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We investigate magnetic-field generation due to filamentation of a beam of charged particles 
propagating in a dense plasma under conditions of strong current neutralization. The filamenta- 
tion mechanism is determined by inductive or dissipative magnetic-field accumulation which 
leads to an inertialess restructuring of the equilibrium of the charged-particle beam. The charac- 
teristic generation times of a magnetic field that leads to a substantial increase of the angular 
spread of the particles are indicated for typical beam and laser experiments. 
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The $&jet of the present article is a dense plasma in 
which a beam of high-energy particles moves. The plasma is 
described In the two-component magnetic-gasdynamics ap- 
proximation. This approach is possible if the spatial scale of 
interest to us is less than the stagnation length of the high- 
energy particles and the characteristic frequency of the pro- 
cess is lower than the frequency of the electron-ion collisions 
in tkplwma. We shall be interested in processes that lead to 
breskup af the uniform beam of charged particles into jets 
and to generation of a magnetic field in the plasma. This 
question arose in connection with research into controlled 
~hemmnuclear fusion using strong-current charged-particle 
beams, where it is necessary to transport mega-ampere 
beams over distances up to 10 m through a dense plasma. We 
call attention to the fact that the beam filamentation and 
field generation, which are considered in detail in the present 
article, ean take place and play an important role not only in 
propagation of high-current beams, but also in media so dis- 
similar in their parameters as cosmic plasma and laser plas- 
ma. In the case of the latter, experimental evidence of fila- 
mentation exists.' 

Local pinching of an ion beam as a result of develop- 
ment of instabiiity in a low-conductivity plasma was investi- 
gated in Ref. 2. This tendency exists also in a high-conduc- 
tivity plasma, and the instabiIity can set in even much faster 
an the helicon branch of nonpotential~sciIlations.~ 

We shall analyze here such an instability in the presence 
of an extraneous beam current substantially stronger than 
the total current in the plasma 

i- Ib+h I (c14n) I rot H 1 cc jb. (1) 
This typical situation arises when the beam transport time T 
through the plasma is shorter than the skin-effect time for 
the plasma: 

Here j, and j, are respectively the beam-current and plas- 
ma-electron densities, o is the plasma conductivity, and r, is 
the beam radius. 

The instability considered hereafter extends over the 
following frequency and wave-vector ranges 

We shall describe the instability using the hydrodynamic 
equation for the ions 

and an equation for the electrons 
1 en V P  

E + - [ V X H ] ~  -(v-V)=-- 
c a en' 

which has the meaning of Ohm's law. 
Ohm's law takes into account besides the Hall term also 

the term with the plasma-electron pressure; this term is gen- 
erally speaking not potential and can influence the helicon 
electron perturbations. For local perturbations with kr, S 1, 
however, we can use the adiabat pn -" = const, and the 
term with the pressure balances the potential component of 
the electromagnetic force. 

The beam-particle motion is described by the "hydro- 
dynamic" equation 

which is valid if the magnetic field H is strong enough and 
the beam particles manage to execute several radial oscilla- 
tions in the magnetic channel. 

Even if total curent neutralizaton was obtained at the 
initial instant and there is no magnetic field, the finite plas- 
ma resistance causes the reverse current to attenuate partial- 
ly and a magnetic field to appear. Under condition (1) this 
field is equal to 

from which follows a useful estimate for the magnetization 
parameter 

o,./v= (nb/n) (Lb/rb), (8) 

where L, = v, T is the "length" of the beam. Actually o, / v  
can be larger if the beam is injected in a previously produced 
magnetic transport channel. 

Before we proceed to derive the equations for the local 
pinching of the beam, let us explain qualitatively the nature 
of this instability for the case when the ion-motion perturba- 
tion can be neglected and the charged-particle beam-current 
density is uniform over the cross section. 

Let an electron-velocity perturbation v, be produced 
along the azimuthal angle q ~ ,  and let it lead to pinching of the 
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magnetic field because the magnetic field is frozen into the 
electrons. Since the electron liquid is incompressible, a radi- 
al velocity vr sets in and produced, by virtue of the freezing- 
in equation 

a perturbation Hr . 
It follows from (5) that c-'u,H, generates an azi- 

muthal electric field. The magnetic field Hz induced thereby 
fixes a new quasiequilibrium and increases the azimuthal 
displacement of the electron liquid: 

aH,lar= (4nen,/c) v,. 

