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The influence of an electromagnetic field on the radiative corrections to the atomic energy levels is 
studied for the case of "strong fields" for which the interaction between the atom and the field is of 
the order of or greater than the radiative effects. The analysis is carried out on the basis of the 
Schwinger-Dirac equation for the propagation function of a bound electron in the field and on the 
basis of the density matrix apparatus in the Furry representation. It is shown that in the strong- 
field approximation the radiative shifts and widths are manifest as radiative corrections to the 
quasi-energies. Intensity effects in the radiative corrections to the atomic levels are obtained in 
ultrahigh resolution experiments in the case of single-photon resonance. Some multiphoton pro- 
cesses are considered by taking into account the effect of the field on the radiative structure of the 
levels. 

PACS numbers: 3 1.30. - i, 32.80. - t, 32.80.Kf 

1. INTRODUCTION 

Recent developments of methods of ultrahigh resolu- 
tion laser spectroscopy have uncovered new possibilities for 
new precision measurements of the radiative shifts (RS) in 
the region of radio and optical frequencies of atomic transi- 
tions in ordinaryI4 and muonics atoms. 

TO account for the recently attained high experimental 
accuricies (for example, lop5  for the 2sll, - 2p,/, state of 
the Lamb shift' and 2 x lo-.' for the RS of the ground state 
Is,/, in hydrogen and deuterium,' 2 X  lo-' for the anoma- 
lous magnetic moment of the electron in radio-frequency 
resonance experimentsh), a need has therefore arisen for a 
more thorough theoretical study of the interaction of an 
atom with a strong electromagnetic field, with account taken 
of the radiative corrections. 

The RS Si due to the interaction of the electron with the 
radiation field are usually neglected in the study of the be- 
havior of the atomic levels in an electromagnetic field within 
the framework of the customary approaches (the density- 
matrix f~rmalism, ' ,~ methods based on the equations for the 
amplitudes' or propagation functions). According to one 
point view, to take the RS into account it suffices to add them 
to the energies of the atomic levels that are not perturbed by 
an external electric field. This procedure, which is valid for 
week external fields, is not correct in the case of "strong 
fields" whose intensity E, while smaller than the characteris- 
tic atomic energy E,, =pa, .'/em [ p,, = (2mZ) 'I' is the char- 
acteristic momentum of the electron or muon, and 
I = (Ze2)2m is the ionization energy of the atomic system] 
corresponds, however, to an atom-field interaction energy 
much larger than the RS and the widths yi of the atomic 
levels. In the latter case it is necessary to take into account 
the influence of the strong field on the RS and on the level 
widths, and the radiative corrections must be calculated al- 
ready for atomic energy levels perturbed by the external 
field. 

take into account only the Bethe parts of the RS. 
The present paper is an attempt to fill these gaps. We 

use below a consistent approach based on the S (t )-matrix 
formulation of quantum electrodynamics in an external field 
in the Furry representation, and the influence of the field on 
the radiative effects is taken into account in a natural fa- 
shion. 

It is known that for a time dependent external field the 
self-energy operator, which is a function of two four-dimen- 
sional points x and x', depends separately on the times t and 
t ' and not on their difference as in the case of stationary 
fields. It is shown in this paper that treatment of this quanti- 
ty in the representation of the quasi-energy states (QES) sim- 
plifies substantially the investigation of radiative effects in a 
field that is periodic in time, and reduces it in fact to the 
stationary case. The convenience of this representation lies 
also in the fact that the use of the QES makes it possible, as 
shown by Ritus,"' to take easily into account the shifts and 
the splittings of the atomic levels in the electromagnetic 
field. 

Within the framework of such an approach, we obtain 
in Sec. 2 from the Schwinger-Dirac equation, for the propa- 
gation function of a bound electron in an electromagnetic 
field, equations that are generalizations, to include the case 
of the presence of a periodic external field, of the Low equa- 
tions" for the RS and the widths of the atomic levels. 

