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The surface impedance of a metallic plate as a function of a magnetic field perpendicular to the 
plate is investigated theoretically and experimentally. The integro-differential equation for the rf 
field distribution in the plate is solved under the assumption that electron reflection from the 
surface can be described by an arbitrary Fuchs specular coefficient p. A solution is obtained for 
magnetic field values greatly exceeding the doppleron threshold field. The plate impedance is 
calculated on the basis of the obtained field distribution. The influence of specularly reflected 
electrons on the shape of the impedance oscillations is studied. It is shown that analysis of the 
shapes of the doppleron oscillations and of the Gantmakher-Kaner oscillations can yield the 
value of p for resonant carriers. A method is developed for the analysis of the shape of the 
experimentally recorded oscillations. Tungsten-plate-impedance measurements needed to deter- 
mine the specularity coefficient of resonant electrons and their mean free paths are performed. 
The values of the specularity coefficients are found. The behavior of p when the magnetic field 
deviates from normal to the surface is studied experimentally. 

PACS numbers: 75.70.D~ 

A considerable number of studies of the character of 
electron reflection from a metal surface have been recently 
reported. Experimental data indicating that the electron re- 
flection is not completely diffuse were obtained. TS;' pro- 
posed a method for measuring the specularity parameter p 
by focusing electron beams in a transverse magnetic field. 
Another method of determining p is based on measurement 
of the anharmonicity of the Sondheimer  oscillation^.^ We 
deemed it attracting to use for the same purpose the oscilla- 
tions of the rf impedance of a plate in a perpendicular mag- 
netic field H. The difficulty lay in the extreme difficulty of 
calculating the plate impedance for nonspecular electron re- 
flection. A rigorous theory of radiowave propagation in a 
metal for the case p = 0 was developed in Ref. 3 and is valid 
in a wide range of magnetic field. In the present paper ($ 1) we 
derive general expressions for the field distribution and the 
plate impedance in strong magnetic fields (H /H, )3) 1 (H, is 
the doppleron threshold field) at arbitrary values of the pa- 
rameter p. The impedance behavior in strong field is deter- 
mined mainly by the resonant carriers and is independent of 
the details of the Fermi surface. This circumstance, as well as 
the simplicity of the expressions obtained, permits a quanti- 
tative comparison of the theory with experiment. The final 
results of the theory are given for symmetric and antisymme- 
tric excitations of the plate. Analysis of the waveform of the 
impedance oscillations is the subject of $2. The waveform 
distortion in both doppleron oscillations and Ganmakher- 
Kanner oscillations (GKO) is analyzed in detail. The GKO 
are analyzed using as an example a metal with a corrugated- 
cylinder Fermi surface. Formulas are obtained for the specu- 
larity coefficient in terms of experimentally observable 
quantities. The transition from impedance to transverse 
magnetoresistance is demonstrated at the end of the section 
for linear polarization and for symmetric excitation. In $3 
are described the measurement technique and the procedure 
for the analysis of the impedance-oscillation waveform. The 

use of a modulation procedure made possible a Fourier anal- 
ysis of the oscillations directly in the course of the measure- 
ments. Separation and recording of the first and then the 
second harmonic of the signal as functions of the magnetic 
field have made it possible to simplify considerably and in- 
crease the accuracy of the determined degree of anharmoni- 
city of the oscillations. 

The results of the experimental study of the impedance 
and of the oscillation waveform are present in $4 for tung- 
sten and cadmium plates. The measured anharmonicity of 
the oscillations when the magnetic field is inclined away 
from the normal to the surface are also cited there. In $5 we 
obtain the specularity coefficient, p from the results of mea- 
surements of different samples and from the equations of the 
theory developed. With tungsten and cadmium as examples, 
we analyze the advantages and difficulties of the proposed 
method of determining the coefficient p for a resonant group 
of carriers in actual metals. The cause of the decrease of the 
effective value of p when the magnetic field is inclined are 
discussed. It is shown at the end of the section that the de- 
pendence of the amplitude of the d 2R /dH * oscillations on p 
is complicated and is not the same in different magnetic 
fields. 

81. FIELD DISTRIBUTION AND PLATE IMPEDANCE 

1. The distribution of a field 8?, (2) that is homogeneous 
in the xy plane is described by Maxwell's equations 

where w is the electromagnetic-field frequency and ja is the 
current density in the metal. In an infinite metal the current 
is 

0 

j .  ( 2 )  = J L.(z-z')& ( i ) d z J ,  (2) 

where uao(z) is the metal nonlocal-conductivity tensor. We 
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shall omit hereafter the tensor indices and introduce the no- 
tation 

T ( z )  = ( 4 n i w l c 2 )  o ( z )  . (3 )  

For a metal plate bounded by two surfaces z = 0 and z = d ,  
the expression for the current takes the form 

where p is the Fuchs phenomenological parameter that de- 
scribes electron reflection from a metal surface. It is assumed 
here that, except for the plate surfaces, the electron trajec- 
tory has no points at which the electron longitudinal velocity 
u, reverses sign. Each of the terms in the sums of (4) is the 
contribution of electrons that had experienced a number of 
collisions, from each of the surfaces, as they moved from 
point z' to point z. To simplify (4),  we made use of the fact 
that a(z )  is an even function. 

