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A microscopic calculation is presented ofthe Rayleigh light scattering spectrum in a dense gas (in 
which the mean free path /<A, where A is the light wavelength) consisting of diatomic molecules. 
The fine structure in the depolarized components of the scattering spectrum is attributed to 
interaction between the rotational and translational degrees of freedom of the molecules. All the 
spectrum parameters are expressed in terms of the eigenfunctions and eigenvalues of the Boltz- 
mann collision integral. 
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1. INTRODUCTION 

In connection with recent advances in laser technology 
and high-resolution spectral apparatus, it became possible to 
observe in experiment subtle effects in the structure of the 
spectrum of molecular scattering of light. Thus, it became 
possible to measure the unshifted scattering line width con- 
nected with entropy fluctuations, whose value in pure li- 
quids does not exceed lo-' cm-' (Ref. 1). In depolarized 
light scattering, a fine structure of the wing (FWS) of the 
Rayleigh line was observed in the form of nonmonotonicities 
at frequencies close to the Mandel'shtam-Brillouin frequen- 
cies, by Starunov, Tiganov, and Fabelinskii in one polariza- 
tion,' and by Stegeman3 in another polarization. 

These singularities in the depolarized components of 
scattered light agree quanitatively with the predictions of the 
phenomenological theory of Reyleigh scattering of light in 
liquids, first constructed by Leontovich4 and then developed 
and generalized by Rytov5 and by Romanov and S~lov'ev.~ 
Other numerous phenomenological theories of light scatter- 
ing'-'' are essentially close to Rytov's theory, or stem from 
it," therefore Rytov's theory is most frequently used in the 
analysis of experimental data (see, e.g., Ref. 12). The Leonto- 
vich theory and its generalization are based on Maxwell's 
idea of the viscous-elastic behavior of liquids, which behave 
at high frequencies like an amorphous solid, and on the pres- 
ence in the liquid of one or several slowly relaxing param- 
eters. It should be noted that a quantitative agreement 
between the experimental data and the theory can be 
achieved with the aid of Rytov's theory with two anisotropy 
relaxation times, and not with one as in the initial Leonto- 
vich theory."~'~ Since Rytov's theory is phenomenological, 
the microscopic meaning of the internal relaxation param- 
eters, as well as of the corresponding relaxation times and 
kinetic coefficients, remains unexplained. The existing sta- 
tistical theories of molecular scattering of light (see the refer- 
ences in the review") do not answer these questions unequi- 
vocally. In particular, the concrete choice of the two 
"optically active" parameters responsible for the structure 
of the spectrum of depolarized scattering of light in liquids 
remains open. 

In this paper we consider the spectrum of Rayleigh scat- 
tering of light in a dense gas (we have in mind the condition 

1 x 2 ,  where I is the mean free path in the gas and A is the 
wavelength of the light) consisting of diatomic molecules 
and for which the role of the equations of motion is played by 
the Boltzmann kinetic equation. In this case it becomes pos- 
sible, in contrast to the case of liquids, to provide a detailed 
microscopic description of the structure of the spectrum. 
The scalar scattering in a dense gas is determined here by the 
same hydrodynamic modes as in a liquid. The analysis has 
shown that a fine structure appears in the depolarized com- 
ponents of the scattering spectrum of a dense gas, and agrees 
with the experimentally observed picture in low-viscosity 
liquids. It is demonstrated by the same token that at the 
onset of the fine structure is not connected with the assump- 
tions of the phenomenological theories concerning the elas- 
tic behavior of the system at high frequencies, inasmuch as in 
a gas there is no slow relaxation of the transverse (shear) 
strains at practically all frequencies. It is shown that a fine 
structure occurs also in the depolarized scattering spectrum 
of a gas in the absence of a slowly relaxing parameter, and the 
necessary condition for its onset is a coupling of the rota- 
tional and translational motion of the molecules. In the case 
of a weakly anisotropic potential of the interaction of the gas 
molecules there appears in the microscopic description a 
slowly relaxing parameter, namely the angular momentum 
of the molecule. It was found that the slowly relaxing param- 
eter leads to a very abrupt decrease of the contrasts of the 
fine structure under discussion. All the parameters of the 
spectrum, including Maxwell's constant M that determines 
the intensity of the fine structure and the widths of both the 
scalar and depolarized light scattering, are expressed in 
terms of the eigenvalues of the Boltzmann collision integral. 

2. EQUATION FOR THE CORRELATION FUNCTION OF THE 
FLUCTUATIONS 

In the microscopic description of the spectrum of Ray- 
leigh scattering in a gas, the problem reduces to the calcula- 
tion of the fluctuation correlation function 

where t is the time, r is the coordinate, r is the aggregate of 
all the remaining variables on which the distribution func- 
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tion f depends, and 6f is the deviation of the distribution 
function f of the gas molecules from the equilibrium Boltz- 
mann function f,; the angle brackets denotes the usual aver- 
aging over one of the instants t, or t, at a given value of their 
difference. In the present paper we confine ourselves to a 
diatomic molecule with account taken of only translational 
and rotational degrees of freedom. In this case the quantities 
r are the three components of the molecule velocity v and 
the three components of the angular momentum M (Ref. 13). 
It is known that for most molecules (with the possible excep- 
tion of hydrogen) the condition for classical rotation B(T is 
satisfied, where B is the rotational constant and T is the gas 
temperature. 

