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Results are presented of a systematic investigation of an equilibrium homogeneous and isotropic 
medium from the viewpoint of its causal properties (the Kramers-Kronig and Leontovich rela- 
tions) and of its stability to electromagnetic perturbations. The ranges of permissible values of the 
permittivity and of the magnetic permeability of matter are then found in the static limit and over 
the entire range of variation of the wave vector. It is shown that the magnetic permeability, unlike 
the permittivity, cannot be negative; that the lower limit of the magnetic permeability (which 
coincides with the magnetic permeability of a London superconductor) increases with increasing 
wave vector and approaches unity, that no order parameter H (magnetic field) can be produced 
via a phase transition from the state of a stable homogeneous and isotropic medium, and that in 
this sense no media with spontaneous homogeneous electric field can exist. 

PACS numbers: 75.30.Cr, 77.20. + y 

1, INTRODUCTION 

Several general questions in electrodynamics of contin- 
uous media are still not clear enough, even though they are of 
interest not only from the viewpoint of general physics, but 
are also closely related with timely physics problems such as 
that of high-temperature superconductivity,' anomalous 
diamagnetism and spontaneous  current^,^ physical aspects 
of color containment in chrom~dynamics,~ and others. 

It is convenient to formulate these questions in the lan- 
guage of the static (w = 0) values of the permittivity ~ (w ,k )  
and of the magnetic permeability p(w,k) of an equilibrium 
homogeneous and isotropic medium. 

a) In vacuum, where E and p are positive, like charges 
repel and currents flowing in the same direction attract each 
other. Are there any media in which the situation is reversed 
(E or p is negative)? 

b) In the long-wave limit k -+ 0 there exist paraelectrics 
(E > I), magents > I), and diamagnets (0 < p  < I), whereas 
no diaelectrics (0 < E < 1) are possible. Does the situation 
change in this respect when the wave vector k is increased 
(does diaelectricity appear and does diamagnetism vanish in 
this case)? 

c) An electric order parameter can be either an electric 
field E (charge-density waves, two-stream instability, etc., 
which occur at E = 0) or the induction (ferroelectricity, 
E -+ co ). Yet the only known order parameter in magnetical- 
ly ordered media is the magnetic induction B (ferro- and 
antiferromagnets,~ -+ w ). Can media exist in which the or- 
der parameter is the field H (diamagnetic spontaneous cur- 
rents, p = O)? 

d) The order parameter of a ferroelectric or a ferromag- 
net is homogeneous in space k = 0, whereas the known me- 
dia with order parameter E [see subsec. (c)] have k#O. Can 
media whose order parameter is a homogeneous electric 
field exist? 

These and more particular questions of the same kind 
reduce in the upshot to the following question: 

e) What is the range of admissible values of& andp of an 
equilibrium medium in the entire range of k, and what is the 
physical meaning of the boundaries of this region. 

In the literature the answer to this question is as a rule 
incomplete and sometimes simply incorrect (see, however, 
the article by Martin4 and its criticism below). In the last few 
years two of us, jointly with Maximov, determined in a num- 
ber of papers (Ref. 5, see also Ref. 1) the range of permissible 
values of E and discussed the ensuing consequences as ap- 
plied to the problem of high-temperature superconductivity. 
The present article, a development of the cited ones, is an 
attempt to provide as full and as clear-cut answers as possi- 
ble to the foregoing questions. 

We consider below only homogeneous and isotropic 
media of sufficiently large size. Accordingly, the results that 
follow are not directly applicable to ordered media with an 
electromagnetic order parameter that singles out directions 
and points in space. The medium is assumed to be nonrelati- 
vistic to the extent compatible with the existence of magne- 
tism itself. The restrictions above are assumed only for the 
sake of simplicity, and in later publications we shall consider 
a more general situation. 

The plan of the exposition is the following. In Sec. 2 we 
introduce the material equations that will be useful later on. 
We discuss next the electromagnetic response functions (Sec. 
3) and formulate dispersion relations (Sec. 4) from which we 
deduce restrictions on the permissible values of E andp (Sec. 
5). In Sec. 7 the same restrictions are obtained from a materi- 
al-stability condition formulated in Sec. 6.  In the concluding 
Sec. 8 we discuss the results and answer the questions posed 
above. 

