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A field model is constructed for the description of a system of interacting dislocation lines. In this 
model the liquid-crystal transition corresponds to the appearance of infinitely long (unclosed) 
dislocation lines. It is shown that this transition is of first order. 
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INTRODUCTION 

It is known that a remarkable analogy exists between 
the magnetostatics of interacting currents and dislocation 
theory (see, e.g., Ref. 1). This allows us to propose an analogy 
between the mechanisms of the superconducting transition,' 
transitions in smectic-A liquid crystals,' and the transition in 
the theory of scalar electr~d~namics,~ on the one hand, and 
the mechanism of dislocation-induced melting, on the other. 
In the first group of theories allowance for the long-wave 
fluctuations of the vector potential for a superconductor, the 
fluctuations of the director in a smectic-A liquid, or the 
gauge field in scalar electrodynamics leads to the conclusion 
that these are first-order transitions. We shall show in the 
present paper that allowance for dislocation interaction via 
the crystal deformation also lead to a first-order transition. 

Attempts to involve dislocations in the description of 
crystal melting were made by various workers (see Halper- 
in's review4 as well a the detailed description in Ref. 5), but 
they inevitably introduced simplifying assumptions con- 
cerning the form of the interaction of the dislocations and 
concerning their configuration statistics. (The most consis- 
tent with respect to allowance for the configuration statistics 
is the paper by Edwards and Warner,5 but it is not free of 
simplifications when account is taken of the dislocation in- 
teractions.) 

Kleinert described in a recent preprint6 a formalism 
that makes possible a correct account of dislocation interac- 
tion. Unfortunately, apparently because the calculations are 
more unwieldy than ours, the calculated end result of his 
paper, corresponding to our Eq. (17), is accurate only to a 
numerical factor, i.e., it is of the same form as the result of 
the simple  estimate^.^ 

To describe a system of noninteracting dislocation lines 
we introduce three complex fields p,(xi) (I = 1, 2, 3) (xi are 
the coordinates of the cubic-lattice points). We express the 
partition function in the form 

J; ' = 1/J for two nearest-neighbor sites and J, ' = 0 in 
all other cases. This partition function is equal to the sum 
over all possible configurations of filaments of three types 
passing through the lattice points xi, and only one filament 

can pass through one point. Each filament is marked by an 
arrow that indicates the current direction. Each segment of a 
filament of any sort enters with a weight J (we consider for 
simplicity the case of cubic symmetry, when all the filaments 
enter with equal weights). Each filament configuration en- 
ters thus the partition function with weight JL , where L is 
the total length of the filaments of all sorts. The three differ- 
ent sorts of lines correspond to three different directions, 
along which the Burgers vectors of the dislocation can be 
directed. The partition function can be represented in the 
form 

where 

or, expanding the logarithm and changing to continual var- 
iables: 

Z= [ DqlDql'  exp[--H{v~, pt') I ;  (3) 

where 

The partition function (1) can also be written in the form 

where C (L,N) is the number of different configurations on a 
lattice of N closed filaments with total length L. In our prob- 
lem each filament enters with a factor n = 6, since there are 
only filaments of three sorts, in each of which the current can 
flow in two directions. From (4) we obtain for the average 
density of the dislocation line and for the average density of 
the dislocation loops: 

concrete expressions for c, and c, can be obtained from (2) 
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and (5) in the small-fluctuation approximation (see Ref. 7); at 
r>O 

We have presented here for cm and c, expressions obtained 
in first order in the fluctuations of the fields p,. We note that 
the main contribution to the integrals is made by integration 
with respect to momenta of the order of the reciprocal unit 
length of the lattice. This means that the main contribution 
to c, and cm is made by dislocation loops of size of the order 
of that of the lattice unit cell. Generally speaking, when ac- 
count is taken of the interaction of the dislocations, the spec- 
trum of the oscillations of the field q, is renormalized, but 
only at small momenta of the order of the reciprocal disloca- 
tion-interaction screening length (see below). Equations (6) 
are valid therefore also when account is taken of the disloca- 
tion interactions. An expression for the density of disloca- 
tions of finite length at r < 0 will be given later. The quantity 
J in the model Hamiltonian (2) is connected in simple fashion 
with the energy of the dislocation core per unit length: 

l=e -E /T .  (7) 