The form I (w,q) of the Rayleigh-scattering spectrum in 
an equilibrium and homogeneous gas is expressed in terms of 
@J in the following manner: 

where 
OD 

m (u, q, G, r,) = J'at ar m (t ,  .. r,; o, o, r,) ei\qr-rnf), 

0 

el, and e,, are the unit vectors of the polarizations for the 
incident and scattered waves, w = w, - o, and q = k, - k, 
are the differences of the frequencies and of the wave vectors 
of the scattered (2) and incident (1) waves, and a,, (r) is the 
gas-molecule polarizability tensor. An asterisk denotes here 
the complex conjugate and, as usual, summation over re- 
peated indices is implied. 

In an ideal gas, the function @J satisfies the equation (see 
Ref. 13, p. 108) 

[i(qv,-o) -T,I a (a, q. rl, r,) = f o  (r,) 6 (r,-r,). (2) 
where I, is a linear integral operator acting on the variables 
r, in the following manner: 

i l m  (r,) = w (r, rl; rl, rtl) {fo (Fir) a (rr) +jo (rt) m (rlt) 

The function w(r , r , ;T  ' , r  ; ) determines the probability 
of the collisions with the transition r ', r ; -+ r , r , .  We shall 
assume that the function w has the symmetry property 
w ( r , r , ; r  ' , r  ; ) = w(T ' , r  ; ; r , r , ) .  This property is known to 
be satisfied for purely electrostatic interactions, for in this 
case the operator I, commutes with time-reversal operator, 
t.e., 

w (r, rl; r f ,  rlf) =w (rT, rlT; rfT, rIfT), 
where r is the state obtained from T by time reversal (see 
Ref. 13, pp. 13 and 46). 

In what follows it is convenient to integrate in the 
expression for @ with respect to d r ,  with a weight factor 

and separate from @ the equilibrium function f,(T,), to 
transform in fact to a new unknown function 

that satisfies the equation 

[i(qv--a) -a1 X (O,  4, r) = B ( r ) ,  
h 

where the linear operator K is defined as follows: 

ix(r)  = j arl arf arlfwf0 (rl) {~ ( r ' )  +x(rlr) -x(r1) }. 

The Reyleigh-scattering spectrum I (o,q) takes then the form 

In the considered case of a dense gas, when the collision 
frequency v>q v, the collisional term KX in Eq. (8) is much 
larger than the term q vx connected with the free motion of 
the molecule. It is therefore convenient, when solving Eq. 
(3), to use perturbation theory in the pa ramep  q v/v( 1, 
and choose the eigenfunctions of the operator K as the basis. 
It follows fro? the symmetry property of the function w that 
the operator K is self-adjoint, i.e., 

and an orthonormal base can be constructed out of its eigen- 
functions. 

It is k n o ~ n ' ~ - ' ~  that five of these eigenfunctions have 
zero eigenvalues, correspond to five conservation laws for 
the particle number, for the three momentum components 
mu,, mu,,, and mu,, and for the energy E. These functions 
can be easily written out explicitly: 

cp,=l, cp,=vJvo, q3=vu/vo, c p , = ~ , / v ~ ,  rp,=(E-E)/AE, 

where u, = (T/m)'I2 is the thermal energy, E = c, T is the 
average energy of the molecule, A E  = &, T is the energy 
dispersion, T is the gas temperature (in energy units), and c, 
is the specific heat of the molecules at constant volume with 
allowance for the translational and rotational degrees of 
freedom. 

We construct orthonormalized linear combinations of 
the functions p,,..., p, in which the operator q . v is diag- 
onal. To be definite, we direct the x axis along the vector q 

The functions X, and X, correspond to acoustic modes, X, 
andx4 to shear modes, X, to the heat-conduction mode, and 
c, is the specific heat of the molecule at constant pressure. 

We seek the solution of Eq. (3) in the 5 r m  of an expan- 
sion in the eigenfunctions of the operator K: 

wherex, (r ) at a > 5 are the eigenfunctions corresp2nding to 
the nonzero eigenvalues - v,. Since the operator K is nega- 
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tive-definite, all the eigenvalues are - v, < 0. 
From Eq. (3) we can change over to the equations for the 

coefficients a, : 

i (-o-qu)a,+ i (qv) ,,a,=B,, r, 
i ( -o+qu)  a.+i (qv )  ,,aa=B2, 

( - i o f v , )  a,+i (qv) ,,.a,?=B, (a>5). C 
In this case we obtain in place of (4) 

The system (5) contains the speed of sound u = v, (C,/C,)"~ 

and the matrix element of the operator q. v between the 
states x, and x,. 