Section 3 deals with the resonant case. To be specific, we 
consider an atomic transition between two atomic states 
with nondegenerate energy levels w ,  and w,,  to which a reso- 
nant external field of intensity E(E,, and of frequency 
o ~ w , , ,  = w ,  - w, corresponds. The spectrum of such a 
system is obtained with account taken of the effects of the 
intensity and radiative structure of the levels, which depend 
on the parameter 

The situation is further simplified in the indicated ap- which characterizes the interaction of the field with the atom 
proaches by the nonrelativistic treatment of the interaction in the resonant case, and with accuracy up to nonresonant 
with the radiation field, so that in principle it is necessary to effects of second order to the quantities 6, and yi (i = a,b ). 
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In the strong field limit 21 V,, 1 %  IS, - So 1, 41 V,, I > 1 y ,  
- yo I, for small detunings from resonance E = w,, - w 

( 1  V,, I, where V,, is the matrix element of the interaction of 
the field with the atom; the RS and the widths of the atomic 
levels in the field appear as radiative corrections to the quasi- 
energies (QE), and are expressed in the resonant approxima- 
tion in simple fashion in terms of their zero-field values and 
the populations of the resonant states [see Eqs. (25) and (25a) 
below]. A similar situation takes place also when account is 
taken of the degeneracy of levels of arbitrary multiplicity 
[see formula (25b) below]. 

Included among the results of general character, be- 
sides those of Sec. 2, are also the equations obtained in Sec. 5 
for the density matrix in the QES. These equations describe 
completely the intensity effect in the RS and in the level 
widths, in the e2 approximation in the radiation field. This 
formalism is most convenient for the analysis of multipho- 
ton atomic transitions for the case of "strong fields." 

Another purpose of the present paper is to obtain the 
probabilities of certain known multiphoton processes with 
allowance for the RS. We consider processes of single-pho- 
ton decay of atomic states as they are mixed by the resonant 
field (Sec. 4), stimulated transitions in a two-level system, 
and resonance fluorescence (Sec. 5). 

2. PROPAGATION FUNCTION OF A BOUND ELECTRON IN 
THE PRESENCE OF A PLANE-WAVE FIELD 

The Feynman propagation function of a bound electron 
interacting with the field of a plane wave A(r,t ) = Re[A, ex- 
p( - it )], which takes in the Furry representation the form 

G(x ,  y)  =(OIT($(x)$(!i)S) IO)/So, 

satisfies the Dirac-Schwinger equation 

(iyII+m)G(x, y )+J  M(x, x') G(xr, y)dbx'=-i6") (I--y) .(I) 

Here L7, = - id/Jx, - eA,, where the field A, = (A,O) 
+ (0, U) is the sum of the Coulomb potential U(r) of the 

nucleus and of the vector potential A of the field, while 
S = S ( m ,  - co) is the scattering matrix, withS, = (01s lo), 
and the operator $(x) satisfies the Dirac equation in the field 
A,. The renormalized self-energy operator 

M(2,  2') =eyaA eff a(x) 6 (x-x') +Z(x, x'), (2) 

[where the effective potential A,,, (x) contains the correc- 
tions that must be added to A, to allow for the polarization 
of the vacuum and 2 is the mass operator] describes the 
radiative effects in the presence of an external field. In the e2 
approximation in the radiation field we have for the nonren- 
ormalized values of the quantities 

( 0 )  
yA ,. (x) =ie d3x' dt 'y ,  Sp[y,Sp(xr, t'; x', t ' f ~ )  ] r 

r(o, (x, x') =ie2D(x-x') Y,,SF(X, 2') yp, 

where SF is the propagation function of the bound electron 
in the field A, and D is the photon propagation function." 

