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It is shown that a defect flux in a metal gives rise to an electron-deformation (ED) current. Since 
deformations give rise to dislocation fluxes, the metal deformations cause electron currents. The 
ED currents are proportional to the deformation rate i and increase with decreasing temperature 
like T - 5  in the isotropic model of the metal. Below the superconducting-transition point the ED 
currents are proportional to the density of the normal electrons and are equal to zero in a super- 
conducting metal. 

PACS numbers: 72.15.Qm, 74.30. - e 

If a defect flux is present in a metal, the collisions of the 
electrons with the mobile defects perturb the electron sub- 
system and, since this perturbation has a preferred direction 
(the direction of the defect flux J,), one should expect the 
onset of anisotropy of the electron distribution function, 
which causes an electron current or a compensating poten- 
tial difference. This was first theoretically demonstrated for 
point defects in Ref. 1 and for linear defects (dislocations) in 
Ref. 2. 

Consider, for example the picture of diffusing atoms or 
ions. An activated ion, i.e., one executing an elementary dif- 
fusion act, as it hops over to a neighboring equilibrium posi- 
tion, scatters electrons that collide with it. The hop-over di- 
rections of each individual atom are random but, say owing 
to the ion density gradients, the electron are predominantly 
scattered in the direction of the ion diffusion flux. Thus, in 
place of external forces that perturb the electron subsystem, 
in this phenomenon the perturbing factor are the collisions 
of the defects with the electrons. 

We write down the kinetic equation for this process in 
the form 

(af/at),.+ (af/dt );:I, = o, (1) 
where the first term describes the distribution-function 
change due to the collisions of the mobile defects with the 
electrons, while the second describes the complete collision 
integral due to all the mechanisms of scattering and relaxa- 
tion of the electrons in the metal lattice. In the relaxation- 
time approximation we have 

(af/at ,;:I, = - f1/r, , (2) 
where T~ is the electron total relaxation time due to all the 
scattering mechanisms. It is necessary to determine the first 
term of (1). We separate a group of defects having a velocity u 
and consider the quantity (df /dt )E corresponding to this 
group. ~ e t j ~  be the nonequilibrium increment to the distri- 
bution function in a coordinate system moving with the ve- 
locity u of the defects. Since the collisions of the electrons 
with the defects can be regarded as elastic, we have 

2 
[ f ,  (k, U) -fi (kt, u jl wrt, d3k', (3) 

de 

This probability is strictly speaking a function of u, but 
if the ratio u/uF (v, is the Fermi velocity of the electron) is 
very small, this dependence can be neglected. The thermal 
velocities of the atomic defects are u z lo4 cm/sec. Thus, u/ 
vF z lop4. At the same time, the motion of the defects in the 
periodic field of the lattice can change the scattering poten- 
tial as a function of the displacement, and the probability of 
scattering by such a defect can differ substantially from the 
probability of scattering by a "normal" defect situated in one 
of the regular equilibrium positions, where it undergoes 
thermal vibrations (see scattering by an "activated" field1v3). 
To emphasize this circumstance, we shall hereafter desig- 
nate the probability of scattering by a moving defect by 
W*,,.. 

If the total defect density is N, , we obtain after summing 
over all values of u 

where N, (u) is the density of the defects having velocities u, 
and the summation extends over all possible values of the 
velocities u. We determine now the functionj(k,u). We use a 
square-law electron-dispersion approximation, in which the 
entire picture is lucid. In this approximation we can consider 
the dependence of the distribution function of the electrons 
on their velocity v. In a coordinate frame that moves togeth- 
er with thedefect at a velocity u, the electrons havea velocity 

w 

v=v-U. ( 5 )  

The electron distribution function in this frame is thus 

f 6) =/ (v-u) . (6) 
Since ugv, we have 

r 6)  = f  (v) I U - O - ~ / / ~ E  I u=o (Vueu) (7) 

but?), = , = f,, i.e.,?l, =, is the distribution function of the 
electrons in the lattice coordinate frame. In exactly the same 
way dY/d&l, = , = df,/d& and V , E  = p, where p is the elec- 
tron momentum in the lattice. Thus, 

where Wkk, is the probability of the electron being scattered afo 
from a state k into a state k'. / ( 5 ) = / ~ ( v ) - x ( ~ u ) 7  