2. MATERIAL EQUATIONS 

There exist several methods of introducing the material 
equations that describe the properties of a medium and make 
the system of Maxwell's equations closed. In addition to the 
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most widely used ones, we indicate below a third method, 6E,,=a6EIle, &iB=pH', (2.6) 
more convenient from the viewpoint of interest to us. 

or, equivalently, 
We consider hereafter only a monochromatic case and 

omit in most equations the arguments w and k. Maxwell's 6p=a6pe, 6j,=P6jLe. (2.6') 
equations for vacuum relate the corresponding fields Ee and The quantities a and fl in these equations describe the 
He with the densities pe and j' of the external charge and of medium just as completely as E and p or and E, . The 
the current: connection between all of them is given by Eqs. (2.1)-(2.3): 

[kx He] -toEe=-4nije, kH'=O, 

[k x E"] -oHc=O, kEe=-4nipe. 

Maxwell's equation in a medium are 

where p =p i  + pe and j = ji + je , while pi and ji are the 
densities of the induced charge and current produced by the 
action of pe and je . 

It is customary to introduce the material equations by 
changing frompi and ji to the vectors D and H and by estab- 
lishing the connections between the vectors S D and S E and 
between S B and 6 H (S is the small-variation symbol). Equa- 
tions (2.2) themselves then take the form 

It is important that D and H are not uniquely defined, with a 
leeway of two degrees of freedom (the six of their compo- 
nents are subject, with account taken of the continuity equa- 
tion, to four conditions-Eqs. (2.3)). It is this leeway which 
accounts for the different methods of introducing the mate- 
rial equations (see Ref. 6 in this connection). 

They can be formulated, for example, so that the vec- 
tors 6 D and S H are directed respectively along 6 E and S B: 

where E andp are the permittivity and the magnetic perme- 
ability referred to in the Introduction. Another frequently 
used method consist of subjecting S H to the condition 
S H = S B. This yields 

The subscripts ) I  and 1 mark respectively the components 
longitudinal and transverse relative to k. The magnetic 
properties of the medium are described by the quantity E, 

connected in a known manner with E andp.7*8 
Comparison of (2.3) with (2.1) shows that at a planar 

geometry of the problem DII coincides with the external field 
E; . It would be very convenient (see below) if H and He were 
also to coincide. For the second method this patently not the 
case, and for the first case this is valid only at w = 0, by 
virtue of the easily verified equality 

It is therefore desirable to use a third method of introducing 
the material equations, wherein 6 H = S He at all frequen- 
cies. Corresponding to it are the equations 

It can be seen that at w = 0 the value o fp  coincides with the 
static magnetic permeability, and as w + co it coincides 
with An additional advantage of this method is that B, 
in contrast to the magnetic permeability, has a direct phys- 
ical meaning at all frequencies and, unlike E, , has no pole at 
w = 0. 

3. RESPONSE FUNCTIONS 

We subject to medium in question to a small external 
action (I) that does not necessarily stem from external 
charges or currents. The result of the action is a quantity A 
that characterizes the changes produced in the medium and 
is connected with I by the relation 

A=RXI, (3.1) 

where the response function R describes the reaction of the 
medium to the external action regardless of its amplitude. 
The material equations (2.4)-(2.6) considered have just the 
form of this relation. 

For R to be indeed the response function (and satisfy the 
causality condition that will be important in what follows, 
see Sec. 4 below) it is necessary that the action I be truly 
external, i.e., that it experience no reaction from the medium 
itself and by the same token be controllable and capable of 
assuming any prescribed value.9 This requirement, the ne- 
cessity of which as applied to electrodynamics of continuous 
media was emphasized by Pines and Nozikres," is far from 
always satisfied; this indeed was the source of widespread 
incorrect conclusions in the literature. Our immediate task is 
therefore to ascertain which of the quantities 
E, p ,  E~~ , E, , a, fl and their inverses can be regarded as re- 
sponse functions, and under which conditions. 

We distinguish next between two values of the vector k 
in connection with Eq. (3.1).  The first, k = 0 (more accurate- 
ly k ,< L - ', where L is the large linear dimension of the medi- 
um) can be realized by sources located outside the medium 
and whose field has as L + co only a homogeneous compo- 
nent. In the second case, action with k#O, the sources must 
be placed inside the medium. This difference is important 
from the viewpoint of the reaction of the medium on the 
action source. 

The condition to which I must be subjected is satisfied 
in any case by the fields S Ee and S He generated by pre- 
scribed external charges and currents. At k = 0 such an ac- 
tion is produced by charges on capacitor electrodes between 
which the medium is placed (longitudinal electric field, Fig. 
la), or else by a current in the winding of a solenoid that 
envelopes the medium (magnetic field, Fig. lb). On the other 
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FIG. 1. 

hand an action with k#O can be produced by introducing 
into the system a probe with small controllable charge or 
current on its end (Fig. lc). The corresponding densities have 
all the Fourier components with respect to k. 

