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The selection of solutions (discontinuous near the plasma-resonance point) of the locally nonlin- 
ear electrodynamic problem of the action of a strong ionizing high-frequency electromagnetic 
wave is considered. To this end, the locally nonlinear problem is treated from the viewpoint of a 
more complete but singularly perturbed problem, that of finding the field, the temperature, and 
the density of the electrons. To select the solutions of the locally nonlinear problem it is proposed 
to use a criterion from the theory of singularly perturbed equations, namely choose from among 
all its solutions only the one which is simultaneously a solution of the initial problem. For solu- 
tions with jumps whose structure is determined by the equation of heat conduction (through the 
point of the plasma resonance due to superheating of the plasma, disregarding diffusion), this 
criterion calls for satisfaction of a certain integral condition that leads to continuity of the heat 
flux through the jump. This integral equation is expounded in detail for a jump through the point 
of the plasma resonance that appears in the field of a strong high-frequency ionizing electromag- 
netic wave. 

PACS numbers: 52.35.Mw,52.35.Hr,52.40.Db 

1. The locally nonlinear electrodynamic problem (the 
dielectric constant of the medium is a local function of the 
field amplitude, E = E(IE 12)), which describes the behavior of 
a high-frequency ( w ) ~ )  strong electromagnetic wave with a 
field component parallel to the electron density in the region 
containing a plasma-resonance point, is of great practical 
importance. It is encountered, for example, in the theory of 
autonomous gas discharges at ultrahigh frequencies, in 
which the plasma is produced from a neutral gas by the field. 
Within the framework of this problem, the field of the wave 
and the plasma parameters determined by the field are dis- 
continuous in the vicinity of the plasma-resonance point. lp2 

Therefore the solution is made up of two continuous solu- 
tions defined respectively in regions with positive and nega- 
tive dielectric constants E; these solutions are then matched 
on the boundaries of the dis~ontinuity.~.~ This procedure, 
however, does not yield an unambiguous solution in the en- 
tire region, since the position of the jump in the volume or, 
equivalently, the jump of the dielectric constant, is un- 
known. These jumps depend on the amplitude, phase veloc- 
ity, or incidence angle of the wave and are themselves the 
unknowns in the problem. Formally, the situation is that we 
are short one matching condition on the discontinuity. 

Such a situation is typical on the whole of the locally 
nonlinear electrodynamic problem; it is encountered both 
for discontinuous solutions with jumps due to plasma super- 
heating5 and in the case of continuous  solution^.^.^ 

Under sufficiently general assumptions, the complete 
problem of the behavior of an ionizing electromagnetic wave 
in a plasma is described by the wave equation for the field E 
and by the balance equations for the temperature T and for 
the electron density n. Each of these quantities is character- 
ized by a separate inhomogeneity scale: the field by the am- 
plitude inhomogeneity scale L,, the temperature by the 
heat-conduction length L,, and the density by the diffusion 

length L, . These scales, depending on the conditions of the 
problem, can be differently related. 

If however, L,>L, and L,>L,, the higher-order de- 
rivatives in the dimensionless temperature and density ba- 
lance equations (the characteristic scale is chosen to be the 
largest one, L,) acquire small parameters (O = T/T,): 

(K, D, and p are the heat-conduction, ambipolar-diffusion, 
and recombination coefficients; Y and vi are the collision and 
ionization frequencies; E, is the "plasma" field, S is the pa- 
rameter of energy transfer in collisions; T, is the gas tem- 
perature), and the problem becomes singularly perturbed.' 

If now, using the smallness of p, and p,, we neglect in 
(1.1) the terms with the derivatives, the temperature and den- 
sity of the electrons, and with them also the dielectric con- 
stant E = E(IE 1 2 ) ,  of the plasma, become local functions of 
the amplitude and for Maxwell's equations in the zeroth ap- 
proximation in p, and p, we obtain a locally nonlinear 
problem that raises a number of difficulties. 

The first difficulty is the appearance of discontinuities 
in the solution. This difficulty is due to the fact that the 
locally linear approximation is of large scale (L,) and is not 
suitable for the,behavior of the fields of n and Tin the regions 
where they change strongly (over scales L, and L,). These 
regions are called boundary layers and can appear both on 
the boundaries and in the i n t e r i ~ r . ~  The discontinuity re- 
gions in the vicinity of the plasma resonance, or discontinui- 
ties due to superheating, are examples of boundary layers 
inside a volume. 
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The second difficulty is that the solutions of the locally 
nonlinear electrodynamic problem are multiply-valued. The 
reason is that by discarding the derivatives in (1.1) we replace 
the initial problem by another simpler but not equivalent 
one. Consequently, both the character and the sets of solu- 
tions of the initial singularly perturbed problem (1.1) and the 
simplified locally nonlinear problem can be entirely differ- 
ent. Therefore a special principle of selecting the solutions of 
locally nonlinear problems (called matched in the theory) 
has been formulated in the theory of singularly perturbed 
equations. Its gist is to choose from all the solutions u(z) of 
the locally nonlinear problem only the one which is simula- 
taneously also the solution u(z;&) of the initial problem as the 
small parameter p tends to zero and is written in the form7 

lim u ( z ;  p) =ii ( 2 )  
Ir-0 

This is the analog of the usual well known test and selection 
of solutions for algebraic equations. 