1077 Sov. Phys. JETP 56 (5), November 1982 0038-5646/82/111077-03$04.00 @ 1983 American Institute of Physics 1077 



whence 

Substituting (9) in (4) we get 

where k, is the projection of the vector k on u, k = p/fi, and 

where rde is the transport relaxation time of the electrons 
when scattered by a defect. 

We return now to the lattice frame, replacing u by - u. 
Using (10) and (4) and taking into account (1 1) as well as the 
fact that 

we obtain 

Using (13) and (2), we write the kinetic equation in the form 

where f, is the total nonequilibrium increment to the distri- 
bution function in the metal. The electron current produced 
by the defect flux is obtained from the relation 

where f, is given by (15) 

The coefficient of the flux J$)  is the effective charge due to 
the dragging of the electrons by the defects: 

Thus 
(=a) ( a )  j(x)=Zde Jd . (I9) 

In the free-electron approximationl~' 

Zde=enlcfdelr (20) 

where a*, is the transport cross section for electron scatter- 
ing by an "activated" moving defect. 

We note that the effective charge Zde of the electrons 
dragged by the defects is equal to the effective charge Zed 
produced by dragging of the defects by electrons1: 

ZdeZZed. Q1) 
This leads to an important and quite general consequence: 

any defect is acted upon in a current-carrying metal a force 
that it would have were its effective charge Zed .  Conversely, 
any defect moving in a metal produces a currentj = Z,, Vd . 

Equation (21) can be obtained from the principle of the 
symmetry of the kinetic coefficients, and is consequently in- 
dependent of the electron dispersion law ~ ( k ) .  Therefore, us- 
ing the results of electric transport theory, we write for the 
dragging of "holes" by defects 

If the flux Jd is produced by the density gradient of 
point defects, we have 

In liquid metals the gradient of the impurity atoms will pro- 
duce a current or its compensating potential difference; this 
is the so-called electrodiffusion effect. The experiment 
agrees with the theory, i.e., with Eq. (23). In liquid metals, 
where the diffusion coefficient D- 10-5-10-6 cm2/sec the 
electrodiffusion potential is of the orde of microvolts and is 
perfectly ob~ervable.~" 

In solid metals at low temperatures the diffusion coeffi- 
cient is exceedingly small (D < 10- l2  cm2/sec), so that obser- 
vations of the diffusion potentials are either highly compli- 
cated or practically impossible. Particular interest attaches 
in solid metals, especially at low temperatures, to electron- 
deformation currents produced by dislocation motion due to 
deformation of the metal. 

The theory developed above applies also to dislocation 
fluxes. The dislocation flux density JdF is given by (see Ref. 
7) 

where e i ,  is a unit antisymmetric tensor of third rank, p'"'is 
the flux density of the dislocations of type s, and V i  is the 
velocity of the dislocations of types. If we neglect the anisot- 
ropy of electron scattering by dislocations, the effective 
charge of electron dragging by a dislocation per unit disloca- 
tion length is 

Zds=enlcfd;, (25) 

where el, is the transport cross section for electron scatter- 
ing by a moving dislocation. The electron current produced 
by the dislocation flux is 

j =zdpjdis . (26) 

Associated with the dislocation flux, however, is a metal de- 
formation rate 

&=.bJ*'" , (27) 

where b is the Burgers vector. In the simplest case of disloca- 
tions of one type moving in one direction with equal veloc- 
ities, we have 

&=bp dis~dis=bJdiS 3 (28) 

p,, is the dislocation density and vdis is the dislocation veloc- 
ity. Using (27), we express the dislocation flux in terms of the 
sample deformation rate 
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Using (26) and (29) we obtain a simple connection between 
the electron-deformation current and the deformation rate 

