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A solution is obtained for the problem of threshold singularities of the photodetachment of an 
electron from a negative ion at a finite pulse duration, with account taken of the level shift due to 
the dynamic Stark effect, both for steplike pulses and for pulses with smooth envelopes. It is 
shown that in the latter case qualitatively new singularities can arise, namely, the ionization 
probability vanishes below the ionization threshold at a sufficiently long pulse duration, and in 
the entire near-threshold region the ionization probability saturates in a definite range of param- 
eters, i.e., becomes independent of the external field intensity. Possible ionization regimes are 
investigated and the explicit form of the electron-photodetachment probability is obtained for all 
cases. 

PACS numbers: 32.80.Fb, 32.60. + i 

1. INTRODUCTION 

It is well known that at a sufficiently large excess of a 
photoelectron energy above the photoionization threshold, 
the dependence of the ionization probability w,(t) on the 
time t has a simple exponential character, w, = 1 - 
exp( - Ti t  ), where ri is the ionization width of the ground 
state of the atom and is equal to the probability of its ioniza- 
tion per unit time. The decay of the atom does not have an 
exponential character near the ionization threshold.' 

the instantaneous-switching model in Ref. 4, which contains 
also some results of numerical calculations. The results of 
Refs. 3 and 4 are in no way exhaustive, particularly when 
models more or less close to reality are considered with a 
smooth envelope of the radiation pulse. We shall investigate 
below decay regimes of negative ions in the near-threshold 
region, which are realized in the model of instantaneous ap- 
plication of the interaction (Secs. 2 and 3) and in the case of 
pulses with smooth envelopes (Secs. 4 and 5). 

The spectrum of the neutral atoms is known to contain a 
system of discrete levels that condense as the threshold is 2. GENERAL EQUATIONS. INSTANTANEOUS APPLICATION 

avvroached. The vresence of these subthreshold levels is 
OF INTERACTION -. 

quite important for the threshold singularities of photoioni- Thus, we consider a quantum system having one dis- 

zation of atoms.' In negative ions, on the contrary, there is crete level and a continuous spectrum, and interacting with 
only one discrete level as a rule.' Another difference of nega- an electromagnetic field $ = g o f  (t )cos ot, wheref (t ) is the 
tive ions from neutral atoms is that in negative ions the ma- interaction switch-on function. Let the field frequency be 
trix element of the transition into the continuum vanishes at close to the ionization threshold w =: - Eo, where - E, is 
the threshold, i.e., at zero photoelectron energy E = 0; loE,, 1' the binding energy of the electron in the negative ion and 

or E 112 or lvE, ,  12 o r ~ 3 / 2 ,  depending on whether the ground f i  = 1. We assume that the field intensity Eo is much lower 

state is a p or s state (in neutral atoms, lvz, 12 = const as than the characteristic value $, which is the analog of the 

E 4 ) .  intra-atomic field: 

The indicated difference between neutral atoms and 
negative ions requires an independent study of the threshold 
singularities of the photodetachment of an electron from a 
negative ion as a function of the frequency w and of the exter- 
nal-field intensity go ,  as well as of the pulse duration T and 
of the shape of its envelope g0(t ). For pulses with smooth 
envelopes, a substantial role can be played by the time-de- 
pendent shift SE,(t ) of the level Eo of the ground state in an 
external high-frequency field. 

The foregoing problems were considered to some de- 
gree in the l i t e r a t~ re .~ .~  Kumekov and Perel',3 however, did 
not investigate1' the character of the decay of a negative ion 
and determined correctly only the asymptotic residual prob- 
ability at infinite pulse duration in a model in which the 
interaction is turned on instantaneously (see Sec. 3 below). A 
nonexponential decay law w a rV3,  which is one of the many 
possible decay regimes considered below, was obtained in 

where (r) is the average dimension of the negative ion.' 
By virtue of the condition ( I ) ,  both the shift SE, of the 

level Eo in the field $ and its ionization width Ti are small 
compared with 1 EoJ . The condition (1) makes it also possible 
to neglect transitions EctE ' (Ref. 5). 

The wave function of a negative ion in a field %' has the 
form of the superposition 

m 

Y (t) =co (t)rpo+J ~ E C E ( ~ ) V E ,  (2) 
0 

where poE are the unperturbed stationary wave functions of 
the negative ion, and the coefficients C,,(t ) satisfy the equa- 
tions 
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OD 

i k o = ~ o ~ o + 2 f  (t) cos wt J dE u~ECE, 
0 

iCE=ECE+2f (t)  vEoCo cos at .  