It is this selection principle which is proposed here for 
the construction of a single-valued solution of the locally 
nonlinear electrodynamic problem in various situations. 

The general formulation of the criterion (1.2) is simple 
and is the same for all cases; its detailed meaning and conse- 
quences, however, depend on the type of equation, on the 
character of the nonlinearity, and on the boundary condi- 
tions, and must be expounded separately in each concrete 
case. In the upshot, the criterion (1.2) spells out the condi- 
tions of the problem for the initial equations (1. l) ,  and the 
solution of the problem can be constructed with the aid of 
the locally nonlinear approximation. Under other condi- 
tions, when (1.2) is not satisfied, the solutions of the locally 
nonlinear problem do not include solutions of the initial 
problem (1.1). The solution of the initial singularly per- 
turbed problem must then be constructed directly. 

2. The condition (1.2) touches mainly on the structure of 
the boundary layers, where the solutions of the problem (1.1) 
and of the locally nonlinear problem can differ greatly. The 
characteristics of the "large scale" locally nonlinear prob- 
lem are then contained in this condition as parameters on 
which its satisfaction depends. 

The structure of the jump in the field of an ionizing 
electromagnetic wave is determined in the general case by 
the balance equations for n and T. The ratio of the lengths L, 
and L, governs both the thickness of the discontinuity and 
the possibility of its existence. At L,)L,, the case typical of 
low gas pressure when the consition o>v is satisfied and 
considered below, the electron density is a local function of 
the temperature: 

n=vi(@)lp, ' 
(2.1) 

vi (63) =viO esp [-U/T,O] , (UlT,OB I) 

6 (0) F ( 8 ;  El,; D) =-(8-1) -El,2- 
DZ 

6 0  [ l-n (O) ln,12+vo20/02 ' 

Here Ell and D are respectively the moduli, normalized to 
E,, of the electric-field component tangential to the surface 
of the jump and of the normal component of the electric- 
induction vector. They are assumed constant in the region of 
the jump, since they vary over a scale L,>I, where I-L, is 
the characteristic thickness of the jump. 

The salient feature of the nonlinearity of Eq. (2.2) is that 
its right-hand side vanishes in the vicinity of the plasma- 
resonance point (F = 0) at three values of the temperature: 
0 + ,  0., and 0-. A similar triple-valuedness is observed 
also at a constant electron density in cases when the param- 
eter S of energy transfer in collisions, or the collision fre- 
quency, decreases with increasing temperature (the region of 
the Ramsauer effect and of collision with ions).' 

Mathematically rigorous solutions of boundary-value 
problems with jumps in the volume, for a singularly per- 
turbed second-order equation with this type of nonlinearity, 
is given in Refs. 9 and 7. It turns out that the condition (1.2) 
will be satisfied if (in terms of the considered problem): 

a) the temperatures 0, and 0- are singular saddle 
points of Eq. (2.2), separated by the "center" 0.; 

b) the fields Ell and D are connected by the condition 

rn (e) x (@) v (@) F ( B ;  Ell, D)  dB 
e. 

Equation (2.2) has in this case in the vicinity of the jump a 
solution of the "continuous step" type, describing a transi- 
tion between two states with temperatures 0, and 0-. We 
note that the possible types of solutions of the nonlinear 
heat-conduction equation, including those of the "step" 
type, were considered in Ref. 8. A condition of the type (2.5) 
for a inhomogeneous-plasma jump connected with the 
"thermal" nonlinearity due to the crowding out of the plas- 
ma from the region of the strong longitudinal (Ell = 0) field 
because of electron heating, was suggested in Ref. 10 in an 
analysis of the analogy with phase transitions. 