Obviously, a general solution of Eqs. ( 1 )  and (4)  can be 
represented as a linear superposition of two solutions, one 
symmetric and the other asymmetric with respect to the 
midplane of the plate z = d /2. Both solutions are found in 
similar manner. We solve therefore the problem for antisym- 
metric excitation, and present only the final result for the 
symmetric one. 

Using the fact that 27, (z ')  = - $, (d  - z'), we change 
the variable in the integral that contains the second sum in 
(4). The equation for the field distribution in the plate takes 
as a result the form 

d m 

- + E ( - p )  . I T  ( 2 - z f - n d ) b .  ( z ' )  dnT=O. (5)  
dz" 

2. Following the basic idea of Ref. 3, we attempt to rep- 
resent $, ( z )  as a difference of two expressions, each contain- 
ing only field components propagating in one definite direc- 
tion of the z axis. We rewrite first Eq. (S), defined on the 
segment [O,d 1, in the form 

d2z - + J T ( 2 - z l ) d  ( 2 ' )  dz'=0, 0 4 z C d .  
dz2  

(6)  
- rn 

where 

8 ( z )  = ( - p )  lnl&,(z-nd), nd<z< ( n + l )  d ,  

We introduce the function j(z) defined on the right- 
hand half of the straight line by the equation 

and on the left side by some external condition. It is easy to 
verify that the combination 

e , ( z )  =ep ( z )  -ep ( d - z )  (9)  

where 

satisfies on the segment [O,d ] the equation 
m 

d2ea - + J T ( z - z J )  e. ( 2 ' )  dzf=O, O G z C d .  
d z 2  ( 1 1 )  

- m 

Equation ( 1  1 )  coincides with (6)  if the function f (z)  is addi- 
tional defined on the left-hand line so that the function e, (a)  
has the property (7). Using the resultant condition 

m 

f ( z ) = p f  ( - z )  +(I--p2) ( - - p ) h f ( ( k + l ) d - z ) ,  z c 0  (12) 
k-0 

and changing the variable in some of the integral, we rewrite 
(8)  in the form 

After changing the integration variables, Eq. (13) contains 
only the values of the function f ( z )  on the right-hand half- 
line, so that it can be arbitrarily redefined on the left-hand 
half, say, f ( z  < 0 )  = 0. 

Thus, relations (9)-(10) together with the solution of (13) 
determine the field distribution in an asymmetrically excited 
plate of thickness d. 

As d+oo the right-hand side of (13) tends to zero and 
the equation coincides with that for the field distribution in a 
semi-infinite metal4 (in this case the second term of (9) is zero 
and only the term with k = 0 remains in the sum (10)). In the 
case of diffuse reflection ( p  = 0 but d is finite) Eq. (13) coin- 
cides with the basic Eq. (26) of Ref. 3, and the sum ( l o )  again 
consists only of one term. Finally, at p = 1 the right-hand 
side of (13) vanishes, the solution is solved by Fourier trans- 
formation, and the sum (10) is easily calculated. The resul- 
tant expression coincides with the result of Ref. 5. 

The equations for the field distribution under symmet- 
ric excitation are 

e8  ( z )  =epS ( 2 )  +ep"d-z) , 

3. Consider a metal plate placed perpendicular to a 
magnetic field H under conditions when the magnitude of H 
and the frequency w of the exciting electromagnetic field 
satisfy the inequalities o ( v ( w , ,  where w, is the cyclotron 
frequency of the carriers and v is their collision frequency. 
Let the symmetry axis of the Fermi surface of the electrons 
be likewise directed normal to the plate, and let the electron 
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displacement during the cyclotron period, as a function of 
the longitudinal momentum, have one maximum u. If, how- 
ever, other types of carrier are present, their displacement is 
assumed to be small compared with u and their contribution 
to conductivity will be described in the local approximation. 

In the situation described the system (1) and (4) breaks 
up into two equations for the circular polarizations 
g + = $, + ig,. We obtain below equations for the "mi- 
nus" circular polarization, in which the field rotates in the 
same direction as the electrons, and will cite the final result 
for the "plus" polarization. Next, we use the dimensionless 
coordinate f = 2vz/u and the dimensionless wave vector 
q = ku/2n-, where k is the wave vector. In these variables, 
the Fourier component of the nonlocal conductivity a(q) has 
in the complex q plane two branch points q = + ( - 1 + iy), 
the cuts from which we draw respectively to f m; here 
y = Y/w, .  