Here u = - (1/2)d. go ,  d is the dipole moment of the system, 

In the model of instantaneous switching of the interac- 
tion f ( t ) = O a t t < O a n d t > r , a n d  f ( t ) =  1 a tO<t<r .The  
interaction energy of the negative ion with the field consists 
of two parts, which can be arbitrary called "resonant" and 
"nonresonant." The nonresonant terms in the first and sec- 
ond equations of the system (3) are proportional respectively 
to exp ( - iwt ) and exp (ewt ). These terms contribute to the 
small rapidly oscillating components of the amplitude Co 
exp (iEot ), which we shall neglect, and also determine that 
part of the time-independent (in the case of instantaneous 
switching) Stark shift of the ground level, which by assump- 
tion is taken into account from the very beginning in the 
notation used for the energy of the discrete level E,. In terms 
of these approximations, Eqs. (3) take the form 

OD 

~C~=E.C,+ dEvoECE, ibE= (E-w) CE+~EoCoy (5) 
0 

where cE = e - '"'C, . 
The system (5) can be solved both directly with the aid 

of a Laplace transformation and by the method of quasien- 
ergy functions (or by the Fano method), used earlier in Ref. 
5. We represent a brief description of the solution of the 
problem on the basis of the second approach, without assum- 
ing (in contrast to Ref. 5) a large excess above threshold. 

The quasienergy (stationary) solutions of Eqs. (5) are 
sought in the form 

COY cE oc e - '"I, 

where y is the quasienergy. At y + w > 0 these solutions take 
the form 

g,=e-'ltl v , + ~ , ~  I -= (n2+z12) -'Iz 

The spectrum of the quasienergy states (6) is continuous. 
At y + w < 0 the system (5) has one solution that deter- 

mines the quasienergy wave function of the bound state, nor- 
malized to unity: 

where the quasienergy yo of the discrete level should be ob- 
tained from the equation 

under the condition A < 0. 
Accurate to small corrections - IEo + w (/Eo, the dif- 

ference between yo and Eo is determined by that part of the 
quadratic dynamic Stark effect which is connected with the 
resonant part of the interaction energy. Taking this contri- 
bution into account, yo is the true value of the ground-state 
energy, shifted relative to its unperturbed energy by an 
amount - (1/4)a(w)go2, where a(o) is the dynamic polariz- 
ability of the level Eo at the field frequency w. 

At A < 0 the system of functions ($,, $,) is complete in 
the basis (pO, pE),  while at A > 0 the system (6) of functions 
$, is complete. Using the completeness condition, we can 
obtain the time-dependent wave function Y (t ) of the system 
and with its aid, say the probability amplitude of finding a 
negative ion in the ground state AO(r) after turning off the 
field at t = T. At A < 0, the form of A,(?-) is 

(9) 
The second term in (9) is connected with the contribu- 

tion of the quasienergy wave functions $,(6) of the contin- 
uous spectrum. In the general case the contribution of the 
integral term in (9) decrease with increasing r. As T-+CC the 
probability amplitude Ao(r) is determined by only the first 
term in (9), and this agrees with the result of Ref. 3. At finite 
r, however, the contribution of the integral term is not small 
and it is this term which determines the character of the 
system decay. We present below results that follow from Eq. 
(9) and determine the different realized ionization regimes. 
At A > 0 the first term in (9) should be left out, for in this case 
no bound quasienergy state is produced. 

3. IONIZATION REGIMES IN THE INSTANTANEOUS- 
APPLICATION MODEL 

Under the condition (1) and when w differs little from 
- Eo, lEo + w) (lEol, the main contribution to the integrals 

with respect to energy in (9) is made by the region of small E, 
E( JEo I. This enables us to use in place of the function I vEr, 1 
its approximates expression as E-0, namely jv,,, l 2  = f l  E 'I2 

or I vE,, 1 = fl E 312, where f l  is a constant. We consider these 
two cases separately. 

