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It is shown that it is important to take account of the influence of vibrations of the medium on the 
tunneling of heavy particles in a two-level system when studying relaxation processes in glasses. 
Zero-point vibrations increase the probability of tunneling by several orders of magnitude. As the 
temperature is raised, single-phonon processes first give a contribution and then multiphonon 
processes. The periodic reduction in the potential barrier by vibrations of the medium plays an 
appreciable role. With this mechanism the double-peaked temperature dependence of the inverse 
ultrasonic attenuation length can be explained and also the temperature dependence of the ther- 
mal conductivity and of the luminescence intensity (the so-called "inverse Arrhenius law"). 

PACS numbers: 65.50. + m, 63.20. - e, 77.90. + k, 43.35.Cg 

INTRODUCTION 

The discovery of anomalous low-temperature behavior 
of the heat capacity and thermal conductivity of amorphous 
dielectrics1"' required a radical reconsideration of the struc- 
ture of low-frequency vibrations in such systems. For ex- 
plaining these anomalies the hypothesis was put forwardsv6 
that the low-temperature behavior of dielectric glasses is 
mainly determined by so-called two-level systems. Its main 
assumption is that as a result of reordering of the crystal 
lattice it is possible for a few atoms (or a group of atoms) to 
tunnel between two states which are close together in energy. 
Excitation of such two-level systems produces a contribu- 
tion linear in temperature to the heat capacity. Scattering of 
phonons by them determines the low-temperature behavior 
of thermal conductivity and ultrasonic damping, while the 
attenuation of an electromagnetic field determines anoma- 
lies in the temperature dependence of the real and imaginary 
parts of the dielectric s u s ~ e ~ t i b i l i t ~ . ~ ~ ~  A similar model was 
used to explain some unusual properties of quantum li- 
q u i d ~ . ~  A more complete list of the literature can be found in 
a recent review.'' 

In spite of the considerable successes of the theory 
based on the model of two-level systems, however, the over- 
all situation can still not be considered satisfactory. The ab- 
sence of a consistent microscopic model of the two-level sys- 
tems themselves is a great shortcoming of the theory. This is 
in spite of the fact that many different variants have up to 
now been proposed. For example, Phillips" discusses five 
types of two-level systems, while Duffy and RivierI2 even 
consider a highly exotic model based on the Yang-Mills the- 
ory. There is, nevertheless, so far no serious basis for choos- 
ing one of these variants. As a result, a certain arbitrariness 
remains in the choice of the parameters of the two-level sys- 
tem and in interpreting the observed phenomena. 

A quantitative comparison of the deductions from the- 
ory and the experimental data also gives not altogether satis- 
factory results. For example, Anderson et ~ 1 . ~  pointed out 
that they were forced to use a very low value of the height of 
the potential barrier (V ,  <0.2 eV for an oxygen atom) to 

obtain agreement with the results of measuring heat capac- 
 it^.^ Stephens13 collected and discussed in detail results on 
the heat capacity and thermal conductivity of a large num- 
ber of glasses and indicated a number of difficulties he en- 
countered in interpreting these data. For example, on intro- 
ducing impurities into such glasses as As$,, B203 and 
CaK(N03),, the heat capacity was changed by a factor of one 
and a half to two, while the thermal conductivity did not 
change at all. It is difficult to understand this from the point 
of view of the standard two-level system theory, 5'6 according 
to which both quantities should be produced by the same 
mechanism. By calculating the density of two-level systems 
from results on heat capacity and then finding the probabil- 
ity of interaction between a phonon and the separate system, 
StephensI3 concluded that this probability must be anoma- 
lously high. The plateau in the temperature dependence of 
the thermal conductivity in the region of a few Kelvins also 
requires an explanation. We note that Matey and Ander- 
son14 found an analogous plateau in the phonon part of the 
thermal conductivity of a metallic glass (an alloy of palla- 
dium and silicon). 

A peculiar double-peaked curve of the temperature de- 
pendence of inverse attenuation length was found in studies 
of ultrasonic attenuation in gla~ses. l~- '~ The model pro- 
posed by Jackle et a1.I7 to explain it seems unconvincing to us 
and contains too many artificial assumptions. We should 
remember that there is yet another experimental fact which 
is not explained by standard two-level system theory, name- 
ly the unusual temperature dependence (inverse Arrhenius 
law) of the intensity of luminescence in g-As2S3 glass.18 

It seems to us that one of the important reasons for such 
a situation must be the application of an inadequate theory of 
tunneling transitions in two-level systems. Because of this 
not nearly all the observed effects can be analyzed with the 

In particular, difficulties thus arose in interpreting 
the temperature dependence of the inverse ultrasonic attenu- 
ation length" and in discussing the temperature dependence 
of the luminescence i n t e n ~ i t y . ' ~ ' ~ ~  In describing tunneling 
transitions in two-level systems, the model developed by 
Sussmann2' is usually used, in which tunneling processes 
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involving only a single phonon are considered, while the pos- 
sibility of two or more phonons taking part were only consid- 
ered in connection with transitions taking place via an inter- 
mediate real state. The role of zero-point vibrations was not 
taken into account at all. In addition, out of several different 
means of exciting two-level systems discussed by S u s ~ m a n , ~ ~  
one was chosen without a particular basis, corresponding to 
"diagonal perturbation" of the potential under the action of 
a phonon waveZZ (see also Refs. 10 and 17). To first order in 
the interaction only a change in particle energy in a separate 
well takes place then, while transitions between wells appear 
in second order (the so-called "relaxation mechanism"). 