From this and from a comparison of (2.6) with (3.1) it 
follows that the quantities a (and simultaneously also 1/& 
and I/&,, ) and fi can be regarded as response functions at all 
values of k: 

a=R, (3.2a) 
P=R. (3.2b) 

However, the customarily employed quantities ,u and I/&, 
are not response functions, since the corresponding quanti- 
ties6 Hand S D, are not controllable, being dependent on the 
state of the medium at w # O  (see Sec. 2). Thus is precisely the 
advantage of the method introduced in Sec. 2 for formulat- 
ing the material equations. 

In the situation considered the role of I was played by 
the external fields S Ee and S He, and that of A by the total 
fields S E and S B. The inverse situation, when the external 
and total field change places, is also possible, but only at 
k = 0, when the sources I are located outside the system. For 
a longitudinal electric field this is a capacitor to whose elec- 
trodes are applied a controllable charge, as above, and a con- 
trollable potential difference (Fig. 2a). For a magnetic field 
this is a superconductor in the cavity of which is placed the 
medium (Fig. 2b). Since the flux of the field B through the 
cavity is quantized, B does not depend on the state of the 
medium and can be controlled by varying the area of the 
cavity. The role of A,  on the other hand, is assumed in this 
case by the fields of the external charge that flows to the 
electrodes or flows away from them, or of an external cur- 
rent flowing over the inner surface of the superconductor. 
Accordingly, at k = 0 the quantities l /a (and simultaneous- 
ly & and &,, ) and 1/fi (k = 0) are also response functions: 

FIG. 2. 

b 
Superconductor 

As for action with k#O by the total fields, it cannot be 
realized. The point, in the upshot, is that the ease of control- 
ling the specified external field is conteracted by the diffi- 
culty of controlling the total fields, which contain an uncon- 
trollable contribution of the medium itself.'' The distinct 
character of the case k = 0 for the response to a total field 
will be illustrated in Sec. 7 below from the viewpoint of the 
stability of the medium. 

4. DISPERSION RELATIONS 

The response function satisfies the causality condition. 
In the case of a longitudinal electric field we can confine 
ourselves, as in the papers cited above, to the nonrelativistic 
causality condition: the result of the action A is zero at in- 
stants of time preceding the action Iitself. From this follows 
the known conclusion that the response function R (w,k) is 
analytic as a function of the frequency in the upper w half- 
plane at all values of k. This makes it possible to apply the 
Cauchy formula to the function R (o,k) - R (R,k) (here and 
below R --t w), and this leads to a relation of the Kramers- 
Kronig type (see, e.g., Ref. 10): 

In the case, however, of a magnetic field that is relativis- 
tic in character, relation (4.1) yields too little information. It 
is necessary to turn to the more stringent relativistic causal- 
ity condition, which requires that A be zero in those cases 
when the events A and I are connected by a space-like inter- 
val that cannot be overcome by a signal moving not faster 
than light. This leads to dispersion relations that are more 
restrictive than (4.1). They were pointed out by Leontovich" 
(see also Ref. 8). The relativistic causality condition leads to 
analyticity of the system of functions R (wl,k'), where w' and 
k' are the frequency and the wave vector in a reference frame 
that moves relative to the initial one at a velocity u that takes 
on all values from zero (nonrelativistic causality condition) 
to unity (speed of light). From this we can arrive at the rela- 
tion 

1 Im R (a', k-u(m'-a) ) R (m, k) =R ( 8 ,  k-8o) Y - 
o'2-02-ifj 

dmf2. * 0 

(4.2) 
It leads to the strongest restrictions if one chooses 

uk=o, u=l ,  (4.3) 

and since R in a homogeneous isotropic medium depends 
only on the modulus of k, the matter reduces to a substitu- 
tion of the type k - uw - (k + w2)lt2. Accordingly, the 
static (w = 0) limits of relations (4.1) and (4.2), in which we 
shall be interested, take the form 
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1. OD awr2 
R (0, k)-R (P, k )  + -5 Im R  (a1, k )  , (4.4) 

0 

From this we can find the permissible values of R (0,k) if we 
know the terms outside the integrals and the signs of the 
integrands in the right-hand sides of (4.4) and (4.5). 