Let us dwell in somewhat greater detail on the proper- 
tiesofB (r ). It can be seen from the definition ofB (r ) that its 
properties are closely related with the properties of the mole- 
cule polarizability tensor a,, (r ). In particular, the indepen- 
dence of the molecule polarizability tensor of the velocity v 
makes B dependent only on the angular momentum M. It is 
convenient to express B (r ) as a sum of three terms corre- 
sponding to the breakup of a,, into scalar (a$,,), antisym- 
metrical (a:,), and symmetrical (as,) parts"? 

B ( r )  =B,+B8 (r) +BC ( 1 7 ) )  (7) 
where 

B,= (eIe,)  ao,  B" (r) =el,aik"M) e,&, B"(I') =e,,a.," (M) e , , .  

As a rule, the antisymmetrical part of the polarizability 
tensor of the molecule is small and is therefore disregarded 
in the present paper, i.e., B a  (r) = 0. The hydrodynamic 
modes x,, ...,x, are pure scalars and do not depend on the 
direction of the vector M. As a result the symmetrical part of 
the function B (r) makes no contribution to B,, ..., B,, so that 

It is easy to calculate the values of B,, ..., B,: 

BI=B,= (c, /2cs) '"aa (c,ez)  3 B ,  (8) 

We see therefore that the scalar-scattering intensities inte- 
grated over the frequencies satisfy the Landau-Placzek rela- 
tion 

From the orthogonality of the functions 1 and x,, 
where a > 5, it follows that the scalar part of the polarizabili- 
ty tensor makes no contribution to the values of B,, where 
a > 5. Thus, the terms in the expression for the intensity (6) 
correspond to the scalar and symmetrical types of scattering 
without allowance for the spatial dispersion of the medium. 
We note that this br%akdown in the basis of the eigenfunc- 
tions of the operator K takes place if the polarizability of the 
molecules does not depend on the modulus of M. 

As seen from the system (5), when account is taken of 
the spatial dispersion of the medium the spectra of the scalar 
and symmetrical scattering are not independnet, since the 
equations for the coefficients a ,,...,a, are coupled with the 
equations for a,, where a > 5, with the aid of the matrix 
elements (q v)&, . We proceed now to solve the system (5), 
using perturbation theory in the parameter q v/v. In this 
case we can neglect the sums with a' > 5 in the last equation 
of the system (4) compared with the terms v,a,, and solve 
them for the coefficients a,, obtaining 

Substituting the expression for a, in the first five equations 
of the system (5), we obtain 

where 

In the equations for a ,  and a, we discarded all the terms 
that connect a ,  and a, with one another and with the terms 
a,, where p = 3, 4, and 5 since the quantities a ,  and a, are 
spectrally separated from all the aB. The functions a ,  and a, 
are narrow resonances at frequencies + qu. The width of 
these resonances (q v),/v, is much less than qu. It is easy to 
verify that the widths of the resonances coincide becaus%the 
functio?sx, andx, are connected by the relationx, = Tx,, 
where T is the time-reversal operator. The quantities a,, a,, 
and a, have a resonance at zero frequency w = 0, but also 
turn out to be unrelated. The quantity a, is not connected 
with a, and a, on accou5t of the T-parity selection rule. In 
fact, since the operator K i~ self-adjoint, it commutes with 
the time-reversal operator T, i.e., all the eigenfunctions X, 
have definite T-parity. It  follows from this property that the 
"inverse" operator 

Y a  
a>5 

h A 

which has the same eigenfunctions as K (in particular, K -' 
xo = O,p = 1, ..., 5) also commutes the operator T and there- 
fore relates with one another only states of like T-parity. 
And since the function X, is T-even while X, and X, are T- 
odd, the matrix elements 
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ground of a broad contour of width - v,, at the frequencies 
of the acoustic components w = +_ qu as a result of the ad- 

wheref3 = 3 or 4, are equal to zero, i.e., the equation for a, is 
decoupled from the equations for a, and a,. In the right- 
hand side of the equation for a, in the system (9), there is no 
term - iAB,, likewise by virtue of the T-parity selection 
rules (use is made of the fact that Pa is T-even in the absence 
of anti~ym~metric scattering). The spherical symmetry of the 
operator K -' decouples the equations for a, and a4 and 
makes the resonance widths of a, and a, equal. The right- 
hand sides of these equations also coincide, therefore 
a3 = a4. 

In the equations for narrow resonances a@ ( B  = 1, ..., 5) 
we can neglect the quantity io compared with va in the fac- 
tors ( - io + v,)-', since the considered narrow structure 
plays an essential role only in the frequency region o(v,. 

3. FORM OF THE SPECTRUM 

We consider first the "scalar"" part of the scattering 
spectrum; this corresponds to the first term in Eq. (6): 

We note that a contribution to AB, is made only by the sym- 
metrical part of the polarizability of the molecule, i.e., by the 
component B s  (r) of the total quantity B (r) in Eq. (7). The 
reason is that at a > 5 all the functions xa are orthogonal to 
unity (or to the scalar quantity b,). 