Flute-like perturbations of the magnetic field are then pro- 
duced on the beam surface and are oriented along the beam 
propagation direction. From the freezing-in equation it fol- 
lows that the growth rate of the magnetic field Hz,  and hence 
also the increment of the instability for a current j,  that is 
uniform over the cross section, is proportional to the plasma 
density gradient. 

We note now the main premises that will be made in this 
article to obtain a sufficiently simply physical picture of the 
phenomenon. Equation (4) is written under the assumption 
that the ions are not magnetized ( w > o ,  ) and the ion pres- 
sure can be neglected. 

No account is taken in (5) of the plasma-electron inertia; 
this is equivalent to magnetization of the electrons (w<wHe) 
in the indicated wavelength range. 

The main effect of the action of the magnetic field on the 
beam is the bending of the beam trajectories by the perturbed 
magnetic field. In this case we can neglect the perturbation 
of the particle velocity in the beam, this being due to the 
presence of a large parameter I, /I, where I, is the charged- 
particle-beam current and I is the total current. The electric 
term in (6) can be neglected compared with the magnetic 
relative to the parameter n,/n<l, as follows from Eqs (1) 
and (5).When account is taken of the beam continuity equa- 
tion 

dnb/dt+div (nbvb) =O 

this is in essence equivalent to the quasistatism condition w/ 
kv, 4 1, a result obtained also, when account is taken of the 
foregoing, from the induction equation 

---= rot E .  
c at  

In the "hydrodynamic" formula (6) the temperature T, 
is assumed constant and equal to 

where v, is the longitudinal velocity in the beam and 8 is a 
small angle that characterizes the scatter of the beam-parti- 
cle velocities. The beam particles move almost in a straight 
line because the total current is much less than the Alfven 
current for the beam particles: 

Ib>IA>I. (I1) 

In addition, it will be assumed hereafter that the wavelength 
of the pertubations along the beam exceeds greatly not only 

the transverse wavelength but also the period of the betatron 
oscillations in the beam: 

k,2/kz<82=I/IA< 1. (I2) 

To obtain the fundamental equations that describe the 
considered nonpotential perturbation, we apply the curl op- 
eration to Eq. (5). With account taken of the induction equa- 
tion (9) and of the adiabatic equationp = Kna we obtain 

dH -- ec - rot [ v  x HI + -rot n ( v - V )  
at  (J 

assuming that a is constant. Taking into account the quasi- 
neutrality, n = ziN, where n is the electron density, Max- 
well's equation for the determination of the magnetic field 
takes the form 

4nen 4ne 
r o t H = -  ( V - V )  + - ZbnbVb. 

C C 
(14) 

Using (14) we can rewrite Eq. (13) in the form 
aH zbec C" 

- = r ~ t [ v > < H ] + - r ~ t n b ~ b - -  rot rot H. (1 5 )  
dt  (J 4no 

Equations (14) and (15) are the basic ones for the investiga- 
tion of the nonpotential perturbations. It is now necessary to 
substitute in them the perturbed quantities that describe the 
beam and the plasma ions. We use hereafter for the ions an 
equation obtained by eliminating the electric field from Eqs. 
(4) and (5) 

Adding here the continuity equation for the ions, we can 
obtain the following equations for the velocity perturbation 
and the ion density 

- n  (aZ-k2c.2)  = (z ie/mic)  div no ( [ v ,  X HI + [ v  XH,]  ) , (1 8) 

where cf = (zi /mi)dp/dn. The expressions that follow from 
(17) and (1 8) for the perturbations of the ion velocities and of 
the density simplify greatly subsequently when the quasi- 
classical approximation k '6 > 1 is used. 