Taking next R to mean the quantities a, P, and their 
reciprocals (see (3.2) and (3.3)), we obtain the signs of their 
imaginary parts. The known expression for the energy dissi- 
pated by a monochromatic wave per unit time7*' 

yields the inequalities Im E,, >O and Im E, >O. From them 
and (2.7) we get 

The imaginary parts of the reciprocals are of opposite sign. 
The asymptotes of a and f l  as w -+ oo follow from the 

fact that the medium does not manage to react to an action 
whose frequency exceeds its characteristic frequencies (re- 
maining, of course, lower than the rest mass of the particles 
of the medium). In this limit the corresponding increments 
to the particle wave function vanish and, as a consequence, 
the increments to the induced charge and to the paramagne- 
tic current (see below). Therefore as o -+ w the response 
functions will be the same as for vacuum and, in particular, 

Another asymptotic expression we need is 

P (52, (PZ+ kZ)'Ia) = ( l + o p Z / k 2 )  -', (4-8) 
where w i  is the sum, over all the charged-particle species, of 
the squares of their plasma frequencies 4rep/m (e is the 
charge, p is its density, and m is the particle mass). For a 
rigorous derivation of (4.8) see the Appendix, a simplified 
one is given below. 

Starting with the second Eq. (2.6), we have 
Sj = 6jP + Sjd + Sje (the index 1 will be omitted from now 
on), where the paramagnetic jP and the diamagnetic jd cur- 
rent components are of the form 

(I) is the particle wave function, u is the spin operator, the 
summation over the particles was left out). It must be em- 
phasized that the diamagnetic part of the current contains 
the total vector potential, which satisfies the equation 
(w2 - k ')A = 477j and includes the induced-current field. 
This simple fact, which is obvious, e.g., from the viewpoint 
of the general equations of quantum electrodynamics, is ig- 
nored in many books. Taking all the foregoing into account" 
we have 

(4.9) 
(p is not altered by transverse action). As w -+ w we have 
Sf' -+ 0 (see above) and from (4.9) and (2.6) we get (4.8). 

5. ADMISSIBLE VALUES OF THE PERMITTIVITY AND OF THE 
MAGNETIC PERMEABILITY 

The results enable us to obtain the admissible static val- 
ues of the permittivity and of the magnetic permeability. For 
a longitudinal electric field, Eqs. (3.2a), (4.6a), (4.7), and (4.4) 
lead to the inequality 

a(0, k) = I / &  (0. k )  GI ( k  - arbitrary), (5.1) 

and the use of (3.3a) in place of (3.2a) yields 

A detailed discussion of the consequences of these equations 
(in particular, of the question of media with ~ ( 0 , k )  < 0) is con- 
tained in Ref. 5. 

For a magnetic field, the Leontovich dispersion relation 
leads to stronger restrictions than the Kramers-Kronig rela- 
tion. At the same time, it is more convenient, since the first 
factor in (4.6b) is of definite sign if the vector u is chosen in 
the form (4.3). For the response to an external field [relations 
(3.2b), (4.6b), (4.8), (4.5)] we have 

p (0, k) =p(O, k )  % ( l f  op2 /k2)  - I  ( k  - arbitrary), (5.3) 
and for the response to the total field [(3.3b) in place of (3.2b)l 
we have 

The Kramers-Kronig relation, however, yields for the re- 
sponse to the total field the same result (5.4), while for the 
rsponse to an external field it yields an inequality weaker 
than (5.3), viz.,*' 

p (0, k) 2 1 - o p 2 / k 2 .  (5.5) 

As c -+ ao, when the formulations of the causality con- 
ditions that are the basis of (5.3) and (5.5) coincide and the 
inequalities themselves also coincide (in standard units the 
factor o i /k  in these inequalities takes the form w:/k 'c2). 
We note in this connection that retention of terms of higher 
order in 1/c2 in (5.3) is not an exaggeration of the accuracy 
within the framework of the nonrelativistic calculation: 
these terms correspond to the parameter o i /k  'c2, which is 
not small (at small k), whereas higher powers of the small 
parameter v2/c2, where v is the velocity of the particles of the 
medium, were discarded in the expression for the current 
(see above). 

The inequalities obtained are illustrated in Fig. 3, where 
the regions of the admissible values of the permittivity (Fig. 
3a) and of the magnetic permeability (Fig. 3b) are shaded, 
and the dashed lines denote the restrictions (5.5). It can be 
seen that for the permittivity the response to the total field 
leads to stronger restrictions that pertain, however, to the 
point k = 0. For the magnetic permeability, on the contrary, 
stronger restrictions are imposed by the response to an exter- 
nal field, which pertains furthermore to the entire range of k. 
A more detailed discussion of the consequences of Eqs. (5.3) 
and (5.4) is contained in the Conclusion. 
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FIG. 3. 