It is known that for a time-dependent electromagnetic 
field the quantity M (x, x'), which is a function of two four- 

dimensional points, depends separately on t and t ', and not 
on the difference t - t ' as in the case of stationary fields. 
However, both this quantity and Eq. (1) become substantial- 
ly simpler if we use the solutions of the Dirac equation with a 
definite quasi-energy En (Refs. 10 and 14): 

9, (r ,  t )  =e-iEni@n (r, t )  =e-iEni g o,(p)eLqmf~a(r). (3) 
a qP-m 

The functions @, make up a complete set 

@. (r, t) Qnt (r', t) =6 (r-rr) (5) 

and are chosen together with QE by letting En -+an and 
@, -+ qn as t-+ - when A = 0, where wn are the atomic 
energy levels and qn are the corresponding atomic wave 
functions. 

We shall use the expansion of the operators $(x) in 
terms of the system of solutions $, . In this case the propaga- 
tion function 

takes the form 

SF (x, XI) = - on(%) Qn(xr) 
2ni E,,(l-i0)-o ' (6) 

where the summation is over all the QES corresponding to 
atomic states with positive and negative frequencies. 

The use of solutions (3), which hold for the "atom 
+ periodic field" system with neglect of relaxation phenom- 

ena, greatly simplifies the analysis of the radiative effects in a 
time-periodic field. The reason is that the matrix element of 
the operator M in the energy representation between the 
functions @, 

can be represented by virtue of the periodicity conditions 

@,(r, t+2n/o) =@,(r, t) 

in the form of an expansion in harmonics: 

where the quantities M are of the form 

M,!: (a) =<djnleiqutM(cr) @,)). (9) 

In these expressions the double angle brackets denote 
the usual integration with respect to the coordinates and 
averaging over the period 2?r/o, while the operator M (a) is 
the renormalized value of the operator 

The operator 2(,, is renormalized in standard fashion,I2 
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while the quantities A r,! are renormalized with the aid of the 
condition A,,(A, = 0) = 0. 

Let us clarify the method of obtaining the expansion (8). 
Its validity can be easily verified for the matrix element of 
the first term in (2), if we use the 6 function in the space of 
periodic functions with period 217/u: 

To transform the contribution of the mass operator it is 
necessary to use expression (6) and the representation for the 
photon propagation function 

i d'k 
D(x)=-7 - 

(b) J k2-iO eiU7 

as well as Eq. (4) and relations (5) and (1 l), with the aid of 
which integration is carried out with respect to the coordi- 
nates and the time in the matrix element (7). 

We turn now to the propagation function G, which is 
transformed, neglecting radiative effects, into the propaga- 
tion function ( 6 ) .  Taking the expansion (8) into account, we 
represent G in the form 

I 
Q,, ( X I  G~ ( z r )  e-jqat G (x ,  x' )  = - 

2n 1. 

Equation (1) reduces in this case to a system of equa- 
tions for the coefficient propagation functions: 

which generalize the Low equations for the shifts and the 
natural widths of atomic levels to include the case when a 
monochromatic field periodic in time is present. 

One of the methods of investigating this system of equa- 
tions is to reduce it to a form in which are subdivided expli- 
citly the terms containing the ratios MF)/(Ei - Ej + qu) of 
quantities of the order of the radiative effects to the differ- 
ence of the QE. 

Introducing new quantities, defined by the relation 
R ',"A (a) = G ',"A (a)/G E!, (a) for two groups of values of the 
indices (n f m with q arbitrary and n = m with q#O) and 
R ',"A at n = m and q = 0, we transform the equations in the 
following manner: 

G,!? ( o )  =I/ (En+ W ,  ( o )  - a ) ,  (13) 

+ M Z q 1 )  (o+q,w) R:: ( o )  

The propagation functions are then represented in the 
form 

G ( x ,  x')  = -3 @n ( X I  a m  (XI) 2ni 

OD 

do exp [ i o  ( t r - t )  ] 2 e-iqut~FA (01, 

in which are explicitly separated the terms R E!, with contain 
high orders of e2 and describe multistep nonradiative transi- 
tions between the QES with allowance for the RS and the 
level widths of the intermediate states, in terms of which is 
expressed also the quantity 

W n  ( o )  =M::) ( o )  + M,!;" ( o+qo )  R::) (0 )  

9+0 

When the effects of the plane-wave field are neglected, 
as a result of averaging over the period, the only nonvanish- 
ing terms in expression (9) are the matrix elements with ze- 
roth harmonic M (a, A = 0) = SpOmij(a). The quantities 
mi are here the matrix elements of the self-energy operator 
at A = 0 between the atomic wave functions, and its diag- 
onal elements determine the shifts and widths of the atomic 
levels: 

&=Re mii (m i ) ,  yi=-2 Im mji (mi) .  