The scalar spectrum, as expected, consists of two acous- 
tic components having maxima at the frequencies 
o = f qu, and the central component determined by the 
heat-conduction mode x,. The central component has the 
shape of an ordinary Lorentz contour whose width is a gen- 
eralization of a previously obtained expre~sion'~. '~ with 
allowance for the rotational degrees of freedom of the mole- 
cule. 

The shape of the acoustic doublet is more complicated. 
As can be seen from (lo), it is the superposition of symmetri- 
cal Lorentz contours with asymmetric additions whose signs 
are opposite for the Stokes and anti-Stokes components. The 
degree of asymmetry of the resultant contours is determined 
by the parameter AB,/B and decreases with increasing gas 
density in proportion to q v/v, . 

In the same approximation in the parameter q v/v,, 
the spectrum of the depolarized scattering (for which 
el e, = 0 and therefore Bo = 0) is described by the follow- 
ing equation 

+ I A B ~ I ~ ~ ~  + ( I A B ~ I ~ + I A B ~ I ~ ) ~ ~  
( o - q ~ ) ~ + y 2  02+y32 

(1 1) 

It can be seen from (1 1) that the spectrum of the de- 
polarized scattering acquires narrow dips, against the back- 

mixture of acoustic modesx, andx,, and at the center line as 
a result of admixture of shear modesx, = x,. The integrated 
intensity of the dips, which is proportional to the quantities 
JAB, 1 and 1 dB, 1 ', decreases with increasing density in pro- 
portion to v; *. It must be noted, however, that the contrast 
of the resonances, i.e., the ratio of the depth of the dips to the 
height of the broad contour of the depolarized scattering 
R = hdiP/hdep, is independent of the gas density. Let us exa- 
mine the factors that influence AB,,, and lead to the mixing 
of the scalar and symmetrical cgntours. To this end, using 
the invariance of the operator K -' in d B  to rotations in 
space, we can separate the dependences of B,,,  on the polar- 
ization of the incident and scattered waves, 

.. 
AB1=<xl lqvK-'I B> 

(12) 
A B , = ( ~ , I ~ ~ ~ - ~ I B )  a J I B (M) do., 

lMl 

where 

B(M) =el.a,t (M) e2t, 
h 

and the matrix elements of the operator K -' are defined in 
the same manner as for the operator q v (see above). 

Since the polarizability tensor aiq depends only on the 
vector M it can be expressed in terms of the components of 
this vector: 

~ , ~ = a S ~ ~ + b  (Mi&/ I M 12-1/36ik), (13) 
where a and b are constants. The subdivision in (13) corre- 
sponds to resolution of the tensor into a scalar part and a 
symmetrical zero-trace part. Substituting (13) in (12) we ob- 
tain 

2 2 IAB112=IAB212=elz e-, 

I AB, I I ABI I 2aL/2elxz+1/2e2z2-eix2e~2. 

We recall that the x axis is directed along the scattering 
vector q = k, - k,, and thexy plane coincides with the scat- 
tering plane and is determined by the vectors k, and k,. The 
yx polarization (or H . H, where H is horizontal and V is 
vertical) denotes that the polarization of the incident light is 
directed along they axis (horizontal component H ), and the 
depolarized spectra of the scattering is investigated for the 
polarization along thex axis (also horizontal component H ). 
Thus, the fine structure, obtained in the present paper for 
dense gases, manifests itself in the form of the two narrow 
dips in Iyx (IHH) polarization and one dip at the center in the 
case of the polarization I, = Iyz (I, = I,,), in accord with 
the experimentally observed fine structure in the depolar- 
ized components of the scattering spectrum in low-viscosity 
l i q ~ i d s . ~ , ~  The connection between the obtained fine struc- 
ture in gases and the predictions of the phenomenological 
theories of light scattering4-'' will be discussed below. 

4. COLLISIONS WITH ALMOST ISOTROPIC POTENTIAL 

For a number of simple molecules, collisions with 
change of velocity usually take place more frequently than 
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collisions with change of the angular momentum, i.e., the 
anisotropic part of the potential is relatively small compared 
with the is~tropic.".'~ In this approximation it can be as- 
sumed that the probability of the change of velocity depends 
little on the change of the angulaf; momentum of the mole- 
cule, i.e., the collision operator K can be expanded in the 
following fashion: 

K=K,+A K, 
h 

where the function w before the operator KO is of the form 

w (I', I',; r'r,') =w ( v ,  v , ;  v', v , ' )  15 ( M - M ' )  6 ( M I - M I 1 ) .  

andx r a r e  degenerate with respect to the numbers a' and I ' 
that describe the dependence on M, while all the eigenvalues 
yZ;' are equal to zeroA It follows therefore that in the zeroth 
approximation in AK the spectrum of the depolarized scat- 
tering is described by one eigenfunction~ = Y2, (M/M ) and 
has a zero width, i.e., it is a delta function. A finite width of 
the depolarized spectru? is obtained in the next order of 
perturkation theory in AK upon diagonalization of the oper- 
ator AK in degenerate M space. 