In actual fact there is besides this mechanism a much 
stronger "nondiagonal" interaction which corresponds to a 
change in the penetrabiltiy of the barrier for vibrations of the 
two-level system. The wells then periodically get close and 
because of the exponential dependence of the tunneling 
probability on the distance between the wells, this can lead to 
a noticeable increase in it.23 AS a result, the one-phonon ap- 
proximation hardly ever works. Just considering zero-point 
vibrations can increase the probability of tunneling even for 
T = 0 by several orders of magnitude.24 For these reasons its 
temperature, frequency and other dependences also differ 
greatly from Sussman's  result^.^' This difference becomes 
specially marked at relatively high temperatures ( T >  10 K), 
when short-wave and optic modes of vibration start to be 
excited, which lead to very strong approaches of the wells. 
At even higher temperatures they can approach so much 
that the potential barrier disappears. We note that this 
mechanism is very similar to the fluctuational barrier "prep- 
aration" mechanism which was discussed by Kagan and 
KlingerZ5 in the problem of quantum diffusion of heavy par- 
ticles along a regular lattice of equivalent wells. 

In view of everything said above it is essential to carry 
out afresh an analysis of the main propositions of the model 
of two-level since there is every reason to think 
that many of them are changed appreciably by taking ac- 
count of the mechanism discussed We have giv- 
enZ6 some preliminary results of such an analysis and dem- 
onstrated the large influence exerted on the process of 
ultrasonic attenuation by interaction of two-level systems 
with vibrations of the medium. In the present work we con- 
sider the temperature and time dependence of the heat ca- 
pacity of amorphous dielectrics, and also the temperature 
dependence of thermal conductivity, ultrasonic attenuation, 
and luminescence intensity. In doing this we shall start from 
the same basic assumptions about the role of two-level sys- 
tems in low-temperature processes which take place in 
amorphous dielectrics, as previous  author^,"^ but will take 
more correct account of the influence of vibrations of the 
medium on the probability of tunneling transitions. This will 
allow us to rid the theory of a number of difficulties men- 
tioned above, and also to explain many features of the behav- 
ior of thermodynamic and kinetic characteristics of glasses 
without introducing any additional assumptions. 

2. GENERAL RELATIONS 

We shall calculate below the constants of the tunneling 
transition rate in a two-level system, taking account of vibra- 

FIG. 1. Potential energy of a tunneling particle. The dashed line shows the 
change in the potential barrier as the wells approach one another. 

tions of the medium. Suppose a particle of mass m moves in 
the two-well potential shown in Fig. 1. Since we have no 
adequate microscopic model of the two-level systems, we 
shall suppose that in talking about a particle we are referring 
to the motion along some generalized coordinate Q which is 
appropriate to the mass m. We assume that we can divide our 
system into three subsystems: a fast electron subsystem, a 
slower subsystem corresponding to oscillations of a particle 
in the potential of Fig. 1, and a still slower phonon subsys- 
tem. In that case we can make use of the double adiabatic 
approximation and separate the variables corresponding to 
the three susbsystems. The rate constant for a transition 
from well 1 to well 2 can then be written in the form 

Here (a', ( Y )  > indicates in which well the particle is and 
the state of the phonon subsystem then; E, and Ef are the 
initial and final energies of the whole system. We neglect 
changes taking place in the characteristics of the phonon 
subsystem during the transition of the particle from well to 
well. 

The form of the operator M depends on just which pro- 
cess interests us. If it is a fluctuational (without external in- 
teraction) transition, it can be for example the matrix ele- 
ment of an operator nonadiabatic in the electron wave 
functions. We shall also be interested in particle tunneling 
processes from one well to the other, accompanied by ab- 
sorption or emission of a certain long-wave phonon in an 
interaction, for example, with an ultrasonic wave. During 
the passage of such a wave both wells shift practically paral- 
lel to one another, i.e., the interaction of a phonon with the 
two-level system due to the approach of the wells is small in 
this case. The attenuation of long-wave phonons will, there- 
fore, only be related to the first terms in the expansion of 
operator M in the corresponding phonon coordinates q,. 
Strictly speaking, terms corresponding to mode A should si- 
multaneously be excluded from the sum in Eq. (1). We shall 
not however do this because the corresponding corrections 
are small on the macroscopic scale. There is an appreciable 
correction because the energy of the absorbed (emitted) ex- 
ternal phonon must be taken into account in the energy ba- 
lance explicitly, i.e., in Eq. (1) S(Ei - Ef) must be replaced by 
S(Ej - Ef + fiw, ). 

Independently of the type of process, the matrix ele- 
ment of the operator can be written in the form 

<iIQ la>=Vexp[-'12J({q,))l, (2) 
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where a smooth function of its variables occurs in the expo- 
nent. This function is large for tunneling of a heavy particle: 
its change, because of phonon vibrations, can therefore lead 
to a very great change in the matrix element of Eq. ( 2 ) .  In 
principle a cross-over situation can then arise when the main 
contribution to the tunneling process comes from the region 
of values of {q,,} which are far from equilibrium." As a 
result, calculation of the tunneling transition rate constant 
meets with great technical difficulties, especially if we are 
interested in a wide temperature range. We shall therefore 
consider a simplified model of the situation when the expo- 
nent can be represented in the form of a function of second 
order in the variable q,, ": 

The quantity V then characterizes a process in which 
phonon vibrations are neglected. With this approximation, 
the calculations can be carried out to the end, preserving all 
the main qualitative features of the processes studied. One 
has to exercise caution, however, in interpreting Eq. (3) as an 
expansion of the function JI{~,, )) in a Taylor series, since it 
can lead to noticeable quantitative errors, especially at high 
temperatures. 

