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Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like 
atomic states. It is shown that a strong cancellation of the terms of the composite matrix element 
determines the dynamic polarizability. This makes the dynamic polarizability quasiclassically 
small compared to the individual terms of the composite matrix. It is concluded that the resonant 
behavior of the dynamic polarizability of highly excited states differs significantly from the reso- 
nant behavior of the polarizability in the ground and low-lying atomic states. The static limit and 
high-frequency limit of an electromagnetic field are considered. 

PACS numbers: 3 1.50. + w 

The properties of dynamic polarizability of atomic of the assumed linear polarization of the field. This is done 
states are described in detail in the literature (see, e.g., Refs. 1 on the basis of Eq. (29.7) of the book by Landau and Lif- 
and 2). This quantity is the proportionality coefficient in the ~ h i t z . ~  As a result we obtain from ( I )  (with allowance for the 
dependence of the shift 6E, of an atomic level, following fact that I ' takes on values I ' = I +_ 1) 
application of a monochromatic electromagnetic field 
8 cowt, on the square of the intensity of this field: 

Such a dependence is realized for an isolated nondegenerate 
state k and for external-field frequencies o that are not at 
resonance with the frequencies of the atomic transitions. 

For the ground and low-excited atomic states, the value 
of a, can be calculated only by numerical methods. There 
are no simple analytic formulas for the matrix elements and 
the frequencies of the atomic transitions, which determine 
the dynamic polarizability (see Eq. (1) below). 

In the present paper we calculate the dynamic polariza- 
bility of highly excited atomic states, when the principal 
quantum number n of the considered state k is large com- 
pared with unity: n) 1. It is known that for such states the 
wave functions and the energies are hydrogen-like, so that 
analytic expressions can be obtained for the dynamic polar- 
izability. 

We assume first that the electromagnetic wave, with 
frequency o ,  is linearly polarized along the z axis. In the 
general case, the dynamic polarizability takes then the form 

a.i.=zZ wmnv 
n't'm 

Izn1, 1 2 .  
0z-wnn.2 

n' l '  

Here, n, I, and m are the principal, orbital, and magnetic 
quantum numbers of the hydrogen-like states, onn, are the 
frequencies of the corresponding atomic transitions, 2;;;" 

are the dipole matrix elements. Here and elsewhere we use 
the atomic system of units, in which e = f i  = Me = 1. 

In accordance with the foregoing, we have for highly 
excited hydrogen-like states (n,nl% 1) 

The quantity 2;;;" is a dipole matrix element of the operator 
z between the Coulomb wave functions. 

We separate first in (1) the dependence on the magnetic 
quantum number m, which is a conserved quantity because 

The quantities 

constitute here radial Coulomb dipole matrix elements 
(Rn,(r) are radial Coulomb wave functions). 

Thus, to solve the problem we must sum in (2) over the 
principal quantum numbers n' of the intermediate states (in- 

- - 

eluding integration over the states of the continuous spec- 
trum). We note that, as can be seen from (2), there is no 
diagonal term (with n' = n) in such a summation. The sum- 
mation problem breaks up into two: 1) summation over n' far 
from n, i.e., when In' - n I -n, n'; 2) summation over n' close 
to n, i.e., when In' - nl cn ,  n'. 

We consider first the allowance for remote n'. In this 
case the quasiclassical equations obtained in Ref. 4 are valid 
for the matrix elements (3). Substituting these equations in 
(2) and replacing the quasiclassical summation over n' by 
integration, on the basis of the rule - 
we can easily verify that the corresponding contribution to 
the polarizability (1) vanishes because the integrand is even 
in the variable onn,. This is explained by the quasiclassical 
character of the spectrum of the highly excited states and the 
ensuing symmetry of the summation over n' relative to n. 

We note that for states with n- 1 the foregoing state- 
ment is certainly incorrect, since onPn > 0 and the summa- 
tion over n' is substantially asymmetrical with respect to n. 