The dispersion equation that characterizes the eigen- 
modes in the metal will be written in the form 

where 

D ( q )  =qZ-K ( q )  , K ( q )  = ~ H o ( q )  lnec, ~ = o n e u z / n c H ,  

(18) 
and n is the electron density. In strong magnetic fields, 
where ((1, one of the roots of (17), q,, is small, and the 
second, doppleron root, is close to - 1. The doppleron 
threshold H, ,  i.e., the lower limit of the magnetic field re- 
gion, where the root 9, remains almost real, corresponds to 
6 = l L ,  where lL is a numerical constant of the order of 
unity and depends on the model. Using this constant, we can 
represent l in the form 6 = cL (H,/H )3. 

4. Using the dimensionless variables, we rewrite (13) in 
the form 

- 
=- J K ( s +  S ' )  [peP(Gf)  + e P ( b f + L )  ldbr,  (19) 

0 

where L = 2n-d /u. To solve (19) in the strong-field region 
<( 1 we need the solution of an equation similar to (19) but 
with a zero right-hand side. It comprises the field distribu- 
tion in semi-infinite metal at p = 0, and takes according to 
Eqs. (3), (4), (19), and (21) of Ref. 3 the form 

where C- is the contour drawn counterclockwise around the 
left-hand cut of the q plane, and 

pleron, and Gantmakher-Kaner component (GKC). The 
wave vector corresponding to the asymptote of the GKC at 
6% 1 is equal to - 1. For all models but one, the GKC ampli- 
tude is proportional to l ,  and b, = 9 (5 ) for a Fermi surface in 
the form of a parabolic lens, b, = - 6 /2, and the GKC is 
identically equal to zero. 

To solve (19) we use the fact that the short-wave-compo- 
nent amplitudes in strong fields (c(1) have small ampli- 
tudes. The field distribution in the plate consists in practice 
of the same components, but with different coefficients. The 
short-wave component amplitudes, however, remain small. 
It suffices therefore to retain only the long-wave component 
in the integral in the right-hand side of (19). The point is that 
the function K in this integral depends on the sum f + f ' and 
the oscillations of the various terms in the integrand are of 
the same order. On the other hand, in the integral of the left- 
hand side of (19) no such simplification is possible. Here the 
term proportional to the long-wave component oscillates ra- 
pidly, as before, and the oscillations of the short-wave com- 
ponents and of the conductivity K (f - 5 ') cancel out in that 
part ofthe integral where f ' < f .  As a result, the contribution 
of all the components may turn out to be of the same order. 

We seek a solution of (19) in the form 

f ( b )  = (l+peiglL) e iq!6+U(%) ,  (22) 

where U (c ) constitutes the short-wave components. The 
right-hand side of (19) takes then the form 

0. 

- (p+eifiL) 5 K ( c + c f )  eiqlt' dc'. (23) 
0 

We use now some results of Ref. 3. Equation (26) of that 
reference takes in strong field the form (19) with a right-hand 
side given by .. 

-eiqlLl K  ( t + t 1 )  eiq~K' d c l .  
0 

The solution of this equation, which satisfies the unity 
boundary condition, can be transformed for strong fields 
[using (46) and (60) of Ref. 31 into 

where the first term is the solution of the homogeneous equa- 
tion and the second is a particular solution of the inhomo- 
geneous one. The total solution of (19) with right-hand side 
(23) can therefore be written in the form 

1 - (q-q,)eiqc 
f ( S ) = A ~ O ( G ) - ( P + ~ ' ~ ~ ~ ) ~  J dq. (24) 

- m D ( q )  

Calculating the factor ofexp(iq,f )in this expression [see (20)] 
and comparing it with the factor of exp(iq,f ) in (22), we ob- 
tain A = 1 + p exp(iq,L ). We can now write the solution of 
(19): 

The field e,  consists of three components: long-wave, dop- - b q l ( l S p )  ( I f  eiq&)) .  (25) 
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Substituting it in (10) and (9) and calculating the sums of the 
series, we obtain ultimately an expression for the magnetic- 
field distribution in the plate; this expression is valid in 
strong magnetic fields ({<I), 

5. We calculate now the plate impedance 

Z= (8nqo/c) (ie, ( 0 )  /e.' ( 0 )  ) , (27) 

where q, = ou/2?rc, and the prime denotes differentiation 
with respect to c. Substituting (26) in (27), we represent the 
expression for Z in the form 

where 

2,-l=a [q,t,-'-i (eO1-iq,) ( I - p ) ]  , a= (c2/4uu) ,  (29) 

and 

contains the oscillations with short period in terms of the 
magnetic field. To derive (28)-(32) we used Eq. (20) as well as 
the inequality {<I. In addition, we took into account the 
inequality L)1 and its corollaries. The last inequality is a 
necessary condition for observing oscillations in experiment. 
Finally, with the aid of inequality 641  we can write the 
expression (28) for the impedance in the form of a sum of 
parts that vary rapidly and slowly with the magnetic field: 

We emphasize that in the derivation of (33) we did not use the 
smallness of the rapidly oscillating part. An expression for 
the smooth part of the impedance at arbitrary p, similar to 
(29), can was derived first in Ref. 6 in the case of small oscilla- 
tions for a particular model of the "corrugated cylinder" 
type. 