1. Ionization from P states I vE0I2 = P PIZ 

We obtain first a more exact solution of Eq. (8) for yo. 
Using, e.g., different model functions IvE,, 1 '  with a correct 
asymptotic form IvE,, l 2  as E 4 ,  we easily verify that inde- 
pendently of the model, 

After substitution in the first of Eqs. (8), this yields 
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where A is determined by the last equation in (8). 
The contribution of a discrete quasienergy level to the 

probability amplitude A,(?) (9) is determined by the integral 

and its value, with allowance for (1 I), is (at A < 0) 

A tA>OwehaveA~)=O.  
The contribution of the continuum of quasienergy 

states to A,(T) is determined by the integral 

The substitution E = x2 and expansion of the integrand 
in partial fractions make it possible to express (14) in terms of 
tabulated integrals and express A !'(T) in terms of a Fresnel 
integral @ (u) (Ref. 6): 

-xleir=3 (I-O(YGX~))}, (15) 

~ ~ = ' / ~ [ n f i +  (n2fi2-4A)"'], x ~ = ' / ~  sign A [n$- (n2fi2--4A)"I. 

(16) 
Expression (15) for the probability amplitude A !'(T) be- 

comes simpler in limiting cases when the arguments of the 
Fresnel integrals are small or large, so that one can use for 
@ (u) either a series expansion at lu ( 4  1, or an asymptotic 
representation at (u 1 % 1 can be used directly if (arg u ( < r/2. 
This condition is satisfied for both Fresnel integrals in (IS), 
solongasd < (1/2)r2b2. AtA > (1/2)r2b we havearg (&x,) 
> r/2. In this case it is necessary to use for the first Fresnel 
integral @(fi,) in (15) the relation @ (u) = - @ ( - u), 
which transfers its arguments to the right-hand half-plane of 
the complex variable u. After this one can use again the usual 
asymptotic formulas for @ (u) at u%u, larglu < r / 2  (Ref. 6). 

The total probability amplitude AO(r) is determined by 
the sum ofA (13) and A !' (15) at A < 0, and coincides with 
A at A > 0. We present approximate expressions for A0(r) 
and w,(T) = IAO(r) I which follow from ( 13) and ( 15) at dif- 
ferent relations between the parameters A, r2 P 2 ,  and T-I .  

1) Let first A < (1/4)r2P i.e., let the radiation frequen- 
cy by quite close to the threshold. In this case the following 
ionization regimes are possible: 

(a) Short pulse duration: 

In this case fix,,, (1 and, independently of the sign of A, we 
have 

The ionization probablity wi is small and is character- 
ized by a square-root dependence on the pulse duration T and 
by a quadratic dependence on the field intensity (9 a g;). 

(b) The range of intermediate pulse durations: 

In this case &,>I  but fix2(l, 

The ionization probability wi = 1 - wo under the con- 
ditions (19) is close to unity (independently of the sign of A, 
i.e., both above and below the threshold). The residual prob- 
ability w, decrease with increasing T and go2: 
w, a gOp4r- I. 

(c) Large pulse duration: 

At A > 0 we have 

The relation w, a 7-3 agrees with the conclusion of Ref. 4. 
At A <O we have 

,4A" wo = 7 - P  

72 
n4p4 I A I fi (nz) " 

In this case the difference between the decay laws at A > 0 
and A < 0 becomes already noticeable. At A < 0 (below the 
threshold) the residual probability is low, but as 7-co it 
tends to a certain constant value. At A > 0, the residual prob- 
ability tends to zero with increasing 7. 

2) Let now /A I 2 r2B */4, i.e., let the difference between 
the field frequency and its threshold value be more apprecia- 
ble. The arguments of the Fresnel integrals in Eq. (15) are 
determined in this case by the parameter (lA 1 ~ ) " ~  and there- 
fore two different ionization regimes are possible: /A 17-4 1 
and (A (7) 1. At (A 1.4 1, i.e., at a short pulse duration, the 
arguments of the Fresnel integrals in (15) are small. The ini- 
tial decay stage, characterized by Eqs. (18), is again realized. 
This result is consequently independent of the relation 
between A and r2P '. The condition for the applicability of 
Eqs. (1 8) is the restriction on the pulse duration: 

At large pulse duration lA 17% 1 and at lA I 2 r2P 2/4 the 
ionization regime is different for positive and negative A.  

(a) A < 0, (A 1 >r2b 2/4, (A 17% 1: 
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With increasing T the probability w, tends in this case, 
in oscillatory fashion, to its asymptotic value which differs 
less from unity the larger /A I, i.e., the more the field frequen- 
cy differs from the threshold value. 