Thus, the sum in (2) is determined only by states with n' 
close to n, when it is incorrect to replace the sum over n' by 
an integral, since an important role in this sum is played by a 
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relatively small number of terms. Since the terms of the sum 
with n' > n cancel to a considerable degree the sums with 
n' < n, the quasiclassical radial dipole matrix elements (3) 
with In' - n((n, n' must be substituted with account taken 
of the next order, above the lowest one, in the parameter l/n 
of the quasiclassical theory. We use for this purpose the re- 
sult of Ref. 5: 

Here J, (2) is a Bessel function, and we put 
s=nf-n, 

The substitution n,+n results in quasiclassical matrix ele- 
ments that do not take into account the next order in the 
quasiclassical approach. They were obtained in Ref. 6. 

It is similarly necessary to write for w,,, an expansion in 
s = n' - n accurate to terms of order s2 inclusive. From the 
expression given above for wn,n we easily obtain 

Substituting (4) and (5) in (2) we obtain 

It is seen from (6) that 

only if we are not close to resonance with discrete levels in 
the vicinity of the n-th level, where the dynamic polarizabili- 
ty increases sharply. These resonances are determined by the 
obvious conditions 

It can be seen from (6) that in the vicinity of each of the 
resonances the quantity a,,,,, becomes infinite without re- 
versing sign and stays positive. Thus, the resonant behavior 
of the dynamic polarizability of highly excited states differs 
qualitatively from the resonant behavior of a,, for ground 
and low excited states, when the polarizability reverses sign 
on passing through resonance (see Figs. 8.1 and 8.2 of Ref. 1). 
The reason for this difference is that in the case considered 
here the resonances superimposed are in states that are high- 
er and lower than n, whereas at n - 1 there is resonance with 
one discrete atomic level that is definite for a given frequen- 
cy- 

We discuss now the behavior of the dynamic polariza- 
bility in the intervals between the resonances. It is known 
(see, e.g., Fig. 8.1 of Ref. 1) that for the ground states of 
atoms (in this case, n = 1) the dynamic polarizability vanish- 
es in each interval between resonances. For excited low-lying 

states (n - 1) the dependence has a different character, inas- 
much as with increasing frequency resonances with both 
high-lying and low-lying states can set in. In particular, it is 
possible for the dynamic polarizability not to vanish in the 
intervals between resonances (but it can reverse sign on pass- 
ing through each resonance). In our case of highly excited 
states (n, 1) the dynamic polarizability, being a resonantly 
large positive quantity in the vicinity of the resonant fre- 
quencies, can take on negative values in the intervals 
between the resonances on account of the large negative 
term in the sum of (6) withs = 1 at frequencies w > 0 / n 3 .  In 
this case it vanishes twice in the interval between the reson- 
ances. 

We note the following important circumstance: the dy- 
namic polarizability (6) is smaller by a factor -n than each 
of the terms of the sum in (2), which are the order of n7, 
inasmuch as according to (4) the matrix element R :"* ' -n2, 
and 

This fact is a consequence of the already mentioned cancella- 
tion of the terms with n' > n and n' < n. 

In the static case on3( 1 it follows from (6) that the dy- 
namic polarizability is positive. This agrees with the known 
statement that terms of the hydrogen atom are always shift- 
ed downward because of the quadratic Stark effect [see p. 
339 (Russian original) of Ref. 31. Indeed, the transition from 
the spherical to the parabolic cases, in which the static shifts 
of the terms of the hydrogen atom are expressed, can be 
reached by multiplication by the squares of the correspond- 
ing Clebsch-Gordan coefficients. 

A special case arises in the asymptotic limit of high fre- 
quencies, when wn3> 1. In this case, as can be seen from (6), 
the dynamic polarizability becomes quite small and nega- 
tive, and is of the order of 

This expression, as expected, corresponds to the polarizabil- 
ity of a free electron oscillating in the field of a linearly polar- 
ized wave. The resultant numerical factor in (7) is due to 
separation, from the wave function of the free electron with 
specified momentum p (plane wave exp(ip*r)), of a state with 
a definite angular momentum 1 and its projection m. 

It can be seen from (6) that the coefficient of n6 in the 
expression for the dynamic polarizability depends on the 
quantities 1, m, 1 /n, and wn3. The dependence on an3  is 
shown quaIitatively in Fig. 1. It takes into account the dy- 
namic-polarizability singularities considered above. 