For the paraboloidal model, the result (29)-(33) coin- 
cides with the result that follows from (29) of Ref. 7. For 
p = 1 and for a Fermi surface of the corrugated cylinder 
type, we obtain the expressions of Ref. 8. If the oscillations 
constitute a small fraction of the impedance, we can discard 
the second term of the dominator in (33). In this case, at 
p = 0 and Iq, I < 1, Eqs. (29)-(33) go over into expressions (61) 
and (62) of Ref. 3. 

To obtain expressions similar to (29)-(33), which deter- 
mine the impedance of a metal place for "plus" polarization, 
it is necessary to replace q, in (29) and (3 1) by the correspond- 
ing root q,+ of the dispersion equation D+(q) = 0, and re- 
place a and S by a + and S,, where 

1 qdq eiqL s+=-J-- 
2nz D+ (q )  l+pe'qL ' 

c+ 

the contour C+ encircles counterclockwise the cut drawn 
from the point 1 + iy to a. It is easy to show in the general 
case that at {< 1 the second term of (29) is independent of the 
polarization and is proportional to 6, while S coincides 
with the second term of (32) (the asterisk denotes the com- 
plex conjugate). In addition, qr and q, are equal for a com- 
pensated metal in a strong fields, therefore also Z,+ = Z,. 

Finally, to obtain general expressions for the impedance 
of a symmetrically excited plate it is necessary to replace 
t ,- I by t ,  in (29), (30), and (34), and reverse the common sign 
and the sign of p in the denominators of expressions (32) and 
(35) for S + . When these replacements are made, expressions 
(28) and (33) for the impedance remain valid. 

52. WAVEFORM OF IMPEDANCE OSCILLATIONS 

The specularity coefficient is usually not too close to 
unity, and it can be assumed that the inequality Iq,(g 1 -pis 
valid. This simplifies noticeably the expression for the im- 
pedance, which takes the form 

The contribution of the doppleron pole was neglected in 
(37). For the parabolic-lens model it is important and equals 
(1 -p){/2. It is just Eqs. (36), (37), and (32), (35) which we 
shall analyze below for the case of antisymmetric excitation. 
These equations were deduced in Ref. 9 from simple physical 
considerations. 

1. If a field region exists where the first term of (32) 
greatly exceeds the second, the rapidly oscillating part of the 
impedance takes in this region the quite simple form 

AZs AR-iAX= (I -p )  2aZpZboe-qg"L exp (iq,'L) 
l+h exp (iq,'L) ' 

(38) 

where 

and q; = Re 9, and q; = Im q, are the real and imaginary 
part of the dimensionless doppleron wave vector. It follows 
from (38) that the oscillations of the surface resistance 
R = Re Z and of the reactance X = - Im Z are not sinusoi- 
dal and their distortion is characterized by the parameter 
7 = / A  1 .  The distortion is due to two factors. The less inter- 
esting waveform distortion is due to the fact that even in the 
case of short-wave reflection of the electrons the short-wave 
components are multiply reflected. The influence of this fac- 
tor depends essentially on the magnetic field strength. More 
interesting is the distortion due to multiple reflections of the 
short-wave components and caused by specularly reflected 
electrons. 

The total swing of the oscillations in one period is 

and is also expressed in terms of the parameter 7 :  
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We can therefore obtain from (39) and (41), recognizing that 
b,, < 0, the value 

where R, = Re Z, ,X, = - Im Z,. At 5 4 1  we have 
q Y L 4  /I (I = u/2?ry). 

We emphasize that to determine p exp( - q;L) we 
need only experimental plots of R and X (and possibly of 
their derivatives), but there is no need whatever to know the 
singularities of the nonlocal conductivity of the metal. To 
determine the doppleron damping length q; we need plots of 
the oscillations for two samples of unequal thickness but cut 
from the same ingot and having equal surface quality. As a 
result we can determine the specularity coefficient p. 
Among the advantages of this method should be also the fact 
that it is contactless as well as that it can be used to determine 
quite small values of p. 

2. We have assumed above that the specularity coeffi- 
cient p is the same for all the electrons. Let us see how (29)- 
(33) change when the coefficient p depends on the longitudi- 
nal electron velocity. The short-wave components in strong 
fields (64 1; L> I), are due to resonant electrons with large 
longitudinal velocity. Therefore in (30)-(33) the parameter 
p, which is not contained in Z,, pertains to resonant elec- 
trons. 

The second term in Eq. (29) or (37) for the smooth part 
of the impedance is determined by all the electrons. There- 
fore the quantity p in these formulas has the meaning of a 
certain mean value. In addition, to calculate Zp it is neces- 
sary to know the shape of the entire Fermi surface. It is for 
these two reasons that we have strived to express the specu- 
larity coefficient p for the resonant electrons in terms of the 
experimental values of the smooth part of the impedance [see 
(4211. 