Representing the phonon subsystem in the form of a 
collection of independent oscillators, we can rewrite Eq. ( I )  
in the form 

where 
OD 

p,O; ~ I P .  q2.) = ~ l n . ) e x p ( - B ~ ( n 3 )  (nvl 

the equilibrium density matrix corresponding to phonon 
modep at temperature kT = l/O; k is Boltzmann's constant 
and Z, (p ) the corresponding partition function. In deriving 
Eq. (4) we have used the integral representation of the 6- 
function." The choice of the magnitude of AE depends on 
which process is being considered. For a fluctuational transi- 
tion AE = A E  = El - E l ,  where AE is the change in energy 
of a particle on going from well 1 to well 2. In the case of a 
transition accompanied by the capture (emission) of an ex- 
ternal phonon, A E = AE f ~, . 

If we limit ourselves to the harmonic approximation for 
phonon vibrations, we can use for the density matrix p, the 
well known expression (see, for example, Feynman'9). Sub- 
stituting Eqs. (2) and (3) into Eq. (4) and integrating over the 
variables q,,, and q,, we find the tunneling transition rate 
constant" 

K=Y' j du (de t  @ ) - ' A  
f i  

where 

C18,,.=' &',L,,. -26 ,,,, , s11(fi?,o~,i2), [c l~( l~$co, ,  2 )  - -cos(f i [ .~!~)]  .-I.  

@= {6,,,,.i1/,UP,,. [cii (fi?ol,./2) +cos (fit.to,,.,J [slr (fi3toI,./2) I -I) 
X{~ , , , , .T~ ,  -11 ,,,,. [ell ( f i$co, ,J2)  -cos ~ ~ i l ~ ~ o l , ~ )  J [ d l  (fi$(1)~,.;2)] -I}. 

If we take B,,,, = 0  and^ E = 0 in Eq. (5) and understand Eq. 
(3) as an expansion in small displacements near the crossing 
point, then the magnitude of Eq. (5) coincides with expres- 
sions (3.3) and (3.10) of Kagan and Klinger2"nder the con- 
dition that we neglect the polaron effect. 

Equation (5) can be simplified in two cases. First, for 
temperatures low compared with the Debye temperature, 
the quantity B,,,, can be neglected; then 

At higher temperatures it is essential to take B,,. into ac- 
count, but we can then use the Einstein model of the phonon 
spectrum and obtain 

Here I,(x) is a Bessel function of imaginary argument, R is 
the Einstein frequency, and the primes on J indicate differ- 
entiation with respect to AR = R 2  - R I ,  where R 2  and R ,  
are the coordinates of the wells of the two-level system and 
M is a characteristic mass determining the phonon spectrum 
of the glass. 

3. HEAT CAPACITY 

The anomalous behavior of heat capacity in amorphous 
dielectrics, C -  T, observed by Zeller and Poh13 served as the 
main impetus in developing the two-level system model. 536 A 
linear law for heat capacity comes directly from the assump- 
tion that the density of two level systems n(AE ) with a given 
value of AE is practically constant over some range of values 
AE <AE, .  For sufficiently low temperatures we then have5s6 

C ( T )  = (rrL/6)  iz ( 0 )  k L T ,  liT<IE,. (8) 

Heat capacity is a thermodynamic quantity and, strictly 
speaking, it should be evaluated for a system which has al- 
ready reached equilibrium. However, it is a feature of amor- 
phous systems that they cannot be characterized by a single 
relaxation time. Each two-level system with a given AE can 
have its own value for the transparency parameter of the 
barrier. This means that the value of 

17=h1 e \ p  [ -J, , l2]  (9) 
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varies as a result of the change in the parameter J,. (Varia- 
tions in the parameter v-  1013 s-' play no special role.) If 
the scatter in Jo is large enough, then in practice for any 
observation time two-level systems will be found with such a 
large value of J, that relaxation will still not have had time to 
take place. The amount of energy accumulated by the two- 
level systems at a given temperature therefore increases all 
the time. In this sense, heat capacity is a kinetic quantity, 
dependent on time. 

We shall assume that the glass, originally in equilibri- 
um, is heated "rapidly" to some higher temperature T. In the 
present case "rapidly" means in a time shorter than the 
smallest relaxation times in the two-level systems. We are 
interested in the amount of energy E (t ) which the glass ab- 
sorbs during a time t. The probability of populating the high- 
er-energy state of a two-level system characterized by the 
parameters AE and Jo is of the form 

f ( t ,  T )  = f o ( T )  { I - e s p [ - K ' ( A E ,  J o ,  T I t l ) ,  (10) 
where 

f o ( T )  = [ l + e x p ( P A E ) ]  -', K'=K++K+,  

and K, and K, are transition rate constants for processes 
with increasing or lowering of the energy of the two-level 
system. 

