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We show that when magnetic viscosity is taken into account rarefaction-type soliton solutions are 
possible even in the framework of single-fluid magnetohydrodynamics. When electron inertia is 
taken into account, hf oscillations approximately up to a level z /B, - (me /mi )'I2 (z is the ampli- 
tude of the oscillations and B, the unperturbed magnetic field) must develop and this occurs 
apparently in Z-pinch experiments. 

PACS numbers: 52.55.Ez, 52.30. + r, 52.35.M~ 

§I. INTRODUCTION 02. SINGLE-FLUID RAREFACTION SOLITON IN A PLASMA 

Spectroscopic studies of plasma Z-pinches show' that 
at the time of the "second singularity" strong hf oscillations 
are observed in them with frequencies of the order of 
13, = (41zne2)/me )'I2 and w,, + e ~ d m ,  c and amplitude& / 
~ , g ( m ,  /mi)'I2. We try in the present paper to explain these 
oscillations using a one-dimensional planar model. In what 
follows we show (92) that when account is taken of the mag- 
netic viscosity due to the finite ion Larmor radus rarefaction 
soliton-type solutions (solitary waves) are possible even in 
the framework of single-fluid magnetohydrodynamics rare- 
faction soliton-type. We bear in mind that in the usual sin- 
gle-fluid magnetohydrodynamics the waves do not have a 
dispersion so that nonlinear soliton-type solutions do not 
occur and can be obtained only when we go over to a two- 
fluid model which takes the electron inertia into ac~ount.'.~ 

In our case (with a dissipationless magnetic viscosity) 
taking electron inertia into account leads (93) to the build- 
up, at the leading front of the rarefaction soliton, of electro- 
static oscillations with a frequency of the order of w, and 
an amplitude (in the center of the rarefaction soliton) of the 
order /B, - (me /mi )'I2, in qualitative agreement with ob- 
servations in Z-pinches. 

One should note that oscillations with such an ampli- 
tude are also observed in several other experiments, for in- 
stance, in transverse magnetosonic shock waves. Trushin 
and Sholin4s5 were the first to attempt in a number of papers 
to explain these oscillations and the accompanying effects 
(such as a widening of the thickness of the front); however, 
they only considered condensation waves and compression 
solitons, rather than the rarefaction solitons we do. We em- 
phasize that taking the magnetic viscosity into account in 
the single-fluid model leads just to rarefaction solitons, 
owing to the positive dispersion of the linear waves.6 To 
complete the picture, however, we consider in conclusion 
(94) also the two-fluid compression soliton studied earlier by 
Sagdeev3 and we show that when the magnetic viscosity is 
taken into account (here as a correction factor) oscillations 
are also built up in this soliton but now in the range 
w 2 lwBewBi 1 'I2, where LU,,,~ are the electron and ion cyclo- 
tron frequencies. We thus show in the present paper that 
taking the (dissipationless!) magnetic viscosity into account 
appreciably affects the dynamics of the nonlinear solitary 
waves in a plasma. 

It has been shown earlier6 that a correct approximation 
to describe a plasma in the collisionless limit is anisotropic 
magnetohydrodynamics with magnetic viscosity which 
takes into account the finite Larmor radius of the ions and 
which leads to a positive dispersion of the linear waves. For 
waves which propagate across the magnetic field the disper- 
sion law has the form 

(1) 
where cA = B / ( h p ) ' I 2  is the AlfvCn speed, v, = p i  /2wBi 
the ion magnetic viscosity coefficient, pl the ion pressure, 
and p, and p = min the plasma pressure and density. The 
dispersion law (1) means that rarefaction soliton-type solu- 
tions may occur in the given, essentially single-fluid, model. 

In the present section we consider the propagation of 
waves (1) with a finite amplitude in a one-dimensional planar 
model with a geometry similar to the one used in Ref. 6. Let 
the wave propagate in the direction e x ,  let the magnetic field 
B be parallel toe,, , and let the perturbations depend solely on 
the variable 6 = x - ut where u > 0 is the wave velocity. We 
find in that case from the single-fluid magnetohydrodyna- 
mics equations6 

Here v,, are the plasma velocity components; the index zero 
denotes the unperturbed values of the various quantities; 1z, 
and ~r,, are components of the magnetic viscosity tensor; we 
assume pl = p, /2. 