Finally, a remark concerning uncompensated metals in 
which helicons are present. It follows from (37) that if q, is 
the wave vector of a helicon, the waveform of the helicon 
oscillations also depends on the specularity coefficient. For 
the reasons indicated above, however, it is impossible to de- 
termine from these oscillations the value of p that pertains to 
any definite electrons. 

3. In the "plus" polarization there are no doppleron 
oscillations. In the "minus" polarization in the strongest 
fields, the doppleron oscillations can be neglected and only 
the Gantmakher-Kaner oscillations remain. For these oscil- 
lations, which are due to the function 6 ,  (35) [or to the sec- 
ond terms in (32)], it is impossible to write down a simple 
formula similar to (38). We therefore expand the rapidly os- 
cillating part of the impedance in each period in a Fourier 
series and retain only the first two terms: 

where we have introduced the notation 

Further analysis calls for knowledge of the conductivity sin- 
gularities. It was shown in Ref. 10 that in a geometry where 
the [loo] axis is parallel to the magnetic field and to the 
normal to the plate surface, tungsten is sufficiently well de- 
scribed with the aid of a corrugated-Fermi-surface model. 
We shall discuss this model in greater detail. 

The function (44) was calculated in this model in Ref. 
1 1. It can be represented, if the inequalities 64 1 and L> 1 are 
satisfied, in the form 

where 

and I = u/2n-y is the mean free path of the resonant elec- 
trons. We calculate now the modulus of the amplitude ratio 
of the second and first harmonics 

The quantities 7 and arg (aZ, ) = - arctan(X, /R, ) are ob- 
tained from experiment. Plots ofthe functions M (x) and @ (x) 

M(x) =lq(22)/2"cp(x) I ,  
cD (x) =2 arg cp+ (x) -arg cp, (22) +n/4, 

are shown in Fig. 1. Finally, the quantity laZp 
(1 -p)'e,, (L ) I  is equal to the ratio of the first-harmonic 
amplitude to (R = X;)"'. Thus, relation (47) makes it pos- 
sible to calculate p exp( - d /I ) and, in final analysis, the spe- 
cularity coefficient p. 

4. In the case of linear polarization and symmetric exci- 
tation, we can go to the limit as w--+O. This situation corre- 
sponds to measurement of the transverse magnetoresistance 
and of the Sondheimer oscillations. The plate resistivity p is 
connected with the impedances Z"+ - by the relation 
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where the superscript s labels quantities pertaining to sym- 
metric excitation. Using expressions analogous to (28)-(32), 
(34), and (35) and carrying out identity transformations, we 
obtain 

where p, is the smooth part of the plate magnetoresistance. 
The second term in (49) describes Sondheimer oscillations. 
They have not only a fundamental but also multiple harmon- 
ics. To find the ratio g of the amplitude of the second har- 
monic of l/p to the first, it suffices to know, as can be seen 
from the definition (35) of 8, the dependence, on the thick- 
ness d, of the function 

1 
F ( d )  = lim - 1  eGK(d) I e d / [ .  

0-0 0 
(50) 

If the Fermi surface is such that the largest displacement is 
experienced by the electrons of the elliptic limiting point, 
thenF cr d -'andg = (p/4) exp( - d /I )(Ref. 12). Forapara- 
bolic limiting point," F (d ) m d - ' andg is twice as large. For 
the corrugated-cylinder model, F ( d  ) a d - I t 2  and this ratio 
turns out to be (p/2If2) exp( - d /I ). A special case is that of a 
parabolic lens, for which e,, = 0 and the function o-'8 is 
determined by the first tgerm of (32). In this case 
g = p e x p ( - d / I ) .  

It is customary to measure in the experiment p rather 
than l/p. For the corrugated-cylinder model the ratio of the 
amplitude p, of the second harmonic to that of the first p ,  is 
given by the expression 

and the ratio p,/p, is proportional to L -'I2. The first term 
in the round brackets corresponds to the result of Ref. 2, and 
the corrections were written by us because they can be appre- 
ciable at small p and at not too large L. For elliptical and 
parabolic limiting points corrections of this kind are imma- 
terial, for in these cases the ratio p,/p, is proportional to 
L -2  and L - ', respectively. For the parabolic-lens model the 
ratio pl/po does not contain the small parameter 1/L and 
the ratio p2/p, must be calculated accurately: 

93. MEASUREMENT TECHNIQUE AND REDUCTION OF 
RESULTS 

We investigated in the experiment the impedance of 
tungsten and cadmium plates as a function of the constant 
magnetic field produced by an electromagnet or by a super- 
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conducting solenoid. The tungsten plates were 0.58, 1.3, and 
2.89 mm thick and were cut from a single-crystal ingot with 
resistivity ratio p,, , /p4,, zz 50 000. One sample, 0.43 
mm thick, was cut from an ingot having a resistivity ratio 
35 000. The plate surfaces were mechanically ground and 
chemically polished. These tungsten samples were used ear- 
lier in Ref. 10. The cadmium samples, 0.4 and 1.86 mm 
thick, were cut by the electric-spark method from a single- 
crystal stock piece with a resistivity ratio 50 000 and were 
chemically polished. The normal to the plane coincided 
within lo with the directions of the [loo] and [0001] axes of 
tungsten and cadmium, respectively. 