Let 

xaM=Ca ( M )  Y ~ , ~ ( M I ' M )  
(I4) 

be the eigenfunction of the operator AB in M space with Since the resolution of the collision probability into two eigenvalue 
terms, one of which describes processes with change of the 
angulHr momentum M and the other independent of the A v , ( L = 2 )  = ( ~ , ~ I A j t ( x , ~ ) ,  

change of M, is ambiguous, this ambiguity must be eliminat- 
ed by imposing conditions on the choice of w (v, v,; v', v; ) in 
(14). There are physical grounds for choosing in (14) the w(v, 
v,; v', v; ) obtained from w ( r , r , ;  r 'r ; )in the following man- 
ner 

w ( v ,  v 1 ; , v f ,  vI1) = j  f a  (MI f0 (Md w ( r ,  ri; r', F i r )  

x d M  d M t  dM' dMi' .  

It can be seen from this definition that the transition prob- 
ability w ( r , r , , r  'r ; ) is integrated over the final states of the 
angular momenta of the molecules after the collisions and is 
averaged over the initial states M and M, with equilibrium 

h 

obtained as a result of diagonalization of the operator AK in 
M space. The contour of the depolarized scattering is a su- 
perposition of Lorentz contours with widths Av, (L = 2) 
and with intensities proportional to 15 C,(M)dM 1 2 ^  

In the next order of perturbation theory in AK, there 
appears in the spectrum of the depolarized scattering an ad- 
ditional structure with a characteristic width of the order of 
the collision frequency in v-subspace. The shape of the broad 
part of the depolarized spectrum is given by 

distribution functions f,(M) and f,(M,). It follows from the +r, I AauI 2 ~ a '  ( L = 2 )  
2+C 

I AaM" 1 2 v a M u ( L = 2 )  
condi2ons imposed that all the matrix elements of the opera- 02+ [ r n t ' ( L = 2 )  ] o " [ ~ , " ~ ( L = 2 )  l 2  7 (16) 
tor AK in the space of the f~nctions that depend on v are a>5 a>5 

equal to 0. The operator AK is determined by a general where 
expression and describes collisions with change of the angu- 
lar momentum M, as well as the correlation in the collisions B ~ , ( ~ ~ , M I A ~ I X ~ ' )  

of v with M. A A / la.= z v a u ( ~ = z )  , 
It can thus be assumed that AK(K,, and its contribu- a'>5 - 

tion can be taken into account by perturbation theory. 
It is convenient to chocse the orthonormalized eigen- 

functions of the operator KO in the form of irreducible 
spherical tensors 

x ( " ( v ,  M )  =aal  ( u )  b u r l .  ( M )  {Y ,  ( v / v )  ( & ~ / M ) ) L M ,  (15) 

where the curly brackets denote bipolar harmo~ics.19 In this 
xlo, basis the matrix elements of the operator AK are diagon- 
alized with respect to the numbers L and Nand are indepen- 
dent of N. 

For the calculations that follow it is conynient to di- 
vide the set of eigenfunctions of the operator KO into three 
classes: a) functions that depend only on v; b) functions that 
depend only on M; c) functions that depend on both v and M. 
We shall designate them by x :, x:, and x E .  The corre- 
sponding eigenvalues are designated v: , c, and yf;'". In the 
introduced symbols, the subscript a stands for the group a, 
a', I, I ' ,  L, and N. If any of the latter subscripts must be 
specified, we shall write it in parentheses after the indicated 
function or eigenvalue. WeAnote now the properties of the 
eigenvalues of tke operator KO. By direct substitution of (14) 
in the operator KO we can verfify that the eigenfunctions x f 

B,,( xarM I AKI xaMU) , 
B a = ( x a M I B ) .  

n r > i  

The ratio of A ,  to B, is of the order of the ratio Av/v of the 
collision frequencies in M and v spaces. The first term in (16) 
describes the ordinary depolarized-scattering contour 
whose width is determined by the frequency Av, (L = 2) of 
the collisions that reorient the proper angular momentum of 
the molecule M. The two remaining terms are due only to the 
interaction of the translational and rotational degrees of 
freedom of the molecule in the collisions. The first term cor- 
responds to an admixture, to the depolarized scattering, of 
functions that depend only on the molecule velocity v, and 
the second to the admixture of functions that depend on v 
and M. In order of magnitude, the ratio of the integrated 
intensities of the broad contours admixtured to the narrow 
ones is of the order of IA,/B, 1'- (AV/V)~. In view of this 
smallness, the contribution to the intensity from the wing of 
the narrow contour exceeds the intensity of the admixed 
broad contour by a factor v/Av even on the wings of a broad 
structure w 2 v. Actually, therefore, the admixing of the 
broad contour with width of the order v to the narrow con- 
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tour of width Av hardly manifests itself in scattering in gas- 
es. 