We note that the inequalities discussed can be arrived at 
on the basis not of the dispersion relations but of the essen- 
tially equivalent Kubo relations that express the generalized 
susceptibility in terms of the retarded commutator of the 
corresponding currents.I2 This procedure leads, in particu- 
lar, to a known relation that yields (5.1) directly: 

where on, = E n  - E,, with En and E, the excited and 
ground energy levels, respectively. A similar formula for p ,  
leading to (5.3), can be obtained from the results of the Ap- 
pendix (this formula differs from (5.6) in that unity is re- 
placed by (1 + oi /k  2)-' and p' is replaced by <, see (4.9)). 

This method was used by Martin in his cited paper,4 
where inequalities similar to (5.1)-(5.4) are given. Their deri- 
vation, however, is highly unsatisfactory not only because 
they are formal and unaccompanied by a physical discussion 
(no notice is taken, for example, of the feasibility of negative 
permittivity), but also because of shortcomings in substance. 
There is, for example, no argument at all in favor of the 
transition from inequality (5.4), which admits the possibility 
ofp < 0, to the stronger inequality, which obscures this pos- 
sibility; the fact that the quantity oTXg is of definite sign, an 
important factor in the derivation, is not discussed; and so 
on. At the same time we must not overlook the great impor- 
tance of this paper, where it was first stated that the 
Kramers-Kronig relation may be violated for the permittivi- 
ty (case of response to the total field). 

6. STABILITY OF MEDIUM 

The question of satisfaction of the dispersion relation is 
closely connected with the question of the stability of the 
medium. We shall verify below directly that the inequalities 
(5.1)-(5.4) obtained above with the aid of the dispersion rela- 
tions consititute none other than criteria of the stability of 
the medium to spontaneous onset and growth of electromag- 
netic-field fluctuations. Besides additionally confirming the 
results cited above, it becomes possible to understand, from 
a different viewpoint, why the inequalities (5.1) and (5.3) per- 
tain to all values of k while (5.2) and (5.4) pertain only to the 
point k = 0. 

The connection between the dispersion relations (cau- 
sality condition) and the stability is based on simple physical 
considerations. In a medium that is unstable to the appear- 
ance and growth of a physical quantity A at a fixed-in parti- 

cular, zero-value of the quantity I, the response function 
must have a pole (or a cut) in the upper frequency half-plane, 
meaning violation of the dispersion relations. Only in this 
case does the quantity A have an exponential growth with a 
rate determined by the imaginary part of the frequency at the 
pole. On the other hand, violation of the dispersion relations 
(with satisfaction, of course, of the physical causality princi- 
ple) is possible only in the case of an unstable medium, where 
a nonzero value of A is produced spontaneously, unconnect- 
ed at all with the action I. If this takes place prior to the start 
of the action I, we encounter an imitation of causality viola- 
tion and nonsatisfaction of the dispersion  relation^.^ 

Proceeding now to formulation of conditions for stabil- 
ity of the medium with respect to the appearance and growth 
of fluctuations of a physical quantity @, we introduce the 
energywise conjugate external action-the "current" J .  This 
means that variation of the free energy F ( J ) (or simply of the 
energy at the temperature T = 0) of the medium in an exter- 
nal field is equal to SF(  J )  = @SJ. We seek the free energy 
F (@ )as a function of @ (this is just the quantity on which the 
Landau phase-transition theory12 is based), whose minimum 
determines the stable state of the system. The corresponding 
minimum conditions are in fact the conditions for the stabil- 
ity of the medium. 

It is well known that a transition from the variable J to 
@ is effected by a Legendre transformation 

( ) ( )  - 0 ,  6F ( J ) / 6 J = @  (6.1) 

followed by replacement of J with @ with the aid of the sec- 
ond of these equations. Hence SF(@ ) = - JS@ and the sta- 
ble state of the medium is determined by the conditions 

(6.2) 
The first of them corresponds to the absence of external ac- 
tion (the medium is represented by itself), and the second is 
the stability criterion proper. We note that physically the 
inequality (6.2) corresponds to the known Le-Chatelier- 
Braun principle [12,13]: the changes produced in a stable 
medium by an external action are such that they decrease the 
consequences of this action (see also Ref. 5). 