From (6) and from the continuity equation for the beam 
particles we can obtain, using the quasiclassical approxima- 
tion, the following expression for the current-density pertur- 
bation: 

T1.b = , 
1 

(o-k,vbo) '-kZvT2 

(19) 
where j, , = z, en,, v, , . Using Eq. (6) for the beam-particle 
velocity within the framework of the employed quasiclassi- 
cal approximation, we can show that the principal role is 
played by the perturbation of the longitudinal current j, in 
the beam, while the perturbations of j, and j, , which are 
connected with the bending of the beam, are small and can be 
neglected. 
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Before we substitute the expressions obtained in the ba- 
sic equations (14) and (15) we note that, just as in Ref. 3, it is 
convenient to use not the three magnetic-field components 
connected by the condition divH = 0, but the components 
H, and cur1,H. It is then convenient to use in place of Eq. 
(1 5) its r-component and the result of the application of the 
operation curl, to this equation, as well as the continuity 
equation for the plasma electron density 

LJnlat+div (nv) =O. (20) 

Within the framework of our approximations, the perturba- 
tions of the beam density and of the plasma electrons are 

The expressions for the velocity perturbations are simplified 
correspondingly. 

Substituting the expressons for the density perturba- 
tions and for the beam and plasma ion velocities in the basic 
equations and eliminating from them the velocity compo- 
nents v, and v, of the plasma electrons, we obtain a system 
of three equations for H, , curl, H, and v, . Using the forego- 
ing simplifying assumptions, this system of equation takes 
the form 

Here ij = o - k, v0 and v0 = jbo /en,. In the derivation of the 
system (23)-(25) we assumed satisfaction of the condition 

which means that the perturbations in questions are rapid 
and they can be considered with the Alfven perturbations 
neglected. It  follows from (34) that the inequality (26) holds 
at k 2~2/oii 2 1 when account is taken of the other inequal- 
ities. 

From the system (23)-(25) at k2>(wii/c2)(kzv~o) we 
obtain the following final dispersion equation for the nonpo- 
tential perturbations: 

apa2 up? k,zvo2 - h e n ,  avo + + -  
c2 c h Z - k 2 c ;  cHWo d r  

In the absence of a beam, Eq. (27) leads to an expression for 
the frequency of helicons that are weakly damped on ac- 
count of the finite value of the conductivity. 

The dispersion equation (27) does not admit of a direct 
transition to the dispersion equations considered in Refs. 3 
and 4. The reason is that it was derived without including 
terms proportional to the magnetic field, compared with jbo 
relative to the parameter I/I, ( 1. 

If we neglect in (17) dissipation and the perturbation of 
the ions, and if the density gradient is strong enough and the 
extraneous current is uniform enough over the cross section, 
we can obtain the instability indicated above. Retaining in 
the right-hand side of (27), besides k 2, only the term with the 
gradient of the velocity v,, and using the unperturbed equa- 
tion of motion for the plasma ions, we obtain 

(4neno/kqc) 2~2=k2H,,2+4n (mi /z i )  a,dno/dr, (28) 

where a is the acceleration acting on the plasma. If we neg- 
lect in the right-hand side of (28) the term k 2 H i o ,  which 
corresponds to helicon perturbations, instability is present 
at 

i.e., when the acceleration direction is antiparallel to the 
density gradient. This criterion coincides formally with the 
Rayleigh-Taylor criterion for the analog of the free-fall ac- 
celeration in the absence of acceleration of the medium. The 
growth rate is increased in this case by k 2~20ii times com- 
pared with the usual Rayleigh-Taylor instability. 

To estimate the growth rates we shall use hereafter rela- 
tions that connect, in order of magnitude, the local values of 
nb , q, , and v, with the beam current I,, with the Alfven 
current I, = yb mb vboc2/e and with the total current I: 

a p b 2  1 Ib Opb2vbO2 1 I b  
-=.-l- 

9 -=-- cZ rb2 I A  c2vT2 rb2 I ' 

We neglect now in the right-hand side of the dispersion equa- 
tion (27) the terms with the gradient of the velocity v, and 
with the plasma-density perturbation. In this case the insta- 
bility is due to the anisotropy of the beam-particle function 

For a total current I < I, , when the longitudinal beam veloc- 
ity greatly exceeds its transverse velocity so that the beam 
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particles have an appreciable velocity anisotropy, a change 
takes place in the dispersion of the helicon perturbations at 
k '6 <Ib  /I and instability sets in. We note that an instabil- 
ity due to the change of the oscillaton dispersion in a strong 
longitudinal magnetic field, was noted in Ref. 5 on the heli- 
con branch of the oscillations. 