A transition with formation of a line of infinite length takes 
place at a temperature t of the order E (in the self-consistent- 
field theory, at zJ - 1 = 0, where z is the lattice coordination 
number). The partition function (1) describes a system of 
nonintersecting dislocation lines. Replacing 

(with corresponding coefficients a, b, and c) we can obtain an 
similar descriptions of a system with intersecting dislocation 
'lines and with dislocation lines whose Burgers vectors are 
not simply equal to one of the unit vectors of the lattice but 
are arbitrary combinations of them. In such cases the prob- 
lem still reduces to a partition function of the form (3) (the 
only possible difference is that owing to the cubic symmetry 
of the lattice the Hamiltonian H (q,,q, 7 1 in (3)  can contain a 
term of the form Z,p :. We shall not consider hereafter this 
possibility, i.e., we confine ourselves to the isotropic case. 
This enables us to use only two constants in the description 
of the lattice properties and to simplify many expressions. 

We recall that the partition function (1) describes a sys- 
tem of dislocations that do not interact via the lattice defor- 
mation. To describe the interaction we use the analogy 
between dislocation theory and magnetostatics. Thus, for 
example, the force acting on a dislocation is equal to8 

dF= [dl X (ob) 1 .  

here d 1 is the length element of a dislocation with a Burgers 
vector b and a i s  the stress tensor. Comparing this expression 

with the analogous one for the forced F = d 1XH acting on a 
current element, we see that for the three different orienta- 
tions b, (I = l, 2, 3) of the Burgers vector along the crystal 
axes we can introduce three different magnetic vectors HI 
such that HI  = (obi ) and the force acting on dislocation with 
a Burgers vector b, is simply d F, = d l x H i .  The condition 
for the equilibrium of a deformed body takes in elasticity 
theory the form Vmu,, = 0 or VH, = 0, i.e., H, can be rep- 
resented as the curl of a vector potential A,: H, = VXA,. 
Thus, the interaction of the dislocations with the medium 
can be taken into account by introducing for each field pi its 
own gauge vector potential" A, : 

The Hamiltonian (8) is invariant to the gauge transforma- 
tions 

A,+A,+ VOl, q l+qle ie i ,  

where Oi are arbitrary functions. 
Each of the Hamiltonian HI describes the interactions 

between a system of conserved currents, having a Burgers 
vector b,, and the lattice deformation. It remains now only 
to express the lattice-deformation energy in terms of the 
same quantities A,. 

The deformation energy of an isotropic body can be 
written in the form 

Herep is the shear modulus and v is the Poisson coefficient. 
~t is simplest to substitute in ( 9 ) ~ ~ ~  = E~"'v'A 7. 

In this case, however, it must also be noted that the 
condition that the tensor a, be symmetric imposes stringent 
restrictions on the fields A ,". To take these restrictions into 
account, we introduce in the Hamiltonian an additional 
term of the form 

We shall put A-0 in the final expressions. Account will thus 
be taken only of field configurations A for which the stress 
tensor is symmetric. We write down now the total Hamilton- 
ian of a system of interacting dislocations: 

To integrate over the fields A !,, we must fix a gauge condi- 
tion, which we write in the form VmA ," = 0. We shall need 
later the correlation functions of the fields A f,. To this end 
we express the terms of (10) that are quadratic in A in the 
form 

where the matrix X; lmm' takes in the momentum represen- 
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tation the form 

Here (p,) = (p ) is the mean value of the fields pl ; we shall 
show below that (p, )' is proportional to the average density 
of segments of infinite dislocation lines. We assume that all 
the (p,) are equal, i.e., that the high-temperature phase is 
isotropic. We find a matrixX(k)?;Te such that when account 
is taken of the gauge condition VmA 7 = 0 and of the current- 
conservation condition Vmj;" = 0 the following equation 
holds: 

m,m" ",', 
~,"(k)~-'(k)~:~'~(k)~,~.. j l . r  ( k ) = A l m ( k )  j?:' (k)6mm,61i.,. 

We consider first the case (p) = 0. After straightforward 
but cumbersome calculations we obtain 

This expression becomes simpler in the limit as A-+O. We 
note that X~I"J;" j?' is the interaction energy of the disloca- 
tion currents. This energy is not uniquely defined,' accurate 
to terms whose integral along a closed dislocation line is 
zero. In our notation these are the terms of (12) which con- 
tain factors of the form k 'a,, or k 'a,,,,. . Accurate to such 
terms, Eq. (12) coincides in the limit as A-4 with the expres- 
sion obtained by Peach and Koehler8 for the dislocation- 
interaction energy, 

where 

k'k" 
M,.' ( k )  = 2 p  zT[bm, (611v6.rr-61r,61r.)  