As seen from (14), in this limit R -+ S+R (A = O), 
and Eq. (15) goes over into the known expression for the 
atomic propagation function." 

At low values of the ratio 

I M ~ ~ ' ( E , ) / ( E ~ + M ~ - E , - M : ;  +qo) I <I (17) 

for the permissible values of the indices (n #m with q arbi- 
trary; n = m with q#O) the functions R and W, as follows 
from (14) and (16), can be represented in the form of an iter- 
ation series in terms of this quantity. In the lowest-order 
approximation we obtain the expression 

1 - 
G ( X ,  X I )  = -1 doe @ n ( x ) @ n ( x f )  

2ni -_  i a ( i ' - t ) ~  E,+ME ( o )  -LT ' (I8) 

in which the radiative shifts SE, and the widths r, of the 
atomic levels in the field appear as radiative corrections to 
the quasi-energies En : 

For fields E<Ea, and in the absence of resonances, the 
field effects in the functions (3) are given by the terms of 
order g = el A,l/pat = (21E /wE,, )( 1 (Ref. lo), and it is 
these which determine the difference between the quantity 
(17) at q = 0 and the usual parameters S,/u,, yi/uij, and 
lmi [/mil of perturbation theory in the zero-field case. Con- 
tributions with nonzero harmonics are suppressed by the 
additional factor 6 I q 1 .  However, the conditions (l7), and con- 
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sequently also the expressions (18) and (19), are valid also in 
the strong-field limit, when the field shifts of the atomic lev- 
els exceed in order of magnitude the values of the radiative 
effects in the field. An illustration of this case in the presence 
of resonances is given in the next section. 

Expressions (19) can be rewritten in terms of the matrix 
elements over the quasi-energy wave functions, by using Eq. 
(4) and formulas (5) and (1 1): 

1 1  Q J + 6 m  
(20) +- 

n k2 - (qo) ' p i 0  

Here 

the quantity 
n/a 

0 1:' ( k )  = - J dsrdte-i(kr+g~t) s 
2n P [YJP (r, t; r, t+O) I (2 1) 

-n/m 
Y 

is the Fourier component of the current induced in vacuum 
by the external field A,, Sm is the mass renormalization con- 
stant, and a = e2/4r. 

3. RADIATIVE CORRECTIONS IN THE RESONANT CASE 

The purpose of the present section is the calculation of 
the RS and of the widths of the nondegenerate levels ma and 
o, of the atom in a periodic field in the presence of one- 
photon resonance between the levels and the field: 
E = Wba - o(obo. 

In the approximation 

taking the nonresonant states p,(i#a, 6) into account by 
perturbation theory, we have for the QE spectra (see, e.g., 
Refs. 15 and 16) 

Here UI ' = [ ( E ' ) ~  + I vab l 2  1 'I2, E' = E + A , -Aa, and the 
quantities Ea and E, are jointly represented by one expres- 
sion with a comma between the subscripts. These expres- 
sions take into account the nonresonant Stark shifts of the 
levels A, (Ref. lo), which are of the order of ~6 2Z at WZI 
and which can be comparable with the RS in typical laser 
experiments. 