In most experiments the magnetic field was directed 
along the [loo] axis for tungsten and along [0001] for cad- 
mium. The magnetic-field orientation was established by the 
symmetry of the angular dependence of the period and am- 
plitude of the oscillations, accurate to 10'. In tungsten we 
investigated impedance oscillations due to the Doppler- 
shifted cyclotron resonance (DSCR) of the octahedron 
holes,', and in cadmium the oscillations of the electron dop- 
pleron.I4 The measurements were carried out with an auto- 
dyne and a bridge15 in the frequency interval 0.2-1.0 MHz at 
temperatures 1.3-4.2 K. 

In the experiments we recorded the real and imaginary 
parts of the plate impedance in a circularly polarized rf field. 
The criterion of the accuracy of the polarization setting was 
the ratio of the oscillation amplitudes in the two circular 
polarizations near the doppleron threshold field, as well as 
the smoothness and monotonicity of the GKO envelope (in 
the case of tungsten) in magnetic field below the field H, at 
which R, ( H  ) reaches a maximum. The accuracy in the set- 
ting of the circular polarization did not exceed 2-3%. 

2. The main purpose of the experiment was to determine 
the degree the impedance-oscillations anharmonicity, which 
is characterized by the parameter 7, and to calculate subse- 
quently the specularity coefficient p. 

In the case when the impedance oscillations are due to a 
doppleron, the value of 7 can be determined by using the 
construction of Fig. 2, which shows a fragment of the R (H) 
plot for tungsten. The envelopes touch the oscillation curve 
at the points G, H, and K. The points A, B, C, D, E, and F 
have the following properties: AB = BC, CD = DE, and 
BD = DF. We introduce the notation 

FIG. 2. Plot of R (H) for tungsten sample 0.58 mm thick at T = 4.2 K and 
w / 2 n  = 490 kHz. Calculation using Eqs. (53) and (54) yields q,  = 0.13. 
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It can be shown that 7 is connected with y by the relation 

r s E y -  ( y Z - l ) l ~ ~ ' l ~ .  (54) 

At small 7 this method has low accuracy. In addition, it 
cannot be used to analyze the anharmonicity of the GKO. In 
those cases we expanded the experimentally obtained func- 
tion AR (or AX ) in a Fourier series over one period, since in 
all cases the ratio second and first harmonics is equal to 7. In 
practice it is much more convenient and accurate to do this 
by using the plots of the first or second derivative of the 
surface resistance (or reactance) with respect to the magnetic 
field. To record the derivaties of R and X we used a modula- 
tion technique. At low modulation amplitude h (h4AH, 
where AH is the period of the oscillations) the recorded sig- 
nals at the modulation frequency and at double this frequen- 
cy are proportional respectively to the derivatives d Z  /dH 
and d '2 /dH '. Expanding the derivatives in Fourier series, 
we find the ratio of the amplitudes of the second and first 
derivative. This ratio is equal to 27 for d Z  /dH and 47 for 
d 2Z /dH 2. 

The impedance oscillations are not quite periodic: their 
amplitude, and in the case of the doppleron also the period, 
depends on the magnetic field. We have therefore introduced 
corrections to allow for the changes of these parameters. In 
all cases the correction to 7, due to the nonperiodicity, did 
not exceed 10%. 

3. The modulation technique offers many more possibi- 
lities than merely of recording the derivatives of R and Y. By 
choosing the modulation amplitude it is possible to suppress 
oscillations of a definite period AH,. Indeed, for a harmonic 
function V (H ) = V, cos(2rH /AH) the signal V, recorded at 
the modulation frequency has an amplitude V, J,(x), and V2 
at double the frequency has an amplitude 

170~2 ( x ) ,  (55) 

where Jk is a Bessel function and x = 2rh /AH. Choosing h 
such that x for AH = AH, coincides with the zero x, of the 
corresponding Bessel function, we cause the recorded signal 

FIG. 3. Plots of oscillations in minus polarization for a tungsten plate with 
d = 0.43 mm at T = 4.2 K, o /2a = 260 kHz. 
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FIG. 4. Oscillations in a tungsten plate with d = 0.58 mm in plus polariza- 
tion; T = 4.2 K, o/2a = 490 kHz. Curves 1 and 2 were obtained by the 
modulation method. Curve 3-plot of R (H) in arbitrary unit, R (H ) reck- 
oned from the abscissa axis. 

of the given period to vanish. We used this procedure for two 
purposes. 