Another result, more favorable from the viewpoint of 
experimental observation, is obtained when a narrow struc- 
ture ( w ~ q v )  is added to the depolarized-scattering contour, 
in accordance with formula (1 1). In this case the intensity of 
the mixed acoustic and shear modes, calculated by perturba- 
tion theory, takes the form 

As seen from (17), the factor A :, which determines the 
admixture of hydrodynamic modes, is the same factor that 
determines the complicated structure in the broad part of the 
depolarized spectrum. The quantity A : describes also colli- 
sions that connect the orientation along the angular momen- 
tum M with the orientation along the velocity u. The ratio R 
of the depth of the narrow dips to the height of the depolar- 
ized contour does not depend on the gas density and its value 
at the line center is of the order of 

and at the shifted frequencies 

Thus, the depth of the narrow structure of the depolar- 
ized scattering decreases very rapidly with decreasing pa- 
rameter Av/v. We note that the integrated intensity of the 
dips at the center of the line and at the shifted frequencies is 
of the same order. However, the widths of these dips differ by 
a factor Av/v. Therefore the depth of the dip at the center of 
the line decreases at a lower rate than the depth of the dips at 
the acoustic frequencies with decreasing parameter Av/v. In 
the estimate of the depth of the dips we used the fact that the 
width of the acoustic components is determined by the quan- 
tity y l  -(quo)2/Av, whereas for the shear mode y, - ( ~ V , ) ~ / Y .  

Wz skall show this result by using perturbation theory in 
AK /KO. For the widths of the narrow components we obtain 
the following equations: 

h 

Here AX r;' is the correction of first order in the operator AK 
to the functionx 2;'. The summation overa in Eqs. (19) is over 
all the indicated functions, with exception of the hydrody- 
namic X,  ,..., x,, and x6. The function X ,  is equal to 

and is the result of aiinear combination of two eigenfunc- 
tions of the operator KO (translational energy Ek,, and rota- 
tional energy E,,, ), a combination orthogonal to the five hy- 
drodynamic functions. The c%rections Avz and AX :: are 
equal to zero in first order in AK, inasmuch as in accordznce 
with the subdivision in (14) all the matrix elements ofAK are 
zexo in v-space. The function X, appears when the operator 
AK is diagonaiized in the space of the zero eigenfunctions of 
the operator KO. It must be treated separately in equation 
(19a), because the function x,, just a s x  ,,...,x5 cannot be fac- 
torized in terms of the variables v and M, and it does not 
belong to any of the three classes x :, ,y2;', and x p. The 
second term in (19a) which is connected with x,, makes the 
principal contribution to the width of the acoustic compo- 
nents, since l/Av,$l/v:. This part of the width is connect- 
ed with the second (or bulk) viscosity in the medium. The 
first term in the expression (19) takes into account only 
translational degrees of freedom (the corresponding colli- 
sion frequency v: is simply the gaskinetic collision frequen- 
cy) while the second and third in (l9a) and the second in (19b) 
take into account the influence of the rotational degrees of 
freedom. In the indicated approximation, the ratio of these 
terms to the first term is of the order of Av/v. Using the 
explicit expressions for X, in terms of i, we can show that, 
accurate to small terms of order Av/v, the following relation 
is satisfied for the widths of the narrow components, 

which corresponds to the usual expression for the sound ab- 
sorption coefficient y in terms of the values of the first and 
second viscosities 7 and 6, and of the proportionality coeffi- 
cient K (Ref. 20) 

p is the density of the gas or the liquid. 
Thus, formulas (19)-(2 1) generalize the one-to-one cor- 

respondences between the kinetic and hydrodynamic modes, 
first obtained in Refs. 14 and 15 for monatomic gases, to 
include the case of diatomic molecules with allowance for 
the rotational degrees of freedom. 

5. DISCUSSION 

We determine first the gas-density limit of applicability 
of the employed approach. The main restriction on the gas 
density is connected with the assumption of binary collisions 
or of the impact approximattion in the description of the 
collisions, according to which T, (T = l/v, where T, is the 
collision time, T is the time between the collisions, and Y is 
the frequency of the gaskinetic collisions. The same condi- 
tion can be written in the form r: N 1, where r, is the effec- 
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tive gas-molecule interaction radius and Nis the gas density. 
In ordinary gases rc is of the order of - lo-' cm, leading to 
the following known restriction imposed by the impact ap- 
proximation on the gas density, namely N 4  10'' cm-3 (this 
corresponds to a gas pressure < 30 atrn)." 

The second necessary condition is that the gas-molecule 
rotation be free, 0 = M/IBv, where 0 is the angular veloc- 
ity of the molecule rotation, and I is the moment of inertia of 
the molecule. In the classical description of rotation this 
condition reduces essentially to the preceding one, since 
0 -C/d k 1/rC, where d is the molecule diameter and 7i is the 
average linear velocity. 

The lower bound on the gas density is determined by the 
condition v>quo, which leads, for visible light (q=: lo5 cm- ') 
and for typical values of the mean thermal velocities 
v , ~  5 X lo4 cm/sec, to the following restriction on the gas 
density: v>5 X lo9 sec- ', corresponding to the frequency of 
the gas kinetic collisions at a gas pressure - 1 atm. 

Thus, the gas-pressure range for which the foregoing 
analysis is valid is 1 atm < P < 30 atm. 