The total energy E (t ) can be found by multiplying Eq. 
(10) by AE and averaging over the parameters A E  and J,, 
which gives 

At low temperatures, when 

'lsZ 1A.l' cos (2o.u) / sh  (g72oJ2) el, 

the exponential under the integral in Eq. (6) can be expanded 
in a series. (A quantitative evaluation of this temperature 
region will be carried out below). Carrying out the integra- 
tion over u then, we obtain 

Only fluctuational transitions contribute to the heat capac- 
ity, i.e., AE = AE. The term in Eq. (12) is then proportional 
to S (AE ). Further, 

Here e,, is the polarization vector of the phonon, N the num- 
ber of atoms, a,,y, is the interatomic distance. The sum over 
p in Eq. (1 2) can be found in the Debye approximation. The 
first sum is 

The second sum is 

- -. n21'ZIAE13 P I A E ~  
~ X P A E I - I - '  e x  . (15) 

8fi3M (sq,) 

In these latter equations q, is the Debye momentum and s 
the velocity of sound. 

The appearance of the quantity J, in the expression for 
the rate constant for a tunneling transition is due to the influ- 
ence of zero-point phonon vibrations. In Eqs. (9) and (lO),Jo 
must be replaced by an appreciably smaller quantity 
J * = Jo - J,. The corresponding growth in K arises because 
the wells approach one another under the influence of zero- 
point vibrations of short-wave or optic phonons and the 
transparency of the barrier increases. 

We transform Eq. (1 1) with the help of Eqs. (12) to (1 5) 
into 

A E o  

E ( t )  = n. (0) d (AE) AEfo (BAE) 
0 

Jtmax 

X dJ* { I  - exp [-k2vZae-J*AE3 x cth(PAEJ2) t ] ) ,  
J* . mrn 

(16) 

where fia/27r is equal to the coefficient in Eq. (15), indepen- 
dent of AE. The expression in curly brackets in Eq. (16) can 
be approximated by a step function, which is equal to unity 
for J * < J, and zero for J * > Jb , where 

The boundary value of Jb separates the two-level systems in 
which relaxation has already taken place from systems still 
in equilibrium. With this approximation we can carry out 
the integration in Eq. (16) and find the energy accumulated 
in the glass during times for which 

I~:~<I~ ( t )  <Im>. 
By differentiating with respect to temperature, we find an 
expression for the heat capacity 

C(T, t )  = ( n Z / 6 )  n ( 0 )  k2T ln [ t / ~ *  ( T ) ]  , (18) 
where 

l/~* (T) =ati2vz(kT) e ~ ~ [ - 1 : ~ , + 3 ] .  (19) 
In deriving Eqs. (18) and (19) we assumed that 

12,,>2 In ( f w / A E )  , 
i.e., that renormalization of the energy difference A E ,  due to 
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tunneling of particles between wells in the tvo-level system, 
is small. Such a situation is possible if there is a lower limit to 
J,, Jo> J,,, , because of the properties of the macroscopic 
structure of the two-level systems. Expression (19) obtained 
above, in which J:, = J,,, - J , (T)  had to be substituted for 
Jz,, , will then be valid at temperatures 

k T > h  exp[-1.:,/2]. 

At lower temperatures, renormalization of the magnitude of 
A E  due to tunneling of particles between the wells becomes 
large and it is necessary to make use of the approach devel- 
oped by Jackle et al. l7 A different coefficient of proportion- 
ality then appears in Eq. (19). It is, however, necessary for 
this that there should not be a structural lower limit to the 
spread of AE, i.e., two-level systems should exist with 

M < h v  exp[-l~,/2]. 

Such a limit can arise if the distribution of values of Jo 
has a sufficiently sharp peak near J,,,. The fact that in many 
cases a time dependence of the heat capacity is generally not 
observed, or only observed for very small times t < is 
evidence in favor of this assumption (see the discussion by 
Smolyakov and Khaimovi~h'~). As we shall see below, there 
are other experimental facts which indicate the existence of 
J,,, . We can already give a quantitative evaluation however. 
From the fact that the temperature dependence of Eq. (19) is 
followed down to a temperature - 20 mK, there follows the 
inequality J,,, 2 15. 

This requirement is realized if a typical two-level sys- 
tem is characterized by the following parameters: barrier 
height V, ~ 0 . 5  eV, mass of the tunneling particle m z  16 
(carbon) mass units, Debye temperature @=: 150 K, charac- 
teristic mass determining the phonon spectrum, M z 6 0  
mass units, barrier width AR -0.5 A. Then Jo- 50, Ji=:200 
d i - I  and J * ~ 2 0 .  The renormalization of the barrier pene- 
tration parameter J, due to zero-point vibrations is then so 
large that to calculate it one must make use of Eq. (7) for 
T = Oobtained forJ " #O (assuming J " = : 4 0 0 k 2 ) .  Weshall 
use these parameters below for quantitative calculations. 
The main parameter of our problem is then the large dimen- 
sionless quantity 

R=liJ'2/M~nm200, 

which characterizes the coupling of phonons to the two-level 
system. 

4. ULTRASOUND ATTENUATION 

The attenuation of the ultrasound in glass at low tem- 
peratures is due to its absorption by the two-level systems. 
We shall confine ourselves below only to the case of relative- 
ly low frequencies when on the passage of the sound wave the 
two-level system is displaced parallel to itself, while the form 
of the potential well is hardly distorted. The sound then in- 
teracts weakly with the two-level system and Eq. (4) can be 
used with A& = AE Ciw,. Such an approximation can 
prove unsatisfactory at high frequencies since the attenu- 
ation by the two-level system becomes nonlinear due to the 
strong oscillation of the wells. This regime will be considered 
separately. 