First, to suppress the impedance oscillations due to 
DSCR of another group of carriers. This is illustrated in Fig. 
3, which shows plots of the signal at double the modulation 
frequency for a tungsten plate at two values of h. Curve 1 
correspond to small h and represents in fact the derivative 
d 'R-/dH '. It reveals, besides the oscillations due to the 
DSCR of the octahedron hole, also oscillations with a period 
smaller by a factor 3.8. These oscillations have a noticeable 
amplitude in the field region H- 2HL. Curve 2 corresponds 
to the value of h at which there are no oscillations with the 
smaller period. In this case the amplitude ratio of the second 
and first harmonics, obtained from curve 2, is not equal to 
47. In accord with (55), to calculate 7 the ratio of the har- 
monics must be multiplied by J2(x)/J,(2x), where x = x,/ 
3.8. 

Second, the determination of the parameter 7 can be 
greatly simplified in the case when the oscillations of Z are 
due to one carrier group, and their period and amplitude 
depend little on the magnetic field. By choosing the value of 
h we can suppress the first harmonic. The registered signal is 
due in this case predominantly to the second harmonic. The 
parameter 7 is determined by the ratio 

where A, is the amplitude of the second harmonic from the 
first plot, and A, the amplitude of the first harmonic from 
the second plot. The measurements were made mainly at 
double the modulation frequency, for in this case there is 
practically no monotonic variation of the signal with the 
magnetic field. The use of the described method is illustrated 
in Fig. 4. It shows plots of the Doppler oscillations in tung- 
sten in fields in which the oscillation amplitude is a maxi- 
mum and the GKO amplitude is small. Curve 1 represents 
mainly the first harmonic, and curve 2 the second. Curve 2 is 
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FIG. 5. Plot of 77(9 ) for tungsten sample 0.58 mm thick, obtained from 
measurements at T = 4.2 K. w/2?r = 490 kHz. 

obtained at a gain 30 times larger than curve 1. 
The described method makes it possible to determine 

simply and reliably the parameter r ] .  Its effective use calls for 
high monochromaticity and stability of the modulation 
field. In our experiments the coefficients of the harmonics 
and the instability of this field did not exceed lop4. 

94. MEASUREMENT RESULTS 

For each of the investigated tungsten samples, the val- 
ues of q determined by different methods were close. Table I 
lists the value of r ]  obtained from the doppleron oscillations 
(7, ) and from the GKO (vGKO ), for samples having different 
thicknesses and different electron mean free paths. The val- 
ues of r ] ,  were obtained from plots in the field interval 
1.9 < H /HL < 2.5, in which the contribution of the GKO to 
Z +  could be neglected. 

The oscillation anharmonicity decreases markedly 
when the magnetic field is inclined away from the [loo] axis. 
The dependence of r ]  on the angle 9 is shown in Fig. 5. The 
light circles, which pertain to doppleron oscillations, were 
obtained in the field interval (2.3-2.5)HL. The dark circles 
were obtained for the GKO in fields (5-5.3)HL. 

For cadmium we investigated the doppleron oscilla- 
tions due to DSCR of the lentil electrons at H11[0001]. The 
Gantmakher-Kanner oscillations due to the same group of 
carriers have a much smaller amplitude. In contrast to the 
situation in tungsten, the amplitude and period of the dop- 

FIG. 6. Oscillations of electron dopplerond ' R  _/dH in a cadmium plate; 
d = 0.4 mm, T = 1.6 K, o / 2 v  = 260 kHz. 

FIG. 7. Anharmonicity parameter of doppleron oscillations in cadmium 
us. the magnetic field. Curve 1-from measurements for a plate with 
d = 1.86 mm at T = 1.6 K, o / 2 s  = 300 kHz; curve 2-reduction of re- 
sults in accord with Eqs. (59) and (60). 

pleron oscillations in cadmium depend strongly on the mag- 
netic field. Under these conditions, the method of suppress- 
ing the first harmonic is not very effective. The value of r] 

was therefore determined by Fourier analysis of the plots of 
dR /dHand d 'R /dH '. A striking example of the oscillation 
anharmonicity in cadmium is shown in Fig. 6. The measure- 
ments of r] were performed in magnetic fields H < 2HL, inas- 
much as in stronger fields the oscillation amplitude and the 
value of r ]  decrease rapidly and the accuracy of 7 is de- 
creased. The dependence of r] on H i s  shown in Fig. 7 (curve 
1). 

To determine p exp( - dl ) from (42) and (47) we need, 
besides r] ,  the values of the smooth parts of the surface resis- 
tance R, and of the reactance X, , and also the total swing r 
of the oscillations. We therefore measured, besides the plots 
obtained by the modulation technique, the plots ofR (H ) and 
X (H ). AfragmentoftheR (H )plot is showninFig. 4(curve3). 

5. DISCUSSION 

1. Equations (42) and (47) contain the mean free path I of 
the resonant carriers. According to Ref. 10, the value of I in 
tungsten samples with resistivity ratio 50 000 is close to 1 
mm at T = 4.2 K. For the sample with the resistivity ratio 
35 000 we assumed I = 0.7 mm. The values of p calculated 
from the doppleron oscillations are given in the fourth col- 
umn of Table I, and those obtained from the GKO in fifth 
column. (The result for the sample with d = 0.43 mm were 
published earlier.9) Since the plates were produced by the 
same technology, it is natural to expect for them close values 
of p. The fact that the obtained values of p did indeed turn 
out to be close justifies the choice of I (a change of I by only 
20% leads to a large scatter of the values of p). 