The quantity uzis cannot as yet be readily calculated theore- 
tically. It is usually assumed that azis - b but direct measure- 
ments frequently yield considerably larger values of u,*,, . 
Thus, for edge dislocations in Zn we have ei, /b 28 (Ref. 
8). We shall put hereafter uzis /b = x With decreasing tem- 
perature the mean free path of the electrons increases, there- 
fore the effective charge increases, since Z,, a I. Taking into 
account the known temperature dependences of I, we can 
expect the following temperature dependence9 

where O is the Debye temperature, j(O ) is the electron-defor- 
mation current at T = 0, and no account is taken of the 
relatively weak dependence of I ( T )  on the electron dispersion 
law and of the temperature dependence of the electron scat- 
tering by a dislocation. Let us estimate the electron-defor- 
mation currents in zinc at low temperature. If I = low2 cm 
at T = 1 0 K , n = 3 ~ 1 0 ~ ~ ~ m ~ ~ , x = 3 0 , a n d b = 3 ~ 1 0 - ~  
cm, we have Z,, z 3 X 1014e per unit dislocation length, i.e., 
approximately 106e per atom in the dislocation. We note that 
in the purest tungsten I=: lo-' cm (see Ref. 8), i.e., Z,, - 10' 
e per atom in the dislocation. Substituting the values of Z,, 
and b for zinc in (30) we obtain 

j = 103h A/cm2 

Using ( 3  I), we can express the field intensity E as 

For zinc we have under the same conditions E=: 10V8 V/cm. 
We now obtain for j an estimate suitable at not too low 

temperatures, for an ideal defect-free crystal. We consider 
the expression for j(O ) at the Debyre temperature O: 

j (0) =en1 (0) xe, (32) 

where I (0 ) is of the form (see, e.g., Ref. 8): 

1 ( @ )  =tivRlk@. (33) 

Thus, 

Then 

Thisestimateis meaningful so long as I ( T )  < I i), where I ?'are 
the mean free paths determined by electron scattering by 
lattice defects or by lattice boundaries. It overvalues j if 
I (T )  > 1 g). For example for zinc (0 = 305 K) at T = 10 K we 
obtain from (35) j=: lo5 A/cm2; this means that I (T),I g'. If 

the additional resistivity pzis introduced in the metal by the 
dislocations is known, we can estimate j from an equation 
that follows from (30) if the anisotropy of the scattering of 
the electrons by the dislocations is neglected: 

where c,,, = N,,,/N, is the relative density of the disloca- 
tions in the crystal andp, is the resistivity of the metal at the 
deformation temperature. 

Directed dislocation fluxes can be produced by various 
methods, say by nonuniform loading of the sample. One 
must not think, however, that the phenomena considered 
will not be observable if the average dislocation flux 3,'" 0. 
Deformation by constant loading, say in tension, frequently 
develops jumpwise; the microdeformation jumps corre- 
spond to dislocation microfluxes of the same sign, i.e., a jum- 
plike 8, curve should correspond to a "jumping" and fluctu- 
ating current 

where 8, is the microdeformation rate. 
As already noted, j increases like T -' with decreasing 

temperature, but below the superconducting-transition tem- 
perature j begins to decrease in proportion to the density n, 
of the "normal" electrons not bound into Cooper pairs: 

2n 
j a n ,  = 

exp ( A l k T )  f I ' 

where A is the width of the superconducting gap and jlT=, 
= 0. Although the observation of ED currents is not a sim- 

ple experimental problem, one can hope that a study of elec- 
tron-deformation phenomena will contribute to a better un- 
derstanding of the deformation mechanism. Dislocation 
motion is accompanied by generation and motion of point 
defects (interstitial atoms, vacancies, and others). According 
to the general conclusion of the theory, electron currents 
correspond also to a flux of point defects as well as any other 
defects. An analysis of currents due to generation of point 
defects and accompanying the deformation is beyond the 
scope of the present article. 

The author is deeply grateful to M. I. Kaganov and L. P. 
Pitaevskii for a helpful discussion of the work. 
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