We assess now the role of the ion term in (27). We use for 
this purpose the equation for the plasma-electron tempera- 
ture 

n,aTldt= (a- 1) jbo2/a. (30) 

Using the expression for the magnetic field from (7) and the 
connection between the equilibrium quantities in the beam 

we obtain the following estimate for the plasma temperature 
T: 

n o T ~ ~ j b o Z / ~ ~ n b o T b .  (32) 

It follows therefore that in the dispersion equation (27) at 
u24k 'c: the ion term is of the order of the beam term. Thus, 
Eq. (29) for the growth rate of the unstable helicon perturba- 
tion is of the correct order of magnitude also when the ions 
are taken into account. 

The dispersion equation (27) yields the transition from 
the dissipative mode considered in Ref. 2 to the helicon in- 
stability. The dissipative instability considered in Ref. 2 is 
obtained from (27) as u 4  for a cold beam (T, = 0) 

Taking into account the thermal spread of the beam as u+O, 
the growth rate of the dissipative perturbation is 

If the magnetic field is not zero and the beam particles move 
on equilibrium orbits, then 8 = I /I, . In the case of a zero 
magnetic field the angle 8 = v, /o characterizes the anisotro- 
py of the particle distribution in the beam. In this case insta- 
bility exists at all a. 

It is easily seen from a comparison of (7) with (34) that 
the evolution time of such an instability coincides with time 
of generation of the main magnetic field, and at first glance 
this result is not applicable anywhere. Yet this may not be 
the case. Consider the propagation of an electron beam of 
width 2a in the direction of thez axis in the half-spacez)O. If 
at Ix I <a and in the region z > 0 the beam is uniform the main 
magnetic field H,, is generated only near the planes z = 0 and 
1x1 = a ,  and the field penetrates into the beam region only 
for a certain finite time. It is clear that for a sufficiently broad 
beam the generation of a magnetic field inside the beam 
turns out to be substantial as a result of instability. 

Obviously, the foregoing is valid in the case when there 
is no noticeable entry of a magnetic field on account of the 
motion of the electronic component of the plasma in which 
the magnetic field is f r ~ z e n . ~  

We estimate now the growth rate of the dissipative in- 
stability for typical laser-plasma parameters, when the pow- 
er flux is 1013 W/cmZ and higher, the hot-component tem- 
perature is T, z 1 keV, and z,, z 5. The critical Alfven 

current corresponding to this flux is only of the order of 1 
kA. 

If the indicated streams are incident on a spherical tar- 
get with radius R -- 10W2 cm, the total flux of the hot parti- 
cles reaches lo5 Alfven currents. For the parameters indicat- 
ed, the growth rate of the considered perturbations is 
y=: low8 n, and is equal to lo9 sec-' at n, 2 1017. The char- 
acteristic scale of these perturbations can be estimated from 
the condition of the stabilization of the instability by the 
diffusion spreading of the magnetic field in the plasma: 

Papers dealing with the discussed dissipative instability 
have recently been published. Haines7 considered, as applied 
to a laser plasma, overheat instability, when the change of 
the conductivity of the medium is significant. The very exis- 
tence of the instability was found formally to be connected 
with some form of energy balance in the plasma. This does 
not reflect its universal electrodynamic origin, and the con- 
crete results of Ref. 6 are not applicable to a laser plasma 
where there is no noticeable difference between the electron 
and ion temperatures. Hughes et a1.' analyzed numerically 
the nonlinear stage of the dissipative instability.' 

It must be emphasized that as the magnetic-field gener- 
ation proceeds a situation inevitably arises in which the mag- 
netization of the plasma electrons becomes substantial and 
the magnetic field begins to influence the dispersion proper- 
ties of the perturbations. Instability exists in this case even 
on the helicon branch. 