The populations nja of the atomic states pa in the QES 
Gi, with allowance for-the nonresonant corrections, can be 
calculated by using the following formula": 

Neglecting the quantities dAi/doj, which are second- 
order nonresonant corrections, we obtain 

The resonant wave functions Go,, corresponding to 
adiabatic turning-on of the field as t -+ - co, are well 
known. They are given in Sec. 4 [see Eqs. (30) at L = 0, 
a, = E,, a, = E,, and also Refs. 15 and 161. Using them 
together with Eqs. (25) and (27) we can easily verify that the 
conditions (17) for the resonant states pa,, lead to new 
strong-field conditions 

for small detunings E( I V,, I, E 5 S, y, together with the pre- 
sented criteria for the validity of perturbation theory with 
respect to the radiation field. Accordingly, expression (18) 
also is accurate to terms e2, si/2f2, and yi/W2 (i :- a, b ). The 
conditions (24) mean that the radiative effects are small com- 
pared with the field-induced shifts and splittings of the 
atomic levels; the quasi-energy spectra of the atom in an 
external periodic field manifests itself when they are satis- 
fied. It must be noted that there exists a wide range 
a3g(E /E,, )(1 ofE for which the conditions EgE,, and (24) 
are compatible. 

We turn now to the calculation of SE,, and T,. From 
(19) and (20), taking full account of the resonance effects of 
the intensity with the parameter 17 = I V,, I/&, and with accu- 
racy that includes first-order nonresonant corrections, we 
obtain 

6F=-%bl [z IPa<12 (In 
6n *+a 

" I) 10.-0i l 

where the populations n, and n, are given by (23), - 
PV = (p i  Ivle) ,  and v is the electron-velocity operator. 

Let us clarify the method of obtaining this result. Calcu- 
lating first the resonant contribution by means of Eq. (19), we 
note that it suffices to retain the effects of the plane-wave 
field only in the functions Go,, , and they can be neglected in 
the operator M (E ). Indeed, in the resonance approximation 
there remains in (20) the contribution of the harmonics with 
q = 0, f 1, + 2. If the field shifts of the atomic levels are 
neglected in them compared with the frequencies of the un- 
perturbed atomic transitions, we note that the summation 
over the functions (3) in the first term of (20) reduces to sum- 
mation over the atomic wave functions, while in (2 I) the only 
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nonzero current component is Jr ' (k)  1, =, , which is induced 
by the Coulomb field." These arguments lead to the first two 
terms of (25) from which the nonresonant corrections to the 
level populations were left out. 

Similar reasoning and the use of the resonant wave 
functions lead to the following results: 

which are used later on. 
To calculate the contributions SF and y,, i.e., to take 

into account the previously neglected field corrections to the 
atomic-transition frequencies, it suffices to start from the 
part M 2 ,  which is of low frequency in terms of the energy of 
the virtual photons and which is obtained from (20) after 
renormalization of the mass. In particular, we have (see Ref. 
18) 

Direct calculation of the low-frequency part of SE ,' 
with the aid of the QE spectrum (22) and the corresponding 
wave functions, and with account taken of the corrections of 
first order in R /wnj and d m n j  to the difference of the levels 
onj, leads to an expression similar to (25) with the quantities3) 
(26). In this approximation, 

i.e., they are of the order of the nonresonant corrections to 
the quantities max(Si), max(y,), i = a, b. They become com- 
parable with the zero-field values max(S,,S,) and 
max(ya , y,) under the condition I V,, 1 <w,, which are real- 
ized for fields with E 5 Eat, but also at E(Eat for a system 
with close levels w, (I. These cases, however, call for a spe- 
cial analysis that includes also the calculation of the QES 
outside the frameworks of the resonant approximation and 
of perturbation theory. 

In the resonant approximation, the RS of the quasi-en- 
ergies take the following form 

At I Vab I )E, owing to the equality of the populations 
n, Zn,, the shifts SEa and SE, become of the same order 
even if 8, and 6, differ substantially. In the limiting case of 
the fields I V,, I &E we obtain SE, -t Si. 