(in our notation). 
We consider now the case (p) #O. It can be easily seen 

that it suffices in this case to replace in (12) p ,  A, and P by 
p*(k ), A *(k ) and P *(k ), so that 

1/p* ( k )  = I / p + ( ~ p > ~ / k ~ ,  l/Y ( k )  = l / A + < q ~ O ~ / k ~ ,  

P* ( k )  /p* ( k )  =P/u.  
(14) 

The unclosed dislocation currents leads thus to screening of 

the interaction (the effective elasticity p* vanishes over 
scales of the order of r, = (p'12(p))-1). 

In the limit as A--4 we obtain ultimately 
k'k"klk1' 

X;;a" ( k )  
kk ( k ' + y ( q ~ > ~ )  

P -- Pk2 &I'm'7' & l " n ~ " ~  

2 (1-t.2P) k2+p ((p) 

(15) 
Let us estimate, using the expression for the correlation 

function of the fields, the fluctuation contribution from 
these fields. It follows from (10) that 

dH{((p>)/d(~p>=6z(cp>f36g((p)~+2(A~~~ ((p), (16) 

with 

where 

Thus, allowance for the long-wave fluctuations of the fields 
leads to a term of the form (p)3 in H [ (p ) ) . The transition 
from (p) = 0 to (p) $0 proceeds jumpwise, with formation 
of a finite density of unclosed dissociation lines. 

From (5),(16), and (17) we obtain for the density of the 
segments of unclosed distribution lines: 

i (U/9a)%t transition point T* = U2/Z'ig, 

We have confined ourselves here to the self-consistent-field 
approximation. The reasons is that, unlike in Eqs. (6), which 
are not greatly altered by allowance for the dislocation inter- 
actions, at 7 < T* the system is in a new state, the transition 
into which is due just to the dislocation interaction. The os- 
cillation spectrum now depends substantially on the interac- 
tion constant p. The corresponding calculations for the 
quantities c, and cm can be performed in first order in the 
fluctuations, but they are not meaningful because the phase 
with (p) #O is a liquid. 

We recall that in our problem the relation between the 
real physical temperature T and the "model temperature" J 
is such that small J and (p) #O correspond to the high-tem- 
perature phase of a physical system, and large Jand  (p) = 0 
to the low-temperature phase. Since the theory is gauge-in- 
variant at (p) #O, no unphysical Goldstone oscillations 
arise-transverse phonons in the low-temperature phase are 
outside the scope of our model. The point is that we repre- 
sent each i-th column of the stress tensor in the form of a curl 
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of a vector field. Generally speaking this column, being an 
arbitrary vector, can be represented as the sum ofacurl and a 
gradient 

17:=v,@k+~,,lY,.*1,'1. 

Allowance for the phonons in our theory would corre- 
spond to introduction of potentials @ and to a correspond- 
ing averaging over them. This would lead to a certain renor- 
malization of the parameters of the Hamiltonian (10). 

From (16) and (17) we obtain the latent heat of melting 
at the transition point 

The region of validity of the obtained relations can be 
found from the condition that the value of T* at which the 
transition takes place is within the region of validity of the 
self-consistent-field theory: 

for for the problem in the lattice formulation: g- 1 and 
c3 = 1. The condition (20) is simply the condition that the 
shear modulus ,u be large. Since we used the dimensionless 
quantity p = p*/T and T- E, we obtain 

p*>E. 

In the opposite case, when self-consistent-field esti- 
mates show that the transition takes place in the region of the 
strong fluctuations, the situation is unclear. A similar ques- 
tion of the form of the transition in the strong-fluctuation 

region in a simpler model with one complex field q7 and with 
one gauge field A, which describes type-I1 superconductors, 
has remained open for a long time. Recently Dasgupta and 
Halperin" have shown that this is a second-order transition. 
Allowance for the fluctuations in our model can therefore 
change the order of the transition from first to second. 

The author is deeply grateful to I. E. Dzyaloshinskii 
and M. V. Feigel'man for valuable advice and for a discus- 
sion of the work. 

"A detailed substantiation of the introduction of a vector potential to 
describe the interaction between currents is contained in Appendix 2 of 
Ref. 9. 
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