So far we have considered only the unshifted compo- 
nent of the Rayleigh scattering of light. It is known that 
acjacent to the Rayleigh spectrum is a rotational Raman 
spectrum. Two different cases are then possible. For suffi- 
ciently light diatomic molecules these two spectra do not 
overlap in practice. Actually, the distance from the unshift- 
ed frequency w = 0 to the component, closest to the center, 
of the rotational Raman scattering of a diatomic molecule is 
knownz2 to be 6 B. The value of B for light molecules is 
B (N,) = 2cmP',B (0,) = 1.5cm-',andB(HI) = 6.5cm - ' 
(Ref. 22), from which it is seen that 6 B k 10 cm- '. The width 
of the depolarized Rayleigh-scattering line wing is deter- 
mined by the quantity Av and constitutes the frequency of 
the collisions in which reorientation of the molecule angular 
momentum M takes place. For light diatomic molecules Av 
fluctuates in the range A v - ( 1 4 . 1 ) ~  (Refs. 17 and 18). 
Therefore Av remains less than 6 B k 10 cm- ' even for the 
maximum permissible gas pressure P = 30 atm, since Av,,, 
-v(P=30atm)-3cm-',i .e. ,Av,, ,  <6B.  

For heavy molecules (Cl,, Br,, I,, and others) the con- 
stant B-0.01-0.1 cm and Av>B, the rotational Raman 
spectrum comprises two broad bands that have maxima at 
frequencies w = f 20,  where 0 = ( ~ P / z ) ' / ~  = 2(BT)'12, 
and the width is determined by the equilibrium distribution 
of the molecules over the rotational levels, i.e., by the value 
of a. 

Thus, in this case the entire depolarized spectrum con- 
sists of a relatively narrow pure Rayleigh component of 
width Av and with wide wings having a width of the order of 
?&-Av. It is interesting that the width Av of the Rayleigh 
component increases linearly with increasing gas pressure, 
while the width 3 of the wing does not depend at all on the 
gas pressure so long as 3 remains larger than Av, i.e., 
a > A v .  In the pressure region in which the condition 
a <Av is satisfied, the width of the spectrum of the rota- 
tional Raman scattering begins to narrow down with in- 
creasing - - pressure and is determined by the quantity 
fi' (0 <Av) [in complete analogy with the narrowing of the 

Doppler contour quo (qu0/v) under conditions when v > quo, 
where u, = ( ~ / r n ) " ~ ] .  In this pressure region the molecule 
rotation ceases to be free and, as shown above, the Boltz- 
mann kinetic equation is no longer valid. The described situ- 
ation for heavy molecules, when two characteristic widths 
are present in the wing of the linearized scattering spectrum 
(Av and 3, with 5 >Ad), one of which, Av, in inversely pro- 
portional to the gas viscosity, Av- T / r  (and is therefore 
strongly dependent on the gas temperature), while the other, 
5, does not depend on the viscosity at all and is quite similar 
to the experimentally observed picture of the wing of the 
depolarized light scattering in liquids (see, e.g., the mono- 
graph23). It is possible that the structure of the depolarized 
scattering of liquids in liquids is qualitatively similar to that 
described above for a dense gas made up of heavy molecules, 
for which the parameter 5 has the meaning of slowed-down - - 
rotation frequency, i.e., -0 (0 /Av). 

Before we proceed to discuss the results, we wish to 
point out the convenience of the method used in the present 
paper to solve the kinetic equatio%in the basis of the eigen- 
functions of the collision operator K. It was found that in this 
basis the Rayleigh-scattering spectrum, without allowance 
for the dependence on q, consists of two terms, scalar and 
depolarized scattering, each of whichis described by its own 
set of eigenfunctions of the operator K, and the two sets are 
connected with each other with the aid of the operator q . v. 
As a result of this connection, a fine structure is produced in 
the depolarized scattering. This connection is of the same 
character as the one considered in Refs. 24 and 25, and just 
as in these references it has a purely spectral character and 
therefore does not manifest itself in the integrated intensities 
of the scalar and depolarized (symmetrical, with zero trace) 
types of light scattering. 

In the "scalar" spectrum, the effect of a spectral mixing 
of the functions that describe different types of scattering 
leads to the appearance of an asymmetrical increment to the 
usual Lorentz contour of the Mandel'shtam-Brillouin com- 
ponents. The ensuing shift of the maximum of the Man- 
del'shtam-Brillouin components is equal to quo (qudv)' [see 
Eq. (10)l. 