One easily derives from the set (2) an equation for the 
plasma density. Writing N(f  ) = n/n, we have 

Here M = u/E, is the Mach number evaluated using the ve- 
locity 2, in the unperturbed plasma; a, = nO,/minoEA is a 
parameter with the dimensions of length and determines the 
size of the soliton. 
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FIG. 1. Profiles of (a) the density and the magnetic field and (b) of the 
plasma velocity components V,, = u,/Z, for a single-fluid soliton for 
M = 1/2. 

A solution of Eq. (3) satisfying the conditions N = 1 and 
dN/df = 0 on the front of the wave is a rarefunction soliton 
(see Fig. 1): 

which can be large as M-1. 
This solution differs somewhat from the Korteweg-de 

Vries solitons. Most strikingly this difference manifests itself 
in the fact that the density well (4) can be completely station- 
ary since the momentum flux is finite, although the plasma 
velocity components have a singuarity when M = 0. 

Because of the possible violation of the plasma quasi- 
neutrality and the freezing in of the magnetic field the single- 
fluid description is, strictly speaking, not correct and one 
should use therefore the exacter two-fluid de~cription.~ 
Moreover, such an approach leads to principally new results 
considered in the next section. 

63. BUILDUP OF LANGMUIR OSCILLATIONS AT THE FRONT 
OF A RAREFACTION SOLITON 

3.1. The equations of two-fluid magnetohydrodyna- 
mics in their full form turn out to be too complicated for 
analysis. To simplify the situation we restrict ourselves to 
the case of cold electrons (T, = 0) but retain the electron 
inertia (taking its influence into account turns out to be im- 
portant as a matter of principle). 

Under these assumptions the generalization of the set of 
single-fluid Eqs. (2) is 

N ( I v )  pi=poNiZ, pe=O, Ez=yBo (1-b) , 
noumau,a'= (dld5) (pa+qavzaf) --eanoBoNa (E-vzablc), 

noumav,,'=- (d/dE) qav,'-y eanoBo (Na- b) , ( 5 )  
(I-rz) b'= (4neno/cBo) (N,u,,-New,,), 

E'= (4nen,/Bo) (Ni-N,) , qa=pa/2aBa, aBa=eaB/mac. 
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Here a = e, i identifies the particles, b = B /Bo, 
Na = Na /no, y = U/C, E = Ex /Bo, E x ,  are the electrical 
field components, and a dash indicates differentiation with 
respect to the variable 6 = x - ut. 

We introduce a convenient notation 

and characteristic scales with dimensions of length: 

The first of them, a,, is determined by the ion magnetic 
viscosity and is analogous to the one introduced above for 
the single-fluid soliton (3), whereas the size a, determines 
the scale connected with taking electron inertia into ac- 
count. 

In this notation the set (5) reduces to equations for the 
functions b (6 ), N = Ni@ ), andE (6 )ofthefollowingform (we 
use the face that y2 = u2/c24 1): 

where 

We note that Eq. (10) of this set has the form of the 
equation for a nonlinear oscillator and describes Langmuir 
oscillations. These oscillations correspond to a scale a,: 

a,= (If p) ' M E u D ~ u / o ~ ~ u D .  (12) 

Trushin and Sholin4 were the first to note the role of such 
oscillations in the dynamics of transverse magnetosonic 
waves. 

The set (8) to (1 1) can be further simplified when the 
plasma quasineutrality is not violated too strongly since, us- 
ing the fact that the mass ratio is small, a g l ,  we can put 
N,/N>a. Moreover, we assume for the sake of simplicity, 
where necessary, that EN 1 and Bg1. 

3.2. We consider limiting cases for the set (8) to (1 1). 
Going over to the single-fluid description corresponds for- 
mally to a , 4 .  We then get from (8) to (1 1) the equation 

which differs from the corresponding single-fluid Eq. (3) by 
the presence of terms a E'. One checks easily that their ap- 
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pearance is due to the fact that we have taken the Hall effect 
into account. Nonetheless, when we take a finite .c2 into ac- 
count, Eq. (13) describes a rarefaction soliton and such a 
solution is possible when M < N (6 ) < 1. 

In the opposite case when the magnetic viscosity is as- 
sumed to be unimportant we put formally a,-&( v, fl-4). 
In that case the set (8)  to ( 1  1 )  goes over into one studied 
earlier4 and describes a compression magnetosonic soliton 
when account is taken of small-scale Langmuir oscillations. 