(b) A > 0, AT) 1. At A > n2B 2/2, arg (&,) becomes 
larger than n/2, and the Fresnel-integral transformation 
@ (u) = - @ ( - u) becomes necessary for a transition to the 
right-hand half-plane, after which the asymptotic form of 
@ (u) at 1 u 1 ) 1 can be used. The result is 

The first term in each of the equations in (26) corre- 
sponds to an exponential decay constant r, = 2 n ~ a e q u a l  
to the ionization width. At a large excess above threshold, 
the ionization, as expected, follows mainly an exponential 
law. The nonexponential terms in Eqs. (26) are significant at 
not too large values of A, and also at a very long pulse dura- 
tion, when r, r)p 1 and the exponential exp ( - rir)  vanishes. 
This result agrees with the general properties of the decay of 
quantum systems.' 

Thus, on the whole the ionization probability (or the 
residual probability) depends substantially on the pulse du- 
ration T. At short T the system is practically insensitive to the 
threshold frequency [the ionization regimes determined by 
Eqs. ( 18) and (20) are the same for A < 0 and A > 01. At large T 

above the threshold (A > 1) a considerable ionization takes 
place (total ionization in the limit as T+ co ), and below the 
threshold (A < 0) a finite residual probability w,(T) is pre- 
served. The residual probability wo is closer to its asymptotic 
value 

the larger T, Depending on the deviation from the threshold 
A, the asymptotic residual probability w,(a) starts out with 
zero at A = 0 and increases with decreasing A in accordance 
with Eqs. (13). 

The characteristic times at which a transition from the 
region of "short" pulses to the region of "long" pulses is 
effected are determined by the right-hand side of the inequa- 
lity (24). 

2. Ionization from S states, I vE, 1 = gE ' I 2  

The contribution from the continuum of the quasien- 
ergy states is determined in this case by the integral 

The energy region that makes a noticeable contribution 
to the integral (27) should be substantially lower than the 
characteristic energy scale - IE,I over which the matrix ele- 

ment Iv,,, l 2  deviates noticeably from the relation lv,<, 1 
= PE 3'2. It can be easily seen that by virtue of this condition 

the first term in the denominator of the integrand of (27) is 
always small, except in the vicinity of the point E z A  at 
A > 0. This makes it possible to replace the integral (27) by its 
equivalent 

This integral is again expressed in terms of Fresnel inte- 
grals and can be represented in a form similar to (15): 

The contribution from a discrete quasienergy level to 
the amplitude A,(T) takes at A < 0 the form 

0 

Agl=OatA>O. 
Formula (30) is again substantially simplified at short 

and long pulse durations T, and in contrast to Sec. 1 the only 
parameter that determines the scale T is now the deviation 
from the threshold A. The expression for the total probabil- 
ity amplitude A,(T) at all A can be written in the form 

whereO(x>O) = 1 andO(x<O) = O .  
The first term in (33) at A > 0 describes an exponential 

decay, and the second a nonexponential one. The exponen- 
tial-decay constant is the ionization width Ti = 271-Bd 3'2. At 
small T and r i r ( l  the system again behaves in like manner 
both above and below the threshold (A2O). The amplitude 
A,(T) and the residual probability w, = IA0(r)I2 at finite T are 
continuous functions of the deviation from the threshold A. 
With increasing T, the w,(T) dependence in the near-thresh- 
old region becomes more and more abrupt and takes a step- 
like form as T-CO. In this case the residual probability as- 
sume its asymptotic value 

Above the threshold (A >0) the asymptotic residual 
probability is equal to zero. Below the threshold (A < 0) the 
residual probability as T---f co is practically independent of 
and differs little from unity. 

The steplike character of the asymptotic residual prob- 
ability (as T-co ) in the case of ionization from S states dis- 
tinguishes this case from the case of ionization from P states, 
where the asymptotic residual probability is continuous (as a 
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function of A ). Whereas in the case of ionization from P 
states in the near-threshold region A < 0 the asymptotic re- 
sidual probability is small (as 7- w and at !A  I ( d p  '), in 
ionization from Sstates the deviation of wo( w ) from unity is 
small at all A > 0. In both cases, however, the asymptotic 
probability of the ionization w , (~+  co ) at A > 0 differs from 
zero (although it can be small) and is equal to unity at A > 0. 
We shall investigate below which of these results, and to 
what degree, remain valid on going to more realistic models 
that admit of a smooth time dependence of the radiation- 
pulse envelope $,(t ). 