The physical meaning of the condition (2.5) can be seen 
from Eq. (2.2). Multiplying this equation by ~ d @ / d r  and 
integrating, we arrive under condition (2.5) to a conservation 
law for the heat flux through the jump: 

(Uis the ionization potential), and the structure of the jump (2.6) 
in the vicinity of the plasma-resonance point is determined 
completely by the heat-condition equation According to (2.3), the function F has the meaning of the 

difference between the amounts of heat released bv the field 
d z 
- [@'n$] =n ((3) W"" ( B ;  Ell; D), z= - and absorbed in the volume by collision; therefore under 
dz LT ' (2'2) conditions (2.5) the excess heat released by the field in the 
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region of a jump with a temperature from @, to @- should 
be absorbed in collisions in the other part of the jump with 
temperature from @+ to @.. The conservation law (2.6) 
holds here, too. Thus, the electron-density and temperature 
jumps behave in analogy with the surface that separates two 
media. In contrast to the latter, however, the jump has a 
finite thickness and therefore condition (2.6) can be satisfied 
only for a definite heat-release law and for a definite tem- 
perature distribution in it. 

Condition (2.5) solves the problem of single-valued 
matching of the fields on the jump through the plasma-reso- 
nance point only in principle, but cannot be used directly in 
the scheme of the locally nonlinear problem, since it is inte- 
gral in character. In addition, the dependences of @+, 0., 
and 0- on Ell and D are unknown; nor is the character of the 
connection between Ell and D known. The exposition that 
follows is devoted to details of this character for the case of a 
high-frequency ionizing wave. 

3. The singular points of Eq. (2.3), which determine the 
plasma parameters in the local-coupling approximation, are 
the roots of the equation 

wheren(8 ) is defined by (2.1) and n, = mw2/he2 is the criti- 
cal density. The right-hand side of (3.1) has the meaning of 
the square of the amplitude of the electric-field component, 
El2 = D 2/1~12, directed along the inhomogeneity, and as a 
function of temperature it has the form of a narrow 

(0, is the temperature of the plasma-resonance point) and 
resonant line (see Fig. 1, curve I), whose maximum is shifted 
insignificantly, by 

An v.' T&. - - -- 
n, 202 U 

into the transparency region (n < n,) of the plasma and its 
height is D 2w2/vf, where v, = vo@ $ is the collision frequen- 
cy at the plasma-resonance point. 

At 6 (0 ) = 6,, the case that will be considered first, the 
plot of the left-hand side of (3.1) is a straight line (curve 2 of 
Fig. 1) that shifts to the right (towards larger @ ) parallel to 
itself with increasing Ell .  

Independently of the value of D 'o2/v:, at E 20, - 1 
there exists only one solution of (3.1), corresponding to a 
superficial state of the plasma. At Ell < 0, - 1 the structure 

FIG. 1 .  Illustrating the graphic solution of equation (3.1): 1-E :; 2- 
( e l - - E f )  

of the solution of (3.1) becomes already dependent on the 
ratio of Ell and Dw/v,. If the straight line 2 on Fig. 1 passes 
above the maximum of curve 1, 

0c-1-E,,2>D202/v,2, (3.2) 

or to the right of the left corner of the resonance line, 
Ye T g Q c  

0,-1-El,2tD2+ -- , 
0 U 

Eq. (3.1) also has one solution corresponding to the subcriti- 
cal or supercritical value of the electron density. 

In the intermediate field range, curves 1 and 2 intersect 
at three points, to which correspond two subcritical states of 
the plasma, namely (@+, n +) and (@., n, ), and one supercri- 
tical state (Ow, n -). The first to point out that a plasma in a 
longitudinal (Ell = 0) field can have three values in the vicin- 
ity of the plasma-resonance point were Gurevich and Pi- 
taevski;. ' 

If we neglect the small difference between the half- 
width of the resonance line at @ > @, and @ < @, , due to the 
temperature dependence of the collision frequency, then the 
roots 0, and 0- will by symmetric about @,. 

The curve intersection points that determine the roots 
0, and 0- move with changing El, along almost vertical 
lines, so that the values of 0. and 0- should not be very 
sensitive to the slope of the straight line 2. Recognizing fur- 
thermore, that the left-hand side of (3. l ) changes little over 
the width of the resonance line, we obtain 

In this case y < 1 and curves 1 and 2 cross below the maxi- 
mum (the inequality (3.2) does not hold); for y to be positive, 
on the other hand, we must have 

The concentration n, and n-  correspond to the tempera- 
tures 

The value of the temperature @+ is determined by the inter- 
section of the line 2 with the left-hand gently sloping branch 
of curve 1 in a region where the electron density is substan- 
tially lower than critical (by virtue of the exponential depen- 
dence), and the collision frequency can be neglected: 

where n + = n(@+) and n + (n,. In Eqs. (3.3)-(3.6) the case of 
coalescence of the roots O., 0- or O., 0, is excluded from 
consideration, for in this case of the areas, A or B, in Fig. 1 
becomes equal to zero, a fact not allowed by the condition 
(2.5). 