The limiting cases noted above assume neglect of small 
terms in combination with the leading derivative. However, 
in such situations the occurrence of other kinds of solutions 
is possible. It  is thus important to study the set at finite val- 
ues of the scale ratio. As the basic principle in our choice of 
solutions we then take boundedness, and considering only 
compact, finite-amplitude solitary waves. 

3.3. We note first of all that for solutions of the set (8)  to 
( 1  1 )  with sizes of the order of the size of the single-fluid rare- 
faction soliton g - a ,  ) the deviation from the freezing-in of 
the magnetic field (b # N, N, ) and from plasma quasineutra- 
lity (N  # N,) is determined, respectively, by the parameters 

In a plasma with not too low a pressure we have &,1( 1 
and we may expect that taking these factors into account has 
only a weak effect. The analysis of the role of the small pa- 
rameters (14) is facililtated if as a first step we eliminate the 
Langmuir oscillations by formally putting a-+O but retain- 
ing terms with &. The corresponding study does not have any 
difficulties as far as principle is concerned and therefore we 
formulate here only qualitatively the final result. In fact, 
when there are no Langmuir oscillations the violation of the 
freezing-in of the magnetic field and of the plasma quasineu- 
trality weakly distorts the rarefaction soliton if 5, i( 1 and 
the Mach number of the wave is not too small. 

3.4. We consider finally the role of the smallest scale 
-M&a, corresponding to the Langmuir oscillations. 

First of all we take into account oscillations in the linear 
approximation, putting in the set (8) to ( 1  1 )  

b=bof 5, N = N o + N ,  E=Eo+E, 

where the index zero indicates the solution of the set neglect- 
ing the oscillations (we showed above that one can take for 
this "zeroth" solution the single-fluid soliton (3)) and the 
tilde denotes a small correction to this "equilibrium" level. 
We restrict ourselves to the case p = &/a'12(1 (in other 
words, w ,  ( a 0 ) .  To simplify matters it is also convenient to 
introduce a new variable 

y=E/ao.  (15) 

To evaluate the perturbations we use the fact that the 
scale of the Langmuir oscillations y,,,, - E  is appreciably 
smaller than the other ones and we shall therefore neglect 
small terms cc (M o: )'. We then find for the perturbations 

N f =  ( N o f / N 0 ) i i ,  F'=pBN,+ (N, ' /No)  (N-!LBO , 
M ' E ~ B " + E ( I + ~ ~ N ~ )  No3+ plj ( N O f / N O )  N,,j=O. (16) 

The dash here indicates differentiation with respect toy and 
in the derivation we have dropped terms afl( 1 .  

We find the solution of (1 6 )  assuming that the perturba- 
tions are proportional to 

where k ( y)  is a smooth function. Putting this representation 
into the set we get 

k2+ck ' ( y )  + N o ~ I + p ~ N , - N o ' 2 / N o 2 ) ]  =O. 

Using the fact that 2, p( 1 we easily find the solution of this 
equation 

Equation (17) determines the spatial periodicity and 
growth rate of the oscillations. As for a rarefaction soliton 
we have at the trailing edge ( y-+ - a )  NA < 0 and at the 
leading edge N ;  > 0 (see Fig. 1 )  the result (17) means a build- 
up of oscillations from the front of the soliton to its center. 
Therefore incipient oscillations are magnified from the front 
towards the center and the soliton is filled by oscillations 
(Fig. 2). This distinguishes a rarefaction soliton from a com- 
pression ~o l i t on .~  In the latter the Langmuir oscillations 
grow from the center to the periphery, i.e., in the direction in 
which the wave  propagate^.^ 

3.5. We attempt to answer the question of the limiting 
amplitude of the growing oscillations. Let there be small 
phonon oscillations (here N h 4 )  in front of the soliton 
( y - t m ) .  According to what we have said earlier, as they 
move into the depth of the soliton they are amplified (here 
N ;  > 0 )  and afterwards in the center we have NA = 0 and 

FIG. 2. Character of the Langmuir oscillations of the electrical field E and 
of the electron density N, in the center of a rarefaction soliton 
a,/Ma = a--~/a''~ = 0.05 8; b--~/cr''~ =B; dashed lines-ion 
density N. 
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there is no buildup, so that the oscillations saturate. The 
limiting level of the oscillations is thus determined by the 
solution of Eq. (10) at the center of the soliton: 

Integrating Eq. (18) we find the relation 

where A is the amplitude of the oscillations. One easily con- 
cludes from this relation that a single-valued solution is only 
possible if the inequality 

is satisfied. This then determines the amplitude of the Lang- 
muir oscillations: 

IE 1 =(E,/BoI G(m,lmi)'"cil. 