The Legendre transformations (6.1) correspond to the 
physical picture frequently called the Leontovich princi- 
ple.14 It is based on the following considerations. We are 
dealing with an expression for the function F (@ ) at arbitrary, 
including nonequilibrium, values of @ in terms of the purely 
equilibrium function F ( J ). This is possible if the current J i s  
chosen such that the given value of @ becomes equilibrium. 
In this case, however, we deal not with a free medium left to 
itself, but with a medium situated in an external field J. 
Therefore we must subtract from the free energy F( J)  the 
"extra" work corresponding to the energy in this field [the 
subtracted term in the Legendre transformation (6. I)]. 

It is important to emphasize that in the presence of an 
external field the quantity @ itself will also contain an "ex- 
tra" component due to this field. This component, which we 
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designate @,, must also be subtracted from the correspond- 
ing expression. Therefore, to obtain the correct stability cri- 
terion, it is necessary either to define @ from the very outset 
in such a way that it contain no extra terms, or replace the 
second condition of (6.2) by the inequality 

6 ( @  ( J )  -@, ) /61<0.  (6.3) 

Only then are we actually investigating the stability of a free 
medium, not subject to the action J, against spontaneous 
appearance and growth of the corresponding fluctuations. 
All the foregoing will be illustrated in the next section, using 
the electromagnetic field as an example. 

7. CRITERIA OF ELECTROMAGNETIC STABILITY 

The criterion of the stability of a medium to the growth 
of fluctuations of an electromagnetic field will be expressed 
below in terms of the response functions a and0. Since these 
criteria pertain to an equilibrium state of the medium, the 
answer is expressed in terms of the static values a(0,k) = 1/ 
~ ( 0 , k )  and 0 (0,k) = p(O,k), and the derivation itself can be 
carried out within the framework of electrostatics and mag- 
netostatics. 

We consider first stability with respect to the appear- 
ance of an electric field E (the quantity A ) in the absence of 
induction D (or, equivalently, of the field Ee ), which assumes 
the role of I;  the response function is the quantity a(0,k). 
This corresponds physically to Figs. l a  and lc  when the 
plates and the probe are uncharged (or even absent). Starting 
from the known relation1' S F  = ESD/~IT, we can identify 
the current J with the quantity D /~ IT ,  and @ with E. In ac- 
cord with the statements made at the end of Sec. 6, however, 
the quantity E = D - 4n-P (P  is the polarization of the medi- 
um) contains the term @, = D. Therefore, according to (6.3), 
the stability criterion takes the form 

6  (E-D)/GD=a(O, k) -l<O, (7.1) 

which coincides with (5.1). 
The investigation of the stability of the medium with 

respect to the appearance of the induction D (the result A ) at 
a zero field E (the actionI) with a response function l/a(O,k) 
corresponds to Fig. 2a with grounded or short-circuited ca- 
pacitor plates. The relation SF=  - DSE/4?r (Ref. 15) 
makes it possible to set the current J i n  correspondence with 
E/47~, and @ with - D; the latter, represented in the form 
- D = - E - ~ P P ,  contains the term @, = - E due to 
the external field. The inequality (6.3) yields the stability cri- 
terion 

6 ( E - D ) / 6 E = l - l l a ( 0 ,  k )GO,  (7.2) 

which coincides with inequality (5.2). Just as the latter, the 
condition (7.2) pertains only to the point k = 0: the spontan- 
eously produced induction satisfies inside the medium the 
equation k . D = 0 [see (2.3)]. Actually, as we can see, in both 
cases we are dealing with spontaneous onset of polarization 
that plays in fact the role of the quantity @ - 6@, in (6.3). 

It might seem that a similar role as applied to magnetic 
stability should be played by the magnetization 
M = (B - H)/477. However, the criteria corresponding to 
(7.1) and (7.2) are such that they exclude the existence of 

diamagnetism. The point is that the magnetization itself 
contains a term proportional to the current J, which must 
also be subtracted from the expression for @. This term, dia- 
magnetic in nature, is designated a@,, so that Eq. (6.3) now 
contains the quantity @ - @, - S@,. 