4. IONIZAT ION BY A RADIATION PULSE WITH A SMOOTH 
ENVELOPE. GENERAL EQUATIONS 

Thus, let the switching function f (t ), normalized by the 
condition f,,, = f (0) = 1, be a smooth function of the time 
satisfying the condition f ( f co ) = 0 and f ( - t ) = f (t ). The 
electron photodetachment is described by the general equa- 
tions (3), which are equivalent to a single integrodifferential 
equation for the function Co(t ): 

OD I 

i ~ ~ = ~ ~ ~ ~ - 4 i  1 ~ E I  vE , , l~ ( t ) co r  o t  5 dtleiE(t l -" f ( t ' ) c o ( t f )  

xcos ot' .  (35) 

The characteristic rate ofchange of the function Co(t ) in 
Eqs. (3) and (35) is determined by the ground-state energy Eo: 
The funtion Co(t )exp(iEot ) is slow compared with 
exp ( - iE,t ). In this sense, the switching function f (t ) is also 
slow if the pulse duration 7 satisfies the condition 7) l/IEoI. 
The nonresonant part of the interaction is responsible for 
that part of the integrand with respect to t ' in (35) which is 
certainly rapidly oscillating. Integrating in this term with 
respect tot  ' (in analogy with Ref. 8) and retaining in (35) only 
the terms whose rate of change can be - Eo, we reduce (35) to 
the form 

where 

is that part of the shift of the level Eo due to the dynamic 
Stark effect, which is caused by the nonresonant part of the 
interaction energy. 

Let SE ;;(t ) be the additional (as yet unknown) part of 
the shift of the level E, due to the resonant part of the inter- 
action energy, and let 

Eo(t ) = Eo + S E  A(t ) + SE:(t )=E, + 6Eo(t ). 

The substitution 

reduces (36) to the form 

OJ 

i6.=-6EOu(t) bo-i J ~ E I  vEu12f ( t )  
0 

1 

- - i (E-o)  t f + l  E. (t")dtl '}  f ( t - t f )  b ( t - t l ) .  
I - 1 .  

(39) 
The two independent functions 6,. (t ) and bo(t ) deter- 

mine the phase and the amplitude of the complex function 
Co(t ), so that 6E  ;(t ) and bo(t ) can be regarded as real, and Eq. 
(39) can be rewritten in the form 

OD OD t 

6.=- J a ~ ~ ~ , l z f ( t )  I dt' cos [ (E-o) t f -  J ~~( t ' ' )d t ' '  
0 0 1-1' 

I 

1 .  

x fdt' sin [ (E-o) t'- I k ( t r l )  dlr' ] f ( t - t r )  bo ( t - t r ) .  (41) 
0 1-1' 

Equation (41) admits of further simplification if it is assumed 
that sin [.-I is a rapidly oscillating function o f t  '. The last 
statement is qualitatively justified by the fact that in the re- 
gion of small E, where the sinusoidal factor in (41) can be a 
slow function o f t  ', this factor is itself small, therefore the 
region of small E makes a small contribution to the integral 
with respect to E. We present now a more rigorous proof. We 
introduce in place o f t  ' the new variable 

8=  [ E - C D - E ~ ( ~ ) ] ~ ~ ~ ~ ~ ~ ~ ~ [ E - C D - E ~ ~ ' ) ] .  

We multiply the integrand in (41) by exp (AO)exp( -A@), 
where A - ' is of the order of the characteristic times of vari- 
ation of the slow functions f (t - t ') and bo(t - t '). We expand 
the product 

E-o-Eo ( t )  
R ( 6 )  .g eLej ( t - t ' )  bo(t- t ' )  

E-o-Edt - t ' )  (42) 

in powers of O, obtaining in lowest order R (0) = f (t )bo(t ). 
The integral with respect to t ' takes in this approximation 
the form 

m 

Im i d 0  ex*[-hB+i(E-o-Eo(t)  )8] 

so that we get as a result 

OD 

8EOr'( t)=-f  ( t )  f d ~  I v ~ ~ 1 ~  
0 

~ - k - ~ , ( t )  ' 