We now write down the condition (2.5) in greater detail: 
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The integrands here are quite unwieldy, but they contain the 
strongly varying function n(@ ). Changing over to integration 
with respect to the concentration and replacing the slowly 
varying functions by their averages over the considered in- 
terval, we arrive at the following transcendental equation in 
y from (3.3): 

where Y, = yo@ and vc = yo@ f.. This equation is also quite 
complicated, but it contains the small parameter v/w, so that 
its analytic solution can ultimately be obtained. 

To determine the dependence of y on v/w we use the 
following qualitative considerations. The left-hand side of 
(3.8) is connected with integration over the area A (Fig. 1) 
and will remain finite in the limit as v/w+O. The right-hand 
side of (3.8) is connected with integration over the area B, 
which is equal to 

Equation (3.8) can therefore have a solution only if in the 
limit as v / o 4  the area S, of the figure remains constant, 
i.e., 

0 
lim SBmD2 - =SO. 

V/O+O Ye 

This is possible if D - vC/w and consequently 

Taking these considerations into account, we seek a solution 
of (3.8) in the form 

where y, are quantities as yet unknown. After substitution in 
(3.8) and simplification we obtain in the zeroth approxima- 
tion in (v,/w)"~ 

whence 

since n: (nz. With the aid of (3.3) and (3.5) we arrive at the 
following expressions for the plasma parameters in the su- 
percritical state: 

~e-~=n-/n,-1~0.564(~,/~)'~, (3.11) 

From (3.3) we obtain at the same time also the connection 
between the field components Ell and D (in dimensional 
units): 

This condition, or its equivalent (3.1 I), is in fact the addi- 
tional condition that leads, together with the continuity con- 
ditions for the tangential field components on the jump, to 
unambiguity of the solution of the locally nonlinear prob- 
lem. The use of condition (3.1 1) is in this case more conven- 
ient, since usually the conditions of field coupling are formu- 
lated in terms of the dielectric constant. 

It can be seen from (3.11)-(3.13) that the supercritical 
plasma parameters and the connection between the field 
components Ell and D are determined by the frequency of 
the collisions at the plasma-resonance point. The reason is 
that a change in plasma temperature from O+ to @- in the 
vicinity of the plasma-resonance point is due to plasma heat- 
ing by the "resonant" heat, whose magnitude is regulated by 
the collision frequency. As already noted, the condition (2.5) 
requires in this case that the excess of the resonant heat re- 
leased in the hot region (@. , @-) of the jump be absorbed by 
collisions with the neutrals in cold (a+, O.) region. In this 
case the heat flux through the jump will be conserved. If the 
condition (2.5) is not satisfied, the resonant heat will either 
be insufficient, or will be so plentiful that large plasma vol- 
umes will be heated by it. Under these conditions the locally 
nonlinear approximation can no longer be used to construct 
the solution in a region in which the dielectric constant re- 
verses sign. At least one of the regions (& > 0 or E < 0) will in 
this case be subject to a strong influence of the thermal con- 
ductivity, and the initial singularly perturbed problem 
should be directly solvable in it. 

The positive boundary of the jump of the dielectric con- 
stant, &+, is determined from the conditions for the match- 
ing of the tangential field components on the jump. In this 
case the conditions must be formulated so as to exclude from 
consideration that branch of the solution which corresponds 
to the root O, , since the "center" cannot be reached from the 
"saddle" 0,. Together with the condition E+ <E, (E, is the 
dielectric constant of the unperturbed plasma) this limits the 
range of variation of the parameter Y ~ / O  and in the upshot 
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limits the gas pressure. For example, for a surface wave v,/w 
can vary in the range 

0.261>v,/o20.03, 

which corresponds, for a discharge in argon at a frequency 
w = 6x 10" sec-', to gas pressures 

5 . 2 2 2 ~  (Torr) 20.6. 

To each given value of v,/w or p there corresponds a single 
solution of the locally nonlinear electrodynamic problem. 
The preceding results were obtained under the assumption 
that the energy-transfer parameter in (3.1) is S = 2m/M. If 6 
depends on temperature, the line 2 in Fig. 1 is no longer 
straight. Recognizing, however, that the supercritical plas- 
ma parameters allowed by the condition (2.5) depend little 
on the positions of the intersection points of curves 1 and 2, it 
can be assumed that the conditions (3.11) and (3.13) remain 
in force in this case, too. The "plasma" field, however, must 
be renormalized by substituting ti(@,) for 6,. 

The author thanks Professor F. G. Bass for a discussion 
and for interest in the work. 
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