We make a few remarks concerning allowance for the 
level degeneracy in the calculation of the radiative correc- 
tions to the nonresonant field. It is knownI6 that the presence 
of degeneracy does not change the number of the QE com- 
pared with the nondegenerate case, but leads to expressions 
for the populations that are different from (23). This modifies 
Eqs. (25) somewhat. In the particular case when the lower 
level o, is not degenerate, we obtain in the resonant approxi- 

mation with the aid' of the corresponding adiabatic quasi- 
energy wave functions 

Here 

and the indices b, pertain to the states p,, of the N-fold de- 
generate level w,. Without writing out the expressions for 
SE,,, we note only that they lead to a splitting of the quasi- 
energy E, into components in accordance with the different 
RS values S,, (it is known that values of S,, that differ from 
one another are obtained for states that are degenerate in the 
orbital momenta I = j - 1/2 and I = j + 1/2, but not in the 
magnetic quantum number). 

For fields that are not strong, when the conditions (24) 
are not satisfied, it is necessary to take into account in (16) 
also quantities that contain all the powers of the ratio M /a. 
Neglecting in this case the terms of order 6f/I and d/I 
compared with the RS and with the level widths, we obtain 
in the vicinity of the values UZE, and UZE,, respectively, 

R:) (o) = M,:"(O) / (u+~-E,-M~') (o+o) ) , 
(28) 

This leads with the aid of (23) and (25)-(28) to the following 
two solutions for the poles of the propagation function (15), 
corresponding to the levels w, and a, in a resonant field 

Here wIR = mi + Ai + Si, ER = WbR - w a ~  - a ,  and the 
quantity 

consists of a part 

and corrections on the order of the nonresonant intensity 
effects to the RS and to the level width in the lowest approxi- 
mation. When these corrections are neglected, expressions 
(29) can be obtained also within the framework of the formal 
method of the "effective non-Hermitian Hamiltonian." The 
noted quantities, however, are of the order of (E/E,,)Si 
(i = a,b ), and for fields E > cEat they should be taken into 
account together with the radiative effects of higher order in 
e2, if the latter are calculated with accuracy determined by 
the value of c. 

1157 Sov. Phys. JETP 56 (6),  December 1982 G. Yu. Kryuchkov 11 57 



4. AMPLITUDES OF SINGLE-PARTICLE QES 

We turn to the amplitudes 

f n ( r .  t ) .=(O[  T ( l p ( x ) S )  I n ) / S o  

of the single-particle states In) of an atomic system in an 
external field; these states are connected with the propaga- 
tion function by the equation 

f*(r, t),= lim FG(~, s f )  yoe-iEntlm,, (rf, t r )  
tr*- m 

and the condition that the radiation field had been turned off 
at t '--t - a. It leads to an expression of the type (3) for f,, 
with a complex QE. The existence of such quasistationary 
quasi-energy solutions follows directly from the correspond- 
ing Schwinger-Dirac equation for the single-particle ampli- 
tudes and is connected with the following periodicity prop- 
erty 

M ( r ,  t f 2 n l o ;  r', t'+ 2nlo' )  = M ( r ,  t ;  r', t') 

of the self-energy operator. 
We calculate now the amplitudesf, andf, for the states 

la) and ( b  ), which are connected with the resonant field. 
With the aid of expressions (25)-(28) we obtain (at E > 0) for 
the quantities normalized at t = 0, accurate to the admixture 
of nonresonant states, 

where 

and the quantity 

describes the radiative correction to the effect of mixing of 
the resonant states by the external field and leads to the onset 
of nonorthogonality of the amplitudes fa and f, of the order 
of the quantity Im L.4' 

When the interaction with the radiation field is turned 
off, the amplitudes (30) go over into the known resonant qua- 
si-energy wave functions; in the limiting case of weak field 
they go over into the quasistationary amplitudes of an atom 
unperturbed by the external field. 