The helicon-instability growth rate that follows from 
(29) with allowance for k '6 < I, /I, is 

cHva l a  1 
~ = 2 n e n I r b 2 .  (35) 

This expression does not depend at all on the magnetic field, 
but is determined only by the beam current, by the plasma 
density, and by the characteristic radius of the beam: 

For the typical beam parameters discussed in the program 
for inertial fusion with the aid of light ions (current I, = 3.5 
MA, plasma density no = 10'' ~ m - ~ , r ,  = 1 cm, pulse dura- 
tion T = 50 nsec we get from (36) a growth rate y z  107sec- ', 
which is insufficient for instability development. However, 
at typical parameters of experimental studies of the passage 
of high-current electron beams through a plasma (I, = 3CL 
100 kA, r, = 1-2 cm, no= lOI4) the instability considered is 
significant. 

Higher growth rates are obtained when account is taken 
of the resonant character of the ion term in (27), when it plays 
the principal role in the right hand of this equation. With 
dissipation neglected and at w;,/k 'c2 < 1 the dispersion 
equation (27), with only the ion term taken into account, 
takes the form 

To investigate the resonant perturbation we put 
w = kc, + 0 ,  where figkc,. We rewrite the dispersion 
equation (37) in the form 
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and substitute in it w = kc, + R. When the resonance condi- 
tion 

is taken into account, the dispersion equation with respect to 
f2 at k, <k takes the form 

Recognizing now that the perturbation growth rate should 
exceed the reciprocal skin-effect time, R > k ;c2/4m, we 
obtain an expression for the maximum growth rate 

or alternately 

Let us estimate the expression obtained for the growth rate 
under condition when beams of light ions are transported to 
a target, within a framework of the approach with inertial 
containment. The following characteristic parameters are 
indicated in Ref. 9: I, = 3 M A ,  r, z 1 cm, no = lo'', 
vo = lo7 cm/sec, c, = 0.5 x lo7 cm/sec, H = 6x lo3 Oe, 
and a = 1015 sec-'. In this case the resonant increment ex- 
ceeds by more than one order the growth rate (36) and its 
order of magnitude is 10' sec-'. 

We have thus shown that when charged-particle beams 
propagate along high-density plasma channels there are ex- 
cited rather fast perturbations that cause local pinching of 
the beam. Although we have not analyzed here the linear 
stage of the instability, it can be easily seen from the charac- 
ter of the phenomenon that the current and magnetic-field 
perturbations can grow to the values I, 8 and H,, , respec- 
tively. The beam particles scattered by the magnetic-field 
fluctuation accumulate rapidly an average angle spread. 

'M. J. Herbst, R. R. Whitlock, and F. C. Young, Phys. Rev. Lett. 47,91 
(1981). 

2E. P. Lee, S. Yu, H. L. Buchanan, F. W. Chambers, and M. N. Rosenb- 
luth, Phys. Fluids 23,2095 (1980). 

3A. V. Gordeev and L. I. Rudakov, Zh. Eksp. Teor, Fiz. 55,2310 (1968) 
[Sov. Phys. JETP 28, 1226 (1969)l. 

4A. A. Ivanov, E. 2. Meilikhov, V. V. Parail, and D. A. Frank-Kamen- 
etskii, Dok.Akad.Nauk SSSR 187, 68 (1969) [Sov. Phys. Dokl. 14,652 
(1969)l. 
5B. N. Brejzman and D. D. Ryutov, Nuclear Fusion 14, 873 (1974). 
6A. S. Kingsep, L. I. Rudakov, and K. V. Chukbar, Dokl.Akad.Nauk 
SSSR 262, 1131 (1982) [Sov. Phys. Dokl. 27, 140 (1982)l. 
'M. G. Haines, Phys. Rev. Lett. 47,917 (1981). 
'T. P. Hughes, A. T. Drobot, and E. Ott, Phys. Rev. Lett. 47,1529 (1981). 
'G. W. Kuswa, J. P. Quintenz, D. B. Seidel, et al., 4-th Internat. Topical 
Conf. on High-Power Electron and Ion Beams, Palaiseau, June 29July 3, 
1981, Vol. 1, p. 3. 

Translated by J. G. Adashko 

1190 Sov. Phys. JETP 56 (6), December 1982 A. V. Gordeev and L. I. Rudakov 11 90 