The two-fluid description thus leads to a qualitatively 
new result-it is possible to fill the single-fluid rarefaction 
soliton, determined by the ion magnetic viscosity, with 
small-scale Langmuir oscillations up to a level 

E,2/8x< (m,/mi) (Bo2/8n). 

Finally, we note briefly possible applications of the re- 
sults. In our opinion of most interest, when taking into ac- 
count the characteristic spatial and temporal scales, are the 
rarefaction solitons which are caused by the magnetic vis- 
cosity for fast pinch discharges. For instance, in Ref. 1 the 
generation of Langmuir oscillations in a 2-pinch was ob- 
served. This fact may be connected with the generation of 
rarefaction solitons by the pinch; these, as we have just 
shown, amplify this kind of oscillations. 

Moreover, the presence of a "well" in the magnetic field 
of a rarefaction/soliton is, possibly, of interest in the prob- 
lem of particle acceleration in a Z-pinch and in the plasma 
focus across the strong magnetic field of a discharge. It was 
shown in Ref. 8 in the linear approximation that it is just 
rarefaction waves which are generated when the constriction 
of the pinch is terminated. It  is clearly important in this 
scheme to generalize the results of the present paper to non- 
uniform (in particular, cylindrical) geometries. 

94. THE ROLE OF THE MAGNETIC VISCOSITY IN 
COMPRESSION-SOLITON DYNAMICS 

4.1. The role of the magnetic viscosity turns out to be 
important also in the case when it is small. We shall show 
below that taking a small magnetic viscosity into account for 
the well known magnetosonic compression solitons3 may 
lead to the buildup of oscillations with frequencies in the 
range w 2 IwB,w, I 'I2. 

We therefore assume that the scale (7) determined by 
the magnetic viscosity is small, i.e., a,/a, ( 1. Moreover, we 
restrict ourselves solely to the case when charge separation is 
unimportant. We can obtain the corresponding equations 
from the set (8) to (1 1) putting formally E = 0. The problem 

then reduces to two second order equations for the functions 
b (6 ) and N (6 )EN, = Ni: 

where we have dropped terms a a< 1. 
When there is no magnetic viscosity (a, = 0) the system 

(21) describes in a zero pressure plasma = 0) a well known 
compression soliton determined by the finite electron inertia 
with a characteristic size -a, = c/oo and existing in a 
range of Mach numbers 1 < M < 2 while the amplitude of the 
soliton equals b,,, = 2M - 1.) We further assume that the 
plasma pressure is not too low so that 

The ratio of the scales is then still small: 

and moreover, we can now drop in Eqs. (21) terms ap. Writ- 
ing y = 6 /a, we then get 

We note that for fixed b ( y) Eq. (23) describes a nonlinear 
oscillator and when b,N- 1 the characteristic period of the 
oscillations will bey,,,, - l/MZ( 1. 

4.2. We consider the oscillations in the linear approxi- 
mation putting in the set (23), (24) 

where bo and No are smooth functions determining the 
"equilibrium" level (i.e., the compression soliton) while the 
corrections 6 and oscillate with the above indicated fre- 
quency and satisfy the equations (p = 1/ZM( 1) 

El(,) =b,'lV/N,, p3N"'+ pN'boZ/No"=pQ, (25) 

No' - 2p2N" (r - 
In deriving (25) we neglected small terms ap2. 

Putting in Eq. (25) 

where k (y) is a smooth function we find approximately 

k ( y )  --+ibo/N,2+p ( N o b o / M 2 )  b,'; (26) 

clearly, the oscillations build up with increasing y when 
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FIG. 3. Plasma density oscillations of a two-fluid compression soliton 
when a small magnetic viscosity is taken into account. Ma,/a, = 10, 
M = 1.2. No is the density profile of the unperturbed soliton IS = 0). 

b ; > 0 and are damped if b < 0. This means that the com- 
pression soliton is filled with osciilatim of the indicated 
shape and it is just due to relation (26) that the amplitude 
grows from the periphery to the center of the soliton (Fig. 3). 

We note thatihe spatial period in (26) corresponds to 
oscillations in time with a frequency (we assume b,, No, 
M -  1 )  

which when we use the conditions (22) on the quantity f l  
gives the range 
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