The solutions obtained from (30) for the instantaneous 
application of the external field can be used to express, for 
example, the probability d W ( v )  of relaxation of a two-level 
system with states la) and Jb  ) at the initial instant t = 0 to 
another ground state li) unperturbed by the field. At 
t)(ya + y,)-l, assuming the transition la)-+li) not to be 
forbidden, we obtain in the resonant and "single-photon" 

approximations 

where 

and the nonresonant contributions should be left out of the 
quantities a, and a, [here as well as in Eqs. (30)l. The "sin- 
gle-photon approximation" is known9 to be valid in the pres- 
ence of a resonance under the condition y, %yo + y,, where 
y,, is a partial width. When this condition is satisfied we can 
neglect the multiphoton spontaneous radiation in a transi- 
tion where a resonant field is present; this corresponds to the 
first-order approximation in the parameter yba/(ya + y,). 

The question of radiative effects with allowance for 
multiphoton transitions will be investigated in the next sec- 
tion. Such a formulation of the problem within the frame- 
work of the propagation-function method entails a laborious 
technique of summation over the number of radiated pho- 
tons. A more adequate approach to this group of problems is 
known to be the density-matrix formalism. 

5. RADIATIVE EFFECTS DESCRIBED BY A DENSITY MATRIX 

The customarily employed density-matrix method is 
based on equations of the Markov type (equations that do not 
take into account memory effects in the relaxation), which 
contain only the nonrelativistic part of the widths of the 
atomic levels without RS.7,8 AS applied to ultrahigh resolu- 
tion experiments, we present equations free of this approxi- 
mation, which take account of the intensity effects in the RS 
and in the width. 

It is convenient to introduce the density matrix in the 
following manner: 

pa, ( t )  =SA ( t ,  -w)  1 a )  (fi IS ( t ,  --) , 

where la) and ID ) are multiparticle states that contain no 
photons, with positive and negative frequencies of the atom- 
ic system in an external classical field. A factor equal to the 
unit operator in the space of the photon states is implied in 
the right-hand side. This matrix leads to the expansion 

(32) 

for the current operator 

in the Furry representation, x = (x ,  t ). 
The equations for the density matrix follow from the 

equation for theS (t ) matrix. Taking the radiative effects into 
account in the e2 approximation with the aid of Eqs. (7), (8), 
and (1 1) and with the aid of expansion (32), we obtain 
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d ( 0 )  i t  - 
i -(p..-p.. ) = - I dt f  J do e x p [ i o ( t r - t )  ] averaged over the initial QES of the atomic system and over 

dt 2n 
- m  - m  

the vacuum of the photons in the lowest order in M /a, when 
the connection between the diagonal and nondiagonal ele- 

x{ C { p n k ( t J )  MZ ( O + E ~ )  ments of the mean valuesp,, (t ) can be neglected, and when 

k.9 
single-photon resonance is present. 

As t + a we obtain in the resonant approximation, 
~ e x p [ i ( E , , - q r o )  t l -ph , ( t f )  M,,:" (-o+Ek) which is known to correspond to neglect of rapid oscillations 

with characteristic times w,i ' compared with slow ones with 
X ~ X P  [-i(Enh-qo) f I )  f i  p P k  ( t f  )Jf:;,Lk ( 0 )  exp [~(E,.-E,.  times a - 1, 

Here 

+ [ p n m ( t ) , i r l , ( x )  IA.:' (x)) 

are terms that vanish upon averaging over the photon vacu- 
um, where A ' ( x )  are the positive- and negative-frequency 
parts of the radiation field; 

d3k ( 9 % )  M,::L (0) = $C J - Q6.m ( k )  Q,!.Z" ( - k )  
Ikl . . 

a, 

X{6(Epn-o-IkI--qio) +G[Eh,+o-lkI+(q-q,)o) I ) ;  

and the counterterms of the mass renormalization 

are explicitly separated. 
Only the density-matrix elements corresponding to sin- 

gle-particle atomic states with positive frequencies (desig- 
nated by Latin letters) were retained in Eqs. (33); states with 
negative frequencies are taken into account only in the quan- 
tities M. This approximation is justified for problems in 
which there is no pair production and in which averaging of 
the density-matrix elements over the initial single-particle 
states of the system with positive frequencies is assumed. 