Expression (12) can be used at low temperatures to cal- 
culate the probability of capture of an ultrasonic phonon 
h, by the two-level systems. The first term in it, propor- 
tional to S(AE & fiw,), corresponds to resonant absorption 
(emission) of a phonon k, . Such processes determine the 
fipite ultrasound attenuation at T = 0. The corresponding 
inverse attenuation length is of the form 

To find the amplitude, V, , of the interaction of phonon 
Ciw, with a two-level system it is sufficient to expand the 
matrix element of Eqs. (2) and (9) in terms of the correspond- 
ing normal coordinate. Averaging ] V, I 2  over the orienta- 
tions of the axis of the two-level system, we obtain - 

V2=yfi2v2e-Jo, y= (n2/20) (oilon). (21) 

As the temperature increases, nonresonant single- 
phonon ultrasound absorption starts to become appreciable 
besides the resonant processes of Eq. (20). Then Ciw, # IAE I 
and the energy defect is covered by absorption or emission of 
a single phonon from the thermal reservoir. Four different 
elementary processes are possible, differing from one an- 
other in whether a lowering or raising of the energy of the 
two-level system occurs and whether an ultrasonic phonon is 
emitted or absorbed. 

Summing all these processes with the corresponding 
statistical weights, we obtain for two-level systems with a 
given AE: 

LA-' (T)  LA^-' (T) +LA2-' (T), 

- 
n3RV:eJ* 

=n (AE) - l~~-f io~l~[exp(pf ioh)  -11 
4fis (tion)' 

The expression for I f i l (T)  differs from I,'(T) by the 
change in sign of h, which at the same time indicates that 
an ultrasonic phonon Ciw, is absorbed ( + ) or emitted ( - ). 

Two limiting cases should be distinguished in Eq. (22). 
For kT<fiw, only one of the four processes gives an appre- 
ciable contribution in which capture of an ultrasonic phonon 
takes place, accompanied by lowering of the two-level sys- 
tem's energy. In this case the inverse attenuation length 
grows linearly with temperatures, since only systems with 
AE 5 k T  take part and their number is proportional to T. We 
have, after averaging over AE 

7c3 ln 2 
lk-' (T) = - n(())R ~ ( ~ ) ' ~ e J l ( T ) .  

4 (23) 

(At the end of this section we shall consider questions related 
to averaging over the barrier-transparency parameter J,.) 

A different situation arises for k T g h , .  We can then 
expand in terms of the small parameter B h A  in Eq. (22), in 
this case 

lhl-' (T) =1,2-' (T) 

and 
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This relation can be explained in the following way. Two- 
level systems with A E 5: kTgive a contribution to the attenu- 
ation, and their number is proportional to T. In view of the 
inequality &, (kT, a phonon with energy &, z k T  must 
be absorbed from the thermal reservoir (or emitted) in a one- 
phonon process. The total number of such phonons is pro- 
portional to T ,, so that we obtain the relation 1, ' - T ob- 
served in experiments."-" 

We proposed earlier26 that the increase in ultrasound 
absorption according to the T law would stop in the region 
of a few Kelvins because there is a limit to the distribution 
AE/k 5: (2 to 3) K, although it would be more natural to 
assume that this limiting value is connected to the glass- 
forming temperat~re.~ In actual fact there is no necessity to 
make such a rigorous assumption about the distribution of 
values of AE, which can actually extend to arbitrarily large 
values. This is because the temperature dependence of the 
inverse ultrasonic attenuation length is described by Eq. (24) 
only at temperatures 

F< (4 /n6R)  '"8% 10 K, 

for which the single-phonon approximation used in deriving 
Eq. (12) is valid. As the temperature rises, both the charac- 
teristic energy of the thermal phonons and their number in- 
creases and their effect on the two-level system becomes 
strong. Another approximation, equivalent to the method of 
steepest descent, can be used in this case. 

We expand cos(&, v) in a series up to terms of second 
order in v, after which the integral in Eq. (6) is easily found, 
and we obtain 

~ , = n  ( O ) A E ,  (Vlli) [ 2 n / F ( T ) ]  '" exp [-bAE/2+lz  ( T )  1 ,  

P 

The parameter in this approximation is the quantity (kT)2/ 
F (T) .  Comparing it to unity, we can verify that Eq. (25) is 
valid at temperatures 

T B  (n8R)-"'8=4 K. (26) 

As in deriving Eq. (22), it is necessary to sum the contri- 
butions from the four processes and average the result over 
AE in order to find the ultrasonic attenuation in this regime. - 
Then 

lA-' ( T )  = 
2 n ( 0 ) F  o r  e 3 e J t ( T ) .  

n ' h  ( 2 n ~ )  I" G ( 7) (27) 

In Eqs. (26) and (25) we used the expression 

F ( T )  =2nsR ( T / O ) 6 ( f i o n ) 2 ,  

which is obtained in the Debye approximation for the 
phonon spectrum. 

The increase in 1, ' with temperature is thus changed 
to a decrease in proportion to T -3. We do not have any 
formula to describe the transition region where the inverse 

attenuation length can pass through a maximum at T = TI. 
Equations (24) and (27) only describe two slopes of the curve 
of thc temperature dependence of 1, ' on either side of this 
maximum which lies in the temperature interval 
4K < T, < 10 K. This result agrees quite satisfactorily with 
experiment,'5-" where the value TI z 5 K was obtained. 