We turn now to various particular cases of the general 
expression (6), when this expression becomes greatly simpli- 
fied. A definite simplification is reached in the case 1% 1. We 
then obtain from (6) 

l p E 2  

J,': ( s e )  -t- J,' ( s t . )  . (8) 
E 1 

We have separated here the universal dependence on the 
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FIG. 1. Qualitative illustration of the character of the dependence of the 
dynamic polarizability of a highly excited hydrogenlike state (in relative 
units) on the frequency of the external field. 

magnetic quantum number m: 

In particular, for the static polarizability (on341) we have 
from (8) 

As already noted, this result can be obtained also from the 
known expression for the polarizability of the hydrogen 
atom in a state with definite parabolic quantum numbers (see 
p. 339 of Ref. 3) by multiplication by the squared Clebsch- 
Gordan coefficients corresponding to transformation from 
parabolic quantum numbers (nn,n,) to spherical (nlm), and 
taking the limit n) 1. 

We turn now to a particular case of the general formula 
(6), corresponding to I = m = 0. We obtain 

2 " 7s'- (on3) 
a,,.. = - n6 

3 
Ist2 (s) . 

*=I 
[s2- (on3)2]2 

In particular, for the static polarizability we form from (10) 

In the opposite case of high frequencies (on3) 1) we obtain 
from (lo), using the theorem for sums of Bessel functions 

The numerical factor in (12) is connected with separation, 
from the plane wave, of the spherically symmetrical state 
with I = m = 0: this corresponds to averaging over the solid 
angle: 

For the obtained expressions to be applicable it is neces- 
sary that the next higher orders of perturbation theory in the 
electric field intensity be small compared with the quadratic 
ones. This takes place if %'4n-4 (Ref. 7). In addition, we 

have neglected in our analysis the linear Stark shifts, which 
takes place in the case of a constant field for degenerate 
states. In the case of an alternate field, however, in accor- 
dance with the general theory (see, e.g., Refs. 1 and 2) we can 
neglect the onset of quasienergy states that imitate a linear 
Stark shift, subject to satisfaction of the condition 

which imposes an upper bound on the electric field intensity 
of the wave, and a lower bound on its frequency. In the deri- 
vation of the criterion (13) we used the fact that the charac- 
teristic dipole matrix elements (3) between the highly excited 
states are of the order of n2. 

We note in conclusion that the results do not change on 
going from the purely hydrogenlike states considered above 
to highly excited state of complex atoms, if we are dealing 
with orbital angular momenta I > 2 of the considered states. 
In this case the quantum defect is negligibly small. For states 
with I = 0, 1, and 2, however, the presence of the quantum 
defect prevents cancellation of the terms with n' > n and 
n' < n, in view of the difference between the energies of the 
corresponding states. As a result, the dynamic polarizability 
increases abruptly and becomes of the order of n7. We then 
find ourselves within the framework of applicability of Eq. 
(2), in which we must substitute the frequencies of the atomic 
transitions with allowance for the quantum defect, whereas 
the dipole matrix elements can be substituted in the lowest 
order of the quasiclassical appr~ximation.~ In particular, the 
states with n' = n now no longer fail to make a zero contribu- 
tion but, conversely, make a definite contribution to (2), 
since the corresponding quasiclassical matrix radial ele- 
ments (3) turn out to be maximal.' For example, for the S 
state we obtain from (2), confining ourselves in the sum over 
n' only to the term with n' = n, 

We have used here the known expression of the matrix ele- 
ment R ",:, (see, e.g., Eq. (52.6) of Ref. 9). Next, 
S  = S,  - So > 0, where So and S,  are the quantum defects of 
states with I = 0 and 1, respectively, for the considered 
atom. 

Of course, expression (14) has limited validity, only 
from the static limit to the vicinity of the resonance with the 
intermediate level n, I = 1. At higher frequencies o ,  other 
resonant terms will predominate in the sum (2). Numerical 
calculations of a,,, were carried out in Ref. 10, using matrix 
elements of the type (4), for a number of alkali atoms. 

As noted at the very beginning of the article, we have 
considered the case of linear polarization of the wave field. 
Circular polarization of the electromagnetic field introduces 
no fundamental changes in the result, for all that changes in 
the initial formula (2) are the factors in front of the summa- 
tion sign over n', which depend on m and I .  The sums over n' 
themselves are not changed. The same remarks hold also for 
the general case of elliptic polarization of the electromagnet- 
ic field. 
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