The determination of p from the GKO in a wide range 
of magnetic fields reveals that p has a tendency to decrease 
with increasing H. In the fifth column of Table I are shown 

TABLE I. 
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the values of p obtained in the field range where the GKO AeiarL 
are maximal. Since this region corresponds to fields stronger A&=-Zo 

I f  hoe'q2'L ' (57) 
than those at which the doppleron oscillations are maximal, where 
the values of p in the fifth columns are somewhat smaller 
than in the fourth. The parameter r] for the KG0 is smaller A =aboZD' (9,) Zoe-q2"L, ho=AZ, 

than for doppleron oscillations. In addition the GKO in Z=l+ieo'(0) /2q, ,  (58) 
thick samples have small amplitudes. We have therefore not 
attempted to determine the specularity coefficient of thick 
samples from the GKO. We emphasize finally once more 
that to determine p from the GKO we must know the singu- 
larities of the nonlocal conductivity. 

2. It can be seen from Fig. 5 that the anharmonicities of 
doppleron oscillations and of the GKO decrease when the 
magnetic field is inclined. The reason is that in the case of 
specular reflection in an inclined field the carrier longitudi- 
nal velocity changes. Therefore some of the specularly re- 
flected electrons cease to be resonant. As a result, the effec- 
tive specularity coefficient decreases. The behavior of the 
curves of Fig. 5 is direct experimental proof of this effect. We 
note that the possibility that p depends on the field inclina- 
tion angle was discussed in an elucidation16 of the nature of 
the impedance oscillations of zinc. It was noted earlier1' that 
the amplitudes of the multiple harmonics in the Sondheimer 
effect should also decrease when the vector H is inclined 
away from the normal to the surface. 

3. The experiments with cadmium illustrate the diffi- 
culty of applying to the proposed method of determining p. 
The point is that the doppleron oscillations are observed in 
cadmium in the field region where the inequality {(I is not 
satisfied. The theory developed above is strictly speaking not 
applicable in this case. We shall nonetheless attempt to ob- 
tain some estimates. A theory of the impedance of a plate 
with diffusely reflecting surfaces in weak fields was devel- 
oped in Ref. 3. In the case when the GKO can be neglected, 
we can obtain from Eqs. (44), (45), (52), (53), and (55) of Ref. 3 
an expression similar to (38) for the oscillating part of the 
impedance: 

FIG. 8. Calculated envelopes of the derivative d 'R  /dH of doppleron 
oscillations. Curve 1) p = 0,2)  p = 0.5. 

Z, is the value of Zp at p = 0, and 6,  is determined now by 
Eqs. (lo) and (7) of Ref. 3. Expressions (57) and (58) are valid 
at Iql 1 ( lq, 1, L )  1. These equations enable us to express the 
anharmonicity parameter r] ,  in terms of the total swing r of 
the oscillations, the smooth part of the impedance Z,, and 
the value of I: 

The quantity I is expressed in terms of the doppleron wave 
vector k2 and the impedance of a sufficiently thick plate 
(such that the maximum of Rp (h  ) occurs in a field much 
stronger than that of interest to us): 

If we assume now that purely diffuse reflection takes 
place in the experiment, we can substitute the experimental 
values of r, Z,, and I in (59) and calculate the expected value 
of 7, (I was determined for a sample 1.86 mm thick). The 
result of such a calculation is represented by curve 2 of Fig. 
7. This curve is similar to curve 1, but lies somewhat lower. It 
is natural to assume that this difference is due to the fact that 
p is finite. As a result we get the estimate p exp( - d / 
1 )z0.05. An estimate of I from the resistivity ratio yields 
1 z 2  mm. It follows therefore that the order of magnitude of 
p is 0.1 to 0.2. For a quantitative detemination of p it is 
necessary to develop a theory that is valid in the region of 
moderate fields 6- 1 and at an arbitrary value of p. 

4. We note in conclusion that although the oscillation 
amplitude of the impedance Z as a function of p has a maxi- 
mum at p = 0, this may not be the case for the derivatives of 
the impedance with respect to the magnetic field. The pres- 
ence of multiple harmonics makes the oscillations sharper 
and therefore the maximum amplitudeofthed 2Z /dH ' oscil- 
lations as functions of p may be reached at p#O. This is 
illustrated in Fig. 8, which shows the calculation results for a 
sample 0.15 mm thick. In the field region H < 2.2HL the 
amplitude of the d 'R /dH oscillations is larger at p = 0 
than at p = 0.5. At the same time, in the region H7 2.2HL 
the amplitude ratio is inverted. Therefore a comparison of 
the amplitude of the d 2Z/dH ' oscillations at different sam- 
ples surface states does not permit an unequivocal assess- 
ment of the relation between the corresponding value of p. 
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