As the temperature increases, there is an increase in the 
number of two-level systems which take part in the scatter- 
ing process. This growth, however, is offset by the factor 

2 sh(, ') =f ioA/kT.  (28) 

On the other hand, the large number of thermal-reservoir 
phonons which take part only inhibits the satisfaction of the 
energy conservation law in elementary acts of absorption 
(emission) of ultrasonic phonons. They can be said to upset 
the resonance in the two-level system. For this reason the 
increase in the number of phonons with increasing tempera- 
ture weakens the attenuation in proportion to T -3. There is 
a definite similarity between this process and the process of 
"dynamical band destruction" which was discussed by Ka- 
gan and Mak~imov.~' It should be pointed out that the dis- 
cussion there was about coherent one-phonon processes for 
which the state of the phonon subsystem does not change. 

As the temperature increases further the 1, ' (T)  depen- 
dence passes through a minimum at 

and starts to rise due to the exponential factor eJ2(T) in Eq. 
(27). Physically, this increase is due to the growth in the 
vibration amplitude of the wells in the two-level system as 
the temperature rises, leading to an effective lowering of the 
barrier. This mechanism is strong enough to produce even- 
tually an increase in ultrasound attenuation, in spite of the 
stronger detuning from resonance, as discussed above. At 
temperatures kT> fiw,/4, we already enter the classical re- 
gion and J,(T) is proportional to the first power of the tem- 
perature: 

1, ( T )  =T/T. ,  ~ , - ' = k  IAN1'(2Ao.)-'. (30) 
I\ 

As a result, the inverse ultrasound attenuation length in- 
creases like eT'To. For the two-level systems we have consid- 
ered, To= 1 K. It follows from  experiment^'^-" that the in- 
crease in I,'(T) should proceed more slowly. However, 
recognizing that one is talking about temperatures between 
15 and 40 K, where the vibrations can still not be considered 
classical, and also the certain arbitrariness in the choice of 
parameters, then the agreement can be considered quite sat- 
isfactory. 

The function J,(T) cannot continue to increase with 
temperature indefinitely according to Eq. (30) since the pa- 
rameter characterizing the transparency of the barrier, 
J *  = Jo - J,, cannot be negative. In fact, the relation (30)  
changes at sufficiently high temperatures. The well-oscilla- 
tion amplitude becomes so great that it is no longer possible 
to confine the expansion of Eq. (3) to linear terms, and qua- 
dratic terms must also be taken into account. Strictly speak- 
ing, terms of all orders must be taken into account in the 
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expansion of the function J({q , ) ) .  However, by using a 
function of second order in q, [Eq. (3)] ,  in the calculations 
we can describe the high-temperature behavior of ultra- 
sound attenuation qualitatively correctly, and by regarding 
J" as an adjustable parameter we can reach satisfactory 
quantitative agreement. 

The following expression for the inverse ultrasonic at- 
tenuation length is obtained from Eq. (7): 

z i - 3  ( T )  = 
4nn ( 0 ) F  

sp ' I 2  
(2) exp[lpi(~-lp2)~~0(vilp2) ' ~ ' ~ .  

ch x 

( 3 1 )  
For temperatures satisfying the condition 

4 k T c t i Q  [arcth (fiJ"/2MQ)] -', (32) 

the quantity J " can be neglected in Eq. ( 3  1 ) .  A result analo- 
gous to Eq. ( 2 5 )  obtained in the Debye approximation fol- 
lows then from Eq. ( 3  1 ) .  The magnitude of 1, ' initially de- 
creases with increasing temperautre, passes through a 
minimum at 

(L! = 100 K )  ans starts to rise, reaching at temperatures 
kT> /4, the asymptotic law -eT'K1 where To = 2 M a /  
kJr2.  We then obtain the same quantitative estimate for To as 
earlier [see Eq. (30)l. In this case the Einstein and Debye 
models thus give results which are close together both qual- 
itatively and quantitatively. 

However, it is impossible to ignore the quantity J "  at 
sufficiently high temperatures when the condition (32) is not 
satisfied. The increase in the function 1; ' ( T )  then slows 
down, passes through a maximum at 

T3=lf2MQ2/4kJN2 (34) 

and starts to fall. In this regime, as a result of oscillation of 
the wells, the effective potential barrier becomes so low that 
a particle passes above it from one well to another, and the 
temperature dependence of the attenuation has the activa- 
tion form -e - T7'T. The characteristic temperature T3 has 
nothing in common with the equilibrium height of the poten- 
tial barrier. It is determined by the work expended against 
elastic forces when the wells come so close that the barrier 
disappears. 

According to experiment1'-" we have T, =; 50 K ,  from 
which it follows that J " =: 1200 k2. If J " is considered as 
the second derivative of the function J({q ,  )), then J " -400 
k2. This shows that a large nonlinear deformation of the 
potential barrier takes place at large vibrations of the wells, 
and the effective value of J " increases. 

We have so far said nothing about averaging over the 
transparency parameter of the barrier, Jo, although the 
method of averaging plays the fundamental part in the pres- 
ent case. Two-level systems with the smallest value of Jo 
make the main contribution to the attenuation process. If it 
is assumed that there is a sufficiently precise lower limit J,,, 
to the distribution of Jo, then an attractive and physically 
intuitive picture is obtained which agrees well with experi- 
ment. In this case we must assume that Jo=:Js,, in all the 
equations of this section. In evaluating J,,, it must not be 

forgotten that in the actual description of the physical pro- 
cesses the effective value J * ( T )  is used and it is required that 
it nevertheless remains large enough at T <  T3. The maxi- 
mum of the ultrasound attenuation at T z T ,  is due to the 
sharp reduction in J * ( T )  caused by the vibration of the wells. 
This fact indicates directly the existence of a structural re- 
striction on the set of values of Jo and makes possible a quan- 
titative estimate of J,,, . 