Examination of the stability with respect to the appear- 
ance of induction (the result A ) at H = He = 0 (the action I)  
with a response function0 (0,k) corresponds to Fig. lb  in the 
absence of current in the solenoid, or in the absence of the 
solenoid itself. The relation1' S F =  - BSH/4r makes it 
possible to identify J with H/477, @ with 
- B = - H - ~ T M ,  and @, with - H. However, using 
(4.9) and the equations 

i [ k M ] = j i ,  i [ k X B ] = 4 n j ,  i [ k X H ] = 4 n j e ,  

we can write two equivalent relations: 
-4nM=op"k2+op2)-LH- ( l + o p Z / k 2 )  -'Bp. (7.3a) 

-4nM= ( o p 2 / k 2 )  B-BP, (7.3b) 

where we have introduced the paramagnetic induction BP, 
defined by the equation ikxBP = 4n-jP . I t  can be seen from 
(7.3a) that the first term in the right-hand side is directly 
connected with the current J and must therefore be identi- 
fied witha@,. This yields a criterion that coincides with (5.3) 

6  [HI ( l + o p 2 / k 2 )  -B] /6H= (I+op2/k2)-I--p (0 ,  k )  GO. (7.4) 

Finally, an investigation of the stability with respect to 
the appearance of a field H (response A ) at B = 0 (action I) 
with a response function 1/0 (0,k) corresponds to Fig. 2b at a 
zero number of flux quanta through the opening in the su- 
perconductor. The relation S F  = HS B/4r yields 

I=B/4n,  @=H=B-4nM, @j=B,  6mI= ( o p V k 2 )  B  

(the right-hand side of (7.3b), which is proportional to J ) .  
This yields a criterion that coincides with (5.4): 

6  [ H -  ( l + o P 2 / k ' ) B ]  /6B=l/P (0, k )  - ( I +  o p 2 / k 2 )  GO. (7.5) 
By virtue of the equation k X H  = 0, which is valid in 

the static case in the absence of a current je inside the system 
(see (2.3)), this criterion pertains only to the point k = 0. 

The physical nature of S@, is simplest to explain using 
as an example the last of the considered cases. The equilibri- 
um of the given value of H is ensured by inclusion of the 
current J, whose role is assumed by the quantity B. How- 
ever, by virtue of the equation m i  = eE = - e ~ ,  the very 
inclusion of the field B leads to the appearance of an "extra" 
(diamagnetic) current - (ep/m)A, which in fact corre- 
sponds to the quantity a@,. The crucial point here is the 
induction law-turning on the magnetic field generates an 
electric field, which leads in fact to an additional "unwind- 
ing" of the charges. Nothing similar happens for a longitudi- 
nal field, and the corresponding quantity a@,, and with it 
diaelectricity, is absent. The ensuing difference between 
electricity and magnetism is more fundamental than the dif- 
ference corresponding to linearity of the Hamiltonian rela- 
tive to the scalar potential and its quadratic dependence on 
the vector potential,15 all the mores since in the relativistic 
theory (the Dirac equation) the Hamiltonian is linear with 
respect to all the components of the potential.3' 
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To complete this section, we present explicit expres- 
sions for that part of the free energy F (@ ) which has at equi- 
librium a minimum relative to spontaneous appearance of 
the fields E, D, B, and H, and is the first term of the corre- 
sponding Landau-theory expansion1': 

F (B) = [p- (1+op2/kZ) -I]  B2/8xpZ, 

Here F is the free energy for arbitrary k, and Fo is the free 
energy only fork = 0. We emphasize that these expressions 
must in no way be confused with the known expressions for 
the total free energy of a dielectric or a magnet in an external 
field (such as &E2/8r etc.), which correspond to quantities of 
the type F( J )  and which should not have a minimum in the 
equilibrium state. This confusion is the cause of incorrect 
statements that crept into many books concerning the per- 
missible values of E and p .  

8. CONCLUSION 

Summarizing the analysis in this article, we point now 
to the answer to the questions posed in the Introduction, 
starting with the most general question (e). 

e) The admissible range of variation of the permittivity 
and of the magnetic permeability is determined by Eqs. 
(5.1)-(5.4) and by Fig. 3 (it is more convenient to go over to 
Fig. 4, which shows the reciprocal quantities). The physical 
meaning of the boundaries of this region is the following. For 
the quantity 1 / ~  (Fig. 4a) the lower limit E = 0 at k#O is the 
limit of stability with respect to spontaneous appearance of 
an electric field; the equality &(O,k0) = 0 means the appear- 
ance of a charge-density wave with a wave vector k,. The 
lower limit E + w at k = 0 means the limit of the stability 
with respect to the appearance of homogeneous induction D 
(ferroelectri~it~.~' The upper limit E = 1 is not a stability 
boundary, but corresponds simply to the limiting state of an 
infinitely rarefied medium (vacuum). 