It can be verified that the corrections connected with the 
series expansion (42) make a contribution that is small in the 
parameter (A / I  Eol '4 1, where 1 Eel determines the character- 
istic energy scale over which the function IvE,, 1' reaches a 
maximum. 
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Accurate to small corrections -d 22?02/Eo2 we can put 
E,(t )zE, in the denominator of (44). Jointly with (37), Eq. 
(44) determines, just as in the case of a large excess above 
threshold,' the total shift of the level on account of the qua- 
dratic Stark effect 

SEo(t ) z - 44w) 2?;f '(t ), 

where a(@) is the dynamic polarizability of the level E,. 
Equation (40) determines the probability amplitude of 

the transition bo(t ). It can hardly be solved in the general 
form. We shall consider below a situation wherein the ioni- 
zation process (but, of course, not the level shift) can be de- 
scribed by perturbation theory. Putting in the right-hand 
side of (40) b, = 1, we obtain after simple transformations an 
expression for the ionization probability 

where A = Eo + o (is the field is turned on and off smoothly, 
the system is characterized by the asymptotic value of the 
deviation from the threshold at t = f a). 

In the next section we shall describe the results obtained 
from Eq. (45) for a model switching function 
f (t ) = exp( - R It I),whereR = l/r,withaccounttakenofthe 
level shift 6E0(t ) = - ae  -" l'l [a  = (1/4)a(w)$02]. We 
shall analyze both the ensuing ionization regimes and the 
conditions for the applicability of perturbation theory, 
which are determined by the inequality w, < 1 and at which 
Eq. (45) is valid. 

5. REGIMES OF IONIZATION BY A RADIATION PULSE 
WITH A SMOOTH ENVELOPE 

For the model switching function f (t ) = exp ( - [A It ), 
the integral with respect to the time t in Eq. (45) is expressed 
in terms of the incomplete gamma function y(a, x )  (Ref. 6): 

- ' + i ( ~ -  E ) / Z L  . 6-E  
x(-ial2h) - i  A)]]! (46) 2h. 

Integration with respect to the energy E can be carried 
out in different limiting cases if the matrix element uE,, is in 
the form of its approximate representation at small E. 

1. Ionization from P states, I v, 1 2 =  Erf* 

1) Let at first the Stark shift of the levels be small: 

Formula (46) takes in this case the simplest form 

It follows therefore that under the condition (47), depending 
on the deviation form the threshold A, the following three 
ionization regimes are possible: 

(a) A>R, wherein I 

The linear w, (T) dependence indicates that Eqs. (49) cor- 
responds to the ordinary exponential decay during its initial 
stage, when the product r , r  is small. 

Equation (49) is valid so long a s p  > R /A 'I2. In strong 
fields, however, it can be generalized in elementary fashion: 
w, = f, T is replaced by w, = 1 - exp( - TI T). 

(b) (A I <A, in this case 

This ionization regime is characterized by a square-root 
dependence of wi(r) and is analogaus to the ionization re- 
gime that occurs under similar conditions in the model of in 
stantaneous application of the interaction and is described 
by Eqs. (18). 

The condition for the applicability of perturbation the- 
ory takes in this case the form &a. 

(c) lA ],A, A <O, 

With increasing T or with decreasing A, i.e., in the adia- 
batic limit, at the ionization probability vanishes at A <0. 
This result, as will be shown later, is quite general. It is due to 
the smoothness of the switching the interaction on and off 
and differs from the corresponding conclusion in the instan- 
taneous switching model, where the residual probability w, 
is less than unity (wi #O) even in the limit of an infinite pulse 
duration. 

2) Let now, on the contrary, the Stark shift of the level 
Eo be large: a s R .  The use of the asymptotic form of the y 
function for large values of the second argument, and the 
averaging of the integrand in (46) over the fast oscillations, 
yield 

In all the preceding cases (48)-(5 1) the ionization prob- 
ability was obtained under conditions of applicability of or- 
dinary perturbation theory, and was therefore proportional 
to the square of the field, wi a go2. In contrast to this, there 
is no field dependence in (52), since a a go2 and )u,,, I 2  a go2. 
In this respect Eq. (52), as well as the corollaries below, cor- 
responds to a certain probability saturation due to a shift of 
the quasienergy level on account of the dynamic Stark effect 
in a feild of variable amplitude. 