If, however, we adopt the opposite point of view and 
consider that the distribution of J, is only limited from below 
by the inequality (19), then the possibility of such a descrip- 
tion is lost. In this case, two-level systems with a very small 
potential barrier are the determining factor at all tempera- 
tures, and the transition of a particle from well to well even at 
temperatures less than T, takes place not by tunneling but is 
activated by the mechanism considered above. As a result, 
one cannot obtain the described picture of the high tempera- 
ture behavior of ultrasound attenuation, especially at high 
temperatures. 

5. THERMAL CONDUCTIVITY 

The standard expression is used to evaluate the thermal 
conductivity of a dielectric glass, 

where 0, is the volume of the specimen. The phonon mean 
free path is determined from equations derived in the pre- 
vious section. The main contribution to the integral of Eq. 
( 3 5 )  comes from the frequency region fiw, -kT, i.e., the pa- 
rameter p&~, [see, for example, Eq. (28)] cannot be consid- 
ered small. In addition, the interaction of a phonon with the 
two-level system can become strong at relatively high tem- 
peratures, and the frequency dependence of the matrix ele- 
ment V, (w)  [Eq. (21)] changes. We will not consider this ef- 
fect in the present work, so that our values of the thermal 
conductivity in the high temperature region are somewhat 
overestimated. 

At low temperatures, when the one-phonon approxima- 
tion can be made, we obtain with the help of Eqs. (20) and (22) 

where 

OD 

(x- y )  (ey-1)  + ( x S y ) '  (4-e-Y) 
v ( Y ) =  5 dx[r 

(1-eu-%) ( e z+i )  (l-e-Y-= 
0 ) (eX+1) I -  

If we retain only the first term in the curly brackets, we 
obtain the well known law X - T 2 .  It is due to resonant 
phonon scattering by the two-level systems. The second term 
in the curly brackets, corresponding to nonresonant one- 
phonon processes, causes the conductivity to increase more 
slowly than T 2 ,  and even start to fall at sufficiently high 
temperatures. Experimentally this is reflected in the plateau 
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FIG. 2. Temperature dependence of thermal conductivity. The dashed 
line represents the x -  T Z  law. 

in the temperature dependence of x . ' ~ . ' ~  
At such temperatures, however, multiphonon pro- 

cesses start to become important and one should now use Eq. 
(3 I), in which the factor Ph, is replaced by 2sinh(@ioP/2) 
[Eq. (28)l. Then 

UD 

5 Q o D k  kT qs" 
X=-----.-- expl J.t.+cpi ( p r i )  I 1 dy 7. Y' 

n4s fivn (0) fiv 1, (cpicp,) s h y  

In this temperature region the thermal conductivity thus 
starts to increase again, owing to the weakening of the 
phonon scattering by the two-level systems as a result of the 
destruction of resonance in multiphonon processes, and then 
starts to fall exponentially like x -e  - T'To, since the phonon 
scattering increases again as a result of the vibration of the 
wells. The conductivity passes through a minimum at tem- 
peratures -- T, and starts to increase. 

The general form of the temperature dependence of the 
thermal conductivity is shown in Fig. 2. We note that as the 
temperature rises anharmonic processes can start to contri- 
bute to the thermal conductivity. Then x falls with increas- 
ing temperature, at first exponentially and then according to 
a power law (see, for example, Ref. 32) and this can mask the 
high temperature part of this picture. This will probably 
pose the problem of experimentally separating the two con- 
tributions. 

6. CONCLUDING REMARKS 

The results given above clearly demonstrate how im- 
portant it is to take account of vibration of the wells in two- 
level systems when considering phonon relaxation and scat- 
tering processes in dielectric glasses. This mechanism 
changes appreciably all our ideas about low-temperature 
phenomena in glasses. Taking account only of zero-point 
vibrations accelerates all processes by several orders of mag- 
nitude. Therefore the necessity of strong limitations on the 
barrier parameters, for example, falls away. In our calcula- 
tions we used Vb -0.5 eV for the height of the barrier, while 
Anderson et ~ 1 . ~  called for Vb < 0.2 eV. It also becomes clear 
that two-level systems scatter phonons much more strongly 
than appeared earlier (see the discussion by Stephens13). 

It is possible, without introducing any additional me- 
chanisms, to explain fully both qualitatively and quantita- 
tively the unusual nonmonotonic temperature dependence 
of the inverse ultrasonic attenuation length on the basis of 
the assumptions discussed. In turn, the thermal conductiv- 

ity, whose behavior is closely related to the temperature de- 
pendence 1, ' (T),  exhibits a large number of peculiarities 
apart from the well known x - T law. 

The physical processes which we have considered by no 
means exhaust the list of effects in which two-level systems 
play some part or another. These include the attenuation of 
sound at high frequencies, renormalization of the velocity of 
sound is low and high frequencies, dielectric relaxation, etc. 
The effect of intramolecular vibrations, on the tunneling- 
transition rate can also become appreciable for these pro- 
cesses. However, the discussion falls outside the framework 
of the present work. 