The fine structure in the depolarized scattering spec- 
trum of a gas [see (1 1)-(13)] constitutes one dip at the center 
w = 0 of the spectrum I, = I,, (IvH = IHv) and two dips at 
the Mandel'shtam-Brillouin frequencies f w,, in the spec- 
trum I,, (IHH). This picture agrees with the experimentally 
observed fine structure in depolarized light scattering in 
low-viscosity l i q ~ i d s . ~ , ~  TO explain this structure in pheno- 
menological scattering theories it is necessary to take into 
account the connection between the rotary motion of the 
liquid molecules and the longitudinal deformations [the fine 
structure in the I,, (IHH) spectrum] and with the transverse 
deformations [in the I,, (IHv) spectrum]. Such a connection 
would take into account in the Leontovich t h e ~ r y , ~  which 
predicted a fine structure in the depolarized spectrum of 
scattering of liquids, but could not explain the experimental 
material on the temperature dependence of the fine structure 
(see the bibliography in Ref. 12). For a quantitative explana- 
tion of the fine structure in the Rayleigh line wing, with 
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allowance for the temperature dependences, it is necessary 
to introduce at least two anisotropy-relaxation times, as was 
done in the later papers by Rytov,' Romanov and Sol~v'ev,~ 
and others. The discussed fine structure in the spectrum of 
the scattering in the gas is connected with the interaction of 
the rotational and translational degrees of freedom of the 
molecules and it is this which leads to the appearance of 
interference terms in both the scalar spectrum [see Eq. (lo)] 
and in the depolarized one [see (I  l)]. Naturally, this effect is 
in no way connected with other properties of the medium, 
inasmuch as in a gas there is no slow relaxation of the trans- 
verse (shear) deformations at any frequency. 

In the present paper, the parameters of the fine struc- 
ture in a gas are exkressed in terms of the eigenvalues of the 
collision operator K [see (17)l. It has turned out that the 
depth of the narrow dips depends very strongly on the ratio 
of the parameters Av/v, i.e., on the ratio of the collision 
frequencies Av, which are connected with the energy ex- 
change between the rotational and translational degrees of 
freedom, and the frequencies v of the gas kinetic collisions. 
The width is proportional to (Av/v)~ for the central compo- 
nent and to (Av/v)~ for the Mandel'shtam-Brillouin compo- 
nents. This cause of this difference is that the width of the 
acoustic components is determined by the quantity 
yl - ( q ~ ~ ) ~ / A v ,  whereas the width of the central component 
is given by y3 - (q~ , )~ /v .  For an experimental observation of 
the discussed fine structure in the depolarized scattering 
spectrum it is therefore preferable to use molecules whose 
parameter Av/v is close to unity, for example, the linear 
molecules N20 and CO, for which A v/v = 0.8 (Ref. 17). 

Since our analysis had led practically to a single charac- 
teristic width in a broad part of the spectrum of the unshifted 
depolarized scattering, it is of interest to compare, on the one 
hand, expression (17) for the intensity of the fine structure of 
depolarized scattering in I,, polarization at the frequencies 
o = 4 o,, , and on the other the corresponding quantity 
obtained by Leontovich? who used one relaxing tensor pa- 
rameter. This comparison yields the following expression for 
the Maxwell constant M (the birefringence constant in a 
stream) in a dense gas 

We recall that 

and 8, (B,  l 2  is the integrated intensity of the broad contour 
of the depolarized scattering. 

It can be seen from the obtained equations that the 
Maxwell constant is of the order of M-vP2Av. The micro- 
scopic meaning of the constant M, as shown by Eq. (22), is 
the following. In order for the hydrodynamic modes (in this 
case we are dealing with acoustic modes described by the 
functions X, and x,) to appear in the depolarized spectrum 
we need, first an interaction of the hydrodynamic modes 
with non-hydrodynamic ones, effected by the operator q - v 
and corresponding to allowance for effects of spatial disper- 

sion, and second, transfer of the orientational motion in the 
space of the velocities v to the spaze of the angular momen- 
tum M via the collision operator K. 

In conclusion, it is of interest to analyze the results of 
the microscopic description of the spectrum in a dense gas, 
obtained in the present paper, from the viewpoint of the gen- 
eral properties of the scattering tensor with allowance for the 
spatial dispersion of the medium. In our notation the scatter- 
ing tensor can be taken to be the fourth-ranked tensor CaBus 
(o,q), the contraction of which with the unit vectors of the 
incident and scattered waves in Eq. (1) yields the scattering 
spectrum. 

It is known that in the case of an isotropic medium1 
the spectral dependence of this tensor is given by five inde- 
pendent functions ~ , , . . . u ~ ( o , ~ ~ ) ,  in terms of which the com- 
ponents I,,, I,, and I,, of the scattered light are ex- 
pressed in the following fashion' ': 

I V Y  (a, q Z )  ' 0 1 - t -  Z / 3 u 2 - 2 / 3 q 2 0 3 + ( / g q 4 0 ' ,  

I,., (61, q2)  =IHv (at q Z )  = ' / 2 0 2 + ' / 8 q ~ 0 5 ,  P3) 
I H H  (o, q2 )  = ' /2~z+1/ ,q40, .  

The integrals of the functions u,,~,, with respect to the fre- 
quencies are equal to zero, while those of a, and u, are of 
equal order of magnitude. When the condition v 2 Avaqu, is 
satisified, the system (23) of three equations is transformed 
into a system of six equations (in practice, of five since two of 
them are identical) for the two spectral intervals o 5 qv, and 
o)qv,. This circumstance, together with the relations for 
the frequency-integrated quantities u,, ..., a, make it possi- 
ble, by comparing (23) with (lo) and (1 l), to determine in the 
indicated approximation all five scalar functions u, ,  ... a,. 
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