In full analogy with the preceding analysis, depending 
on the relation between A and A, the following three ioniza- 
tion regimes occur: 

(a) A %A, 
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This result is valid so long as w,  < 1 or 

Equation (53) is a reflection of the linear dependence of 
the ionization probability on the pulse duration T, and is 
similar in this respect to (49). However, in view of the consid- 
erable variable Stark shift, the coefficient of T has an entirely 
different dependence on A and does not depend on g o .  

(b) (A 

under the additional condition 

P<a/JSi-. 
Here !: ( x )  is the Riemann zeta function6 Ee/2 2.611. 

The result described by Eq. (54) is essentially connected 
with the strong dynamic Stark effect in a field of variable 
amplitude and has no analog in either the instantaneous 
switching model or under conditions of smooth switching of 
the interaction when the Stark effect is small. 

(c) A < 0, (A [%A, 

w,= ( s /u )  l/jle-nlA1/A. (55) 
The ionization probability is exponentially small and in 

the adiabatic limit (A+O, T+CO) it vanishes at all2' A < 0. 

2. Ionization form S states, I vEo 1 2 =  fit?'* 

In this case, Eqs. (48) and (52) remain valid as before. 
We present here the results that follow from them and the 
conditions for their applicability. 

l)a%A; a)A%A, 
w,=2nPAd':h-'a t (56) 

- a linear dependence on T, corresponding to the initial 
stage of the exponential decay. 

b) lA (<A, 

w i = n p y x / p d / f i  (57) 

- a result analogous to the consequences of Eq. (33) at 
lA 1 <TI in the instantaneous-switching model. 

Again, just as in ionization from Pstates, in the case of a 
large variable Stark shift [Eqs. (59)-(61)] the ionization prob- 
ability saturates, i.e., is independent of the field g o .  At all 
A < 0, including the adiabatic limit ( R 4 ,  T-+a ) the ioniza- 
tion probability tends to zero exponentially [Eq. (61)l. 

CONCLUSION 

Let us formulate briefly the main conclusions. 
1. At a finite pulse duration in the near-threshold region 

( ( A  (4 ( E,,l) the ionization probability is finite but is not equal 
to unity at all A20. 

2. Directly in the near-threshold region, at asmall value 
of the Stark shift of the level E, and under conditions when 
perturbation theory is valid, the ionization probability is 
qualitatively independent of the shape of the pulse [Eqs. (1 8) 
and (SO), (33) and (57)l. The same holds also for exponential 
decay (at large A and T). Some near-threshold ionization re- 
gimes which occur in transitions into the continuum from 
the P state correspond to appreciable ionization and cannot 
be described within the framework of perturbation theory 
[Eqs. (20) and (22)l. (These ionization regimes were investi- 
gated in the present paper only in the instantaneous-switch- 
ing model, and it is therefore not clear to what extent they 
are universal and whether they remain in force for another 
pulse shape.) 

3. Below the ionization threshold A < 0 the character of 
the process can be substantially different for pulses of step- 
like shape and for pulses with smooth envelopes. In the latter 
case, in the adiabatic limit r+co [Eqs. (55) and (61)] the 
ionization probability vanishes, whereas in the case of in- 
stantaneous switching the probability wi is finite at all r < 0 
and A < 0. The criterion for the transition to the adiabatic 
limit in the case of a smooth envelope is that the pulse dura- 
tion T be considerably longer than all the characteristic times 
of the problem and, in particular, we must have T, + /]A I .  
It is clear therefore that directly near the threshold ( A 4 )  
the adiabatic approximation does not hold, and it is neces- 
sary to use the expressions obtained for the ionization prob- 
ability at a finite pulse duration. 

4. In the presence of a strong dynamic Stark effect in a 
field of alternating amplitude, qualitatively new singularities 
appear in the ionization near the threshold. A number of new 
regimes set in near the threshold (items 1-2 and 2-2 of Sec. 
5), which differ from the ionization regimes in the instantan- 
eous-switching or in the case of a small Stark shift. In the 
entire near-threshold region the ionization probability is sat- 
urated, i.e., is independent of the field intensity go (up to the 
transition to the exponential decay at A > 0). At a large devi- 
ation from the threshold A, the ionization probability be- 
comes exponentially small at A < 0 and approaches unity at 
A>O. 

"No account is taken in the cited paper of the subthreshold discrete levels, 
so that its results pertain only to negative ions but not to atoms. 

''We note that it was found in Ref. 3 that in the adiabatic regime the 
residual probability w,#O at A > 0, but this is incorrect. 
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