In the Introduction we mentioned the temperature de- 
pendence of the luminescence intensity in the glass g-As$, 
(Ref. 18) 

Z ( T )  -e-'/'~, (38) 

which has been called the "inverse Arrhenius law." By com- 
paring Eq. (38) with Eqs. (27), (30), or (3 1) it is easy to see that 
this dependence is caused by vibration of the wells, the am- 
plitude of which increases linearly with temperature. How- 
ever, the question then arises as to why Toz28 K is an order 
of magnitude higher than in other glasses (see Sec. 4) and also 
why the relation (38) should be observed over a wide tem- 
perature range up to 280 K, which indicates a very large 
value for the temperature T3. To all appearances this is due 
to the clustering peculiar to g-As$, glass." In this case the 
characteristic mass M, which appears in Eqs. (27), (31) and 
(34) will be equal to the mass of a cluster, which also explains 
such a large increase in the characteristic temperatures To 
and T3. 

One of the main conclusions of the present work can be 
considered to be the empirical basis for asserting the exis- 
tence of a lower limit J,,, to the distribution of the barrier 
transparency parameter J,. It is possible that the effect ob- 
served by StephensI3 is connected with this. We assume al- 
loying produces two-level systems with J, larger than the J,,, 
characteristic of the given glass. They then contribute to the 
heat capacity and increase it, but do not contribute to the 
thermal conductivity which is determined by scattering of 
phonons by the wells with the lowest values of J,. However, 
the important question of the physical causes of such a limit 
is still open. 

The authors thank A. F. Andreev and K. A. Kikoin for 
discussing the results of this work. 

'0. L. Anderson, J. Phys. Chem. Solids 12,41 (1959). 
'E. W. Hornung, R. A. Fisher, G.  E. Brodale, and W. F. Giauque, .I. 
Chem. Phys. 50,4878 (1969). 

3R. C. Zeller and R. 0. Pohl, Phys. Rev. B4,2029 (1971). 
4R. B. Stephens, Phys. Rev. B8,2898 (1973). 
'W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972). 
6P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 
(1972). 
'M. von Schickfus, S. Hunklinger, and L. Picht, Phys. Rev. Lett. 35,876 
(1975). 
*G. Frossati, J. G.  Glichrist, J. C. Lasjaunias, and W. Meyer, J. Phys. C 
10, L515 (1977). 

9A. F. ~ n d r e e v , ' ~ ~ ~ .  Fiz. Nauk. 127,724 (1979) [Sov. Phys. Usp. 22,287 
(1979)l. 

'OB. P. ~ m o l ~ a k o v a n d  E. P. Khaimovich, Usp. Fiz. Nauk. 136,317 (1982) 

11 10 Sov. Phys. JETP 56 (5), November 1982 L. I .  Trakhtenberg and V. N. Flerov 11 10 



[Sov. Phys. Usp. 25, 102 (1982)l. 
"J. C. Phillips, Phys. Rev. B24, 1744 (1981). 
I'D. M. Duffy and N. Rivier, Physica (Utrecht) 108B, 1261 (1981). 
"R. B. Stephens, Phys. Rev. B13, 852 (1976). 
I4J. R. Matey and A. C. Anderson, J. Non-Cryst. Solids 23, 129 (1977). 
150. L. Anderson and H. B. Bommel, J. Am. Ceram. Soc. 38, 125 (1955). 
"J. T. Krause and C. R. Kurkjian, J. Am. Ceram. Soc. 51,226 (1966). 
"5. Jackle, L. Picht, W. Arnold and S. Hunklinger, J. Non-Cryst. Solids 

20, 365 (1976). 
"R. A. Street, T. M. Searle, and I. G. Austin, Proc. 7th Int. Conf. on 

Amorphous and Liquid Semiconductors, publ. by University of Edin- 
burgh (1977), p. 392. 

I9R. A. Street, Adv. Phys. 25, 397 (1976). 
'"J. C. Phillips, J. Non-Cryst. Solids 41, 179 (1980). 
"J. A. Sussmann, Phys. Kondens. Mater. 2, 146 (1964); J. Phys. Chem. 

Solids 28, 1643 (1967). 
'*J. Jackle, Z. Phys. 257, 212 (1972). 
23V. L. Klochikhin, S. Ya. Pshezhetskii, and L. I. Trakhtenberg, Dokl. 

Akad. Nauk. SSSR 239,879 (1978) [Doklady Physical Chemistry p. 324 

(1978)l. 
24L. I. Trakhtenbere. V. L. Klochikhin and S. Ya. Pshezhetskv. Chem. 

P ~ Y S .  59,191 (198vi). 
2 5 Y ~ .  Kagan and M. I. Klinger, Zh. Eksp. Teor. Fiz. 70,255, (1976) [Sov. 

Phys. JETP 43, 132 (1976)l. 
*". N. Fleurov and L. I. Trakhtenberg, Solid State Commun. 42, 1281 

(1982) [sic!]. 
27L. I. Trakhtenberg, V. L. Klochikhin, and S. Ya. Pshezhetsky, Chem. 

Phys. 69, 121 (1982). 
"R. Kubo and J. Toyozawa, Prog. Theor. Phys. 13, 160 (1955). 
"R. Feynrnan, Statistical Mechanics, W. A. Benjamin Inc., Reading, 

Mass. (1972). 
30J. E. Lewis, J. C. Lasjaunias, and G. J. Schumacher, J. Phys. (Paris) 39, 

C6-967 (1978). 
31Yu. Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 65,622 (1973) 

[Sov. Phys. JETP 38 307 (1974)l. 
32J. M. Ziman, Electrons and Phonons, Clarendon Pmss, Oxford (1960). 

Translated by R. Berman 

11 1 1 Sov. Phys. JETP 56 (5), November 1982 L I rakhtenberg and V N. Flerov 1 1  1 1  