For the quantity 1/p (Fig. 4b), the lower limit p -+ w is 
the stability boundary with respect to spontaneous appear- 
ance of magnetic induction B (ferromagnetism at k = 0 and 
antiferromagnetism at k#O). The upper limit 
p = (1 + w i / k  2 ) - 1 ,  however, is not a stability boundary but 
corresponds to the limiting state of a London superconduc- 
tor at absolute zero temperature (this state is not ordered in 

Ferroelectr 

a 

I Ferromagnet \ 
Antiferromagnet 

(SDW) 

the electromagnetic sense-the Meissner current appears 
not spontaneously but is induced by an external field). 

a) Media with negative E (at k#O) actually exist (noni- 
deal plasma, strong electrolytes, and others5). There are no 
media with negativep. 

b) With increasing k, no conditions appear for the onset 
of diaelectricity (at least in the nonrelativistic region), and 
the conditions for the onset of diamagnetism become more 
stringent (the lower limit o fp  increases and approaches uni- 
ty). 

c) There are no states with a spontaneous magnetic field 
H (with spontaneous diamagnetic currents). They might be 
realized in the setup of Fig. 2b (just as ferroelectrics are real- 
ized in the setup of Fig. 2a) if an external current appears on 
the inner surface of the superconducting solenoid and is can- 
celled out, under the condition B = 0, by a spontaneous cur- 
rent in the medium. By virtue of S B = pS H, however, this 
calls forp = 0 (ideal diamagnetism), and this is impossible at 
k # 0 because of the restrictions obtained above on p ,  and at 
k = 0 because of the Bloch theorem16 (see also Ref. 2). We 
note incidentally that these restrictions do not exclude at all 
the existence of media with anomalously large diamagnetic 
susceptibility (see Fig. 3b). The very existence of such media, 
however, may be due, for example to a phase transition into a 
ferro- or antiferromagnetic state (,u -+ w). 2 

d) There are no media with spontaneous homogeneous 
electric field. They might occur by virtue of the equality 
S D = ES Eat  E = 0 at the pont k = 0, but this is prevented by 
the restrictions obtained above. 

It should be noted, however, that the statements con- 
tained in (c) and (d) pertain, strictly speaking, only to the 
impossibility of the onset of a corresponding order param- 
eter in a phase transition from the state of a stable homogen- 
eous and isotropic medium on account of the appearance of 
instability to infinitely small perturbation. The problem it- 
self of the existence of media with order parameters H and 
E = const is a broader one, and we hope to discuss it in the 
future. 

We are grateful to V. L. Ginzburg and the participants 
of the seminar under his direction, particularly to E. G. 
Maksimov, for very helpful discussions. 

APPENDIX 

We present here a more rigorous derivation, than in the 
text, of the asymptotic (as o -+ co and at k either fixed or 
replaced by k - uw) equations 

FIG. 4. 
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(A. la) and the differentiation operators act on the fluctuating term 
p'. It is easy to verify that 6j' vanishes as w + a, no more 

(A.lb) slowly than w-' ,  and this leads to (A.lb). 

(the angle brackets denote averaging over the physical state). 
The operators of the charge density and of the current 
j = +y + je are expressed in terms o f̂ the Heisenberg op- 
erators $(x, t ) of the particle field and A(x, t ) of the electro- 
magnetic field in the form 

From the equations of motion we obtain 

(c is the interaction expressed in terms of 4:: and 2). The 
external action 6je - exp [i(kx - wt ) ]  adds to $ and A incre- 
ments with an additional dependence on x and t in  the form 
of the same exponential. Therefore when the first equation of 
(A.2) is solved by perturbation theory in Sje we get the fol- 
lowing replacements 

i8 ldt+idldt+o, ^p-+^p+k 

and the addition 

Accordingly as w + co the incremen! SFi vanishes (this 
leads directly to (A.la)), as does Sj,, so that we get 
6 j  -+ 6je - ( e j j / m ) ~ x .  Taking the second equation of (A.2) 
into account and making the substitutions fi - + p  + j3' and 
p = @) = const, we get 

"We note that relation (4.9) yields the correct spectrum of the transverse 
excitations of the medium 02 = oi + k2. 

2'Its derivation is contained in V. V. Losyakov's diploma thesis, Moscow 
Physicotech. Inst., 1981. 

3'Diamagnetism itself appears in the relativistic theory on account of vir- 
tual transitions into states with negative energy. 

4'Antiferroelectrics, which correspond to growth of transverse lattice 
waves with k#O, can be shown not to be described in principle by the 
model of a homogeneous isotropic medium. 
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