The non-Markov character of Eqs. (33) is indicated by 
the integral, nonlocal in time, character of its terms. Equa- 
tions in the Markov approximation obtained at t -+ a if the 
dependence on the variable o in the matrix element of the 
operator M is neglected. 

These equations, together with propagation function 
(15), are written in the QES basis5 As a result they are most 
convenient (both in the calculations and for the development 
of physical interpretations), as applied to the case of strong 
fields, when the field shifts and splitting of the atomic levels 
greatly exceed the radiative effects. We present them for the 
values 

d  i 
i - 6,  ( t )  = [ a - E . - U  - - (ra+rb-2Ma:k ( 0 )  ] e a b  ( t )  , 

dt 2 
(35) 

d pbb ( t )  = ( - r a + ~ : : , \ b  (0) ) ~ b h f  ( 0 )  (O) Pa, (36j 
at 

pa. ( t )  + ~ b b  ( t )  = I ,  6ob*=sba. 

We have used here the notation 

and have left out from the equations also the non-Markov 
contributions of order a3yi and a3Si to the RS and to the 
widths of the atomic levels. 

It is important to note that the matrix element (34) are 
pure real and contribute only to the level width without 
changing the RS. The zeroth-harmonic values M'O'(0) coin- 
cide with the partial widths of the transitions between the 
QES, and the following relation holds for the positive-fre- 
quency part of the width 

If the influence of the field is neglected in the operator 
M, Eqs. (35) and (36) without RS and with nonrelativistic 
parts of the widths coincide with the equations obtained in 
Ref. 20 from another viewpoint. 

Following that reference, we can calculate in simple fa- 
shion the spectrum of the resonant fluorescence for the case 
of a strong field, by using an expansion of (32), Eq. (35) at 
yo = 0  and y = y,, as well as the expression 

The spectrum has the well-known three-peak structure2' 
with the following form of the spectrum with respect to a 
frequency v for the sidebands ("satellites") in the RS: 

The following remark is in order concerning the influ- 
ence of the resonant field on the anomalous magnetic mo- 
ment of the electron a, in the simplified microwave-reso- 
nance ~ c h e m e . ~  To this end we turn to the probability of a 
transition with spin flip from the state Ip,) of the electron in 
the magnetic field B with spin antiparallel to the field direc- 
tion, in the resonant approximation w z w o  = eB /m. 

The probability of the transition from the initial state 
Ipi,O) without photons, summed over all the final "atom in 
state Ip,) plus an arbitrary number of photons with arbi- 
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trary polarizations and momenta" states, is of the form 

and we obtain with the aid of Eqs. (33) of the Markov type2' 

It is important to note that intensity effects in the value 
6 = a,wo of the radiative frequency shift of the magnetic 
transition a,, which determines the value of a,, or of the 
order of the resonant contributions ( I  V121/wo)6 and lead to 
similar effects ( I  V121/wo)ae to the value of a,. 

The author thanks D. A. Kirzhnits, V. I. Ritus, and M. 
L. Ter-Mikaelyan for useful discussions and valuable advice. 

"The mass operator for an unbound electron in an intense field that is 
constant in the coordinates and in time was calculated in Ref. 12; the 
mass radiative correction to the quasi-energy of a free electron in a 
plane-wave field was considered in Ref. 13. 

*'This can be easily verified using as an example the propagation function 
from expression (6), in which the use of the resonant functions @,, and 
neglect of the field shifts of the levels actually lead to a pure Coulomb 
propagation function. 

3' We note that nondiagonal contributions of the order of {ma, and 
Jmbi ( i f a ,  b )  from the admixture of nonresonant states q, to the reso- 
nant wave functions @,, have been left out from (25). 

4' Non-orthogonal quasistationary states were investigated from the gen- 
eral point of view in Ref. 19. 

']The corresponding equations were obtained in the cited references 7 and 
8 in a basis of atomic states that are unperturbed by an external field. 
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