the phase volume. 

Diagrams with loop insertions in the internal lines give 
the same contribution as the ladder ones. This means that we 
can take for the internal Green funcitons in them, in general, 
"exact roton" functions which leads everywhere to replac- 
ing A ,  by the exact value A .  However, A,  = A  ; # O  at the 
point where the instability appears,, and the unperturbed 
Green functions which are essentially Bogolyubov functions 
become a sufficiently good approximation to the "exact" 
ones. We shall, however, show below that the instability of 
the phonon section of the spectrum is connected precisely 
with the renormalization of the three-particle vertex y. We 
can thus write down for 8, (k,w) equations which differ from 
Eqs. (9) for Z!.k)(k,w) only in that in each oftheir diagrams one 
of the point vertices y is replaced by the vertex r taken in the 
ladder approximation. 

We must add to the equations for the self-energy parts a 
set of equations for the vertices 

1221 Sov. Phys. JETP 56 (6), December 1982 V. A. Podol'skl 1221 



r, (k, -p, p-k) =yb (k, -p, p-k) -t- 4JijmLk 

I',(k, p, k - p )  =yc(k, p, k-p) + 

We must here in the internal vertices y arrange all possible 
directions of the arrows. The set of equations for r is closed 
and has a unique solution, since its determinant, which is a 
function of A,, does not vanish. We show below that the 
phonon instability starts before the roton one, and it is just 
with the appearance of the roton instability that the vanish- 
ing of the determinant is connected. 

4. CONNECTION BETWEEN THE PHONON AND THE ROTON 
INSTABlLlTlES 

When studying the phonon instability we look for the 
zero solution for the spectrum (w = 0) and we therefore write 
Eq. (8) in the form 

EB' jk) +EB (k) [ z i t  (k) f 2 2 2  (k) ] 

+ [ X i i  (k) X22 (k) - x i 2  (k) 2 2 1  (k) I =0- 
(16) 

Here Zik (k) is the sum of terms of the form 

(a, /3 enumerate the indexes a, 6, c, d ). 

The integral (17) consists of a term originating from re- 
gions far from the point E = eB(pO), I pJ = pO and an integral 
over the vicinity of that point which makes the main contri- 
bution, since E ,  (po) [the pole of the function G '(p)] vanishes 
as n4n;. If the external momentum k is small we can take 
this vicinity sufficiently small and only the contribution 
from the poles of the Green functions will contribute appre- 
ciably to the integral. After integration, (17) is reduced to the 
form 

d3P y, (k, P) re. (kl P, (P) 

~ E B  (P) 

and for the Zik (k) we get the expressions 

Ziz (k) =-6mpoR [ rb  (k, p0) rc (k, PO, AB) 

The vertices y are taken in the approximation (12). 
To find the vertices r we need to solve the set of Eqs. 

(15). After integrating over the frequency (in the pole ap- 
proximation) we get for ro the equation 

The equations for the other r vertices are similar. The main A f  =q, 
contribution to the integral over p comes from the region 

(21) 

Ipl -po Ip - pol -po in which we can use for y(p, po) the where ' is a with &ments ir0 ,rb , r c  ,rd)9 j. a ~01- 

approximate expressions umn with elements (yo ,yb,yc, yd), and A a matrix with ele- 
. . . .. ments 

As a result (15) reduces to a set of linear algebraic equations Here 

i222 SO". ~ h y s .  JETP 56 (6). December 1982 V. A. Podol'skil 1222 



The coefficients c,, c,, c, are dimensionless integrals: 

1 , , ( 1 + c o s ~ 0 ) ~ ~ ~  ' dx 
C, = - - 0.05, 

8n2 cos 0 J d q S  (3 ix )  [ l+x(l+sin cp) 1 

1 ( I + C O S ~ ~ ) ~ ~  dx 
C - ------- - 

3 - - - 0.13, 
4n cos 0 ( I  f x )  

in which 8z?r /3  is the angle between the vectors p and p,. 
As we indicated earlier, the determinant of the set (2 1) is 

the function A, (the dB dependence enters via 6). It is equal 
to 

The smallest value of 6 for which (22) vanishes and the sys- 
tem (21) has no solution equals 3.25. It corresponds to criti- 
cal values of the Bogolyubov roton minimum and of the den- 
sity: 

ABc~0 .17 . a~~0(pO) ,  n C z n B C  (1-8.03aV3) 

and is connected with the appearance of the roton instability. 
Indeed, for this value of the density all terms in the perturba- 
tion theory series for the vertex r, in which the expansion is 
taken with respect to the "small" parameter a(~O(p,)/d,)~, 
become of the same order of magnitude and the series di- 
verges. The values of A ; and n, obtained here are, apart 
from numerical coefficients, the same as those found ih Ref. 
2. 

Solving the set (21) we evaluate 8,(k) and we put Eq. 
(1 6) in the form 
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Its smallest root turns out to be equal to 
E=3.25 ( l  -AB/eO(po) ), (24) 

and the values of the density and the Bogolyubov roton mini- 
mum corresponding to it are 

The vanishing of the sound velocity thus occurs earlier 
than the solution of the set (21) disappears. In other words, 
the phonon instability occurs before the roton one although 
it is caused just by being close to the point of the roton insta- 
bility. We note that the vanishing of the sound velocity does 
not yet lead to the appearance of divergences in 8, and r 
and, thus, the point where the long-wavelength instability 
appears can, in fact, be reached which is in complete agree- 
ment with remarks made in Ref. 2. 
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