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An analysis is made of thermodynamic (equilibrium) fluctuations of the resistance due to fluctu- 
ations of the average (over the volume of a cylindrical sample) temperature because of heat 
exchange with an external circuit. The simplest models are used to investigate the problem of 
whether the spectral intensity of such fluctuations can be proportional to l/w, i.e., whether these 
fluctuations can be the cause of the flicker noise (known also as the excess or residual noise) and 
also of the l/w or l/f noise. 

PACS numbers: 72.70. + m 

INTRODUCTION 

In the last 10-15 years the flicker noise in conductors 
and many other materials has been subjected to intensive 
experimental investigations, the results of which are sum- 
marized in many reviews (see, for example, Refs. 1-3). How- 
ever, the state of the theory of this noise leaves much to be 
desired; in the first investigations a spectral intensity of the 
flicker noise proportional to l/w has been obtained by super- 
imposition of relaxation spectra proportional to v/(02 + v2) 
subject to fairly artificial assumptions about the distribution 
of the damping coefficient v. In the recent work of Klimon- 
tovich4 the approach was essentially the same and no phys- 
ical justification was given for the assumed distribution. 

Since many authors attribute the flicker noise in con- 
ductors to equilibrium fluctuations of the temperature or the 
number of carriers, we shall use very simple models to con- 
sider the possibility of whether such fluctuations give rise to 
a spectrum of the l/w type. 

Fluctuations of the temperature AT obey the well- 
known relationship5 

(AT) '=kTZ/C, (1) 

where k is the Boltzmann constant, Tis the equilibrium tem- 
perature, and C is the specific heat of a sample. Bearing in 
mind the temperature dependence of the resistance, we can 
rewrite Eq. (1) in the form 
- 
(AR) 2/RZ=ky2/C, y =d In R/d In T, (2) 

where y/T is the temperature coefficient of the resistance. 
Introducing the spectral intensity S, (a) related to 

(AR I= by 

the specific case of just the temperature fluctuations but in 
view of the analogy between diffusion and heat conduction, 
all the relationships obtained are easily applied to fluctu- 
ations of the particle (carrier) density. 

1. MAIN EQUATIONS 

The fluctuation equations for heat conduction are6 
au 

j=-o grad u+f, c - +div j=O, 
at (4) 

where j is the heat flux density, uis the thermal conductivity, 
u are fluctuations of the temperature [in this case the tem- 
perature is T + u(r,t )I, c is the specific heat per unit volume, f 
is the density of a random heat flux which creates tempera- 
ture fluctuations and which is uncorrelated along directions, 
in space, or in time; f obeys the relationship 

fa (r, t ) f ~  (r', t') =O (r) 13~~6 (r-r') 6 (t-t'), ( 5 )  
where the bar denotes, as in Eqs. (1)-(3), the procedure of 
statistical averaging, and the indices a and correspond to 
the Cartesian components along the x, y, and z axes. 

The random field f is introduced like the random force 
in the Langevin equation for the Brownian motion. The 
function O (r) is introduced from a consideration of an un- 
bounded homogeneous medium in which the function u sat- 
isfies the equation 

au 
C- -oAu=-divf; 

a t  (6) 

its spectral intensity, governed by the four-dimensional 
Fourier integral 

S. (k, 0) =IS u (r, t) u (r-S, t-T) e-i(ks-'+r) (a) dz, (7) 

is obtained in the form 
-cc 0 

we find that as a result of slow heat exchange between a 
8kz 

Su(k, a ) =  C Z O z + 0 2 k '  1 (8) 
sample and the external circuit the spectral intensity S, (w) 
rises in the limit w-+O in accordance with a definite law. Our from where we find that 
aim will be to derive this law. p 8 

In some systems (liquid electrolytes, cell membranes, u (r, t) u (r-S, t) = - (Zn) jj ra2+02P k2 eiks(&)do 
etc.) the fluctuations of the resistance may be due to fluctu- 
ations of the number of particles (carriers), i.e., they may be ==I @ eiks ( W = - ~ ( S ) .  

8 
2co 

(9) 
due to diffusion rather than heat conduction; moreover, 
combined fluctuations are also possible. We shall consider Since the quantity AT occurring in Eq. (1) is 
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1 
AT = -J u  ( r ,  t )  ( d r )  , 

I 

v (10) 

where the integration is carried out over a volume V identi- 
fied in the medium, we obtain FIG. 1 .  Closed electric and thermal circuits. 

( A T ) " = -  
8 

@ J J 8 ( r - r f )  ( d r )  ( d r r )  = - , 
2cov2  2Co 

and arrive at Eq. (1) if we assume that 

8=2kT20, (12) where p is the resistivity and S (without the argument w) is 

where in the case of an inhomogeneous medium we should the cross-secti0na1 area. We 

take local values of T (r) and a(r). A l l  T 
u ( t ) = - = -  j u d v  

The formula (8) represents the special case of the follow- R TV 
(20) 

ing relationship known from the spectral theory of random 
processes. Let us assume that a random function v(t ) is de- and we shall assume that the side surface of our system is 

fined by the equation impermeable to heat, i.e., that the condition j, = 0 is satis- 
fied on this surface. Then, "rectifying" the system as shown - - 

u ( t ) = z  L i [ f i ( t )  I, (13) in Fig. 2a, introducing a longitudinal coordinate z, and as- 
h suming initially that I, = ca , we find the spectral intensity 

where fA (t ) are uncorrelated random functions satisfying the Su (@I by a method represented by Eqs. (13)-( 19)- Averaging 
condition over the transverse cross section z = const, we obtain func- 

tions 
fh  ( t )  fb(t') =@~6~&6 ( t - t ' ) ,  (14) 1 ' J 1 

and L,  are linear stationary (homogeneous in time) opera- j = - J i . d s ,  s u = -  S Q ~ S ,  I = - J f d ~ ,  S (21) 
tors. The spectral intensity 

m 

S . ( o ) =  J u ( t ) u ( t - r ) e i u r d r  

which depend only on z and w (we shall not stress explicitly 

(15) the dependence on w). The functions of Eq. (21) satisfy the 
equations - m du 4 

is calculated from the formulas j = - 0 - 4 -  f, icwu = --, 
dz dz (22) 

8. (o )  = IMh (o) ['@A, MA ( a )  =Lh[e- iwt]  eiut, (1 6 )  and it follows from Eqs. (20) and (22) that 
A - r j (212) - j  (-1/21 y j (112) - j  (-1/21 

-- 
whereas the functions MA(@) representing the frequency "- - 

icoT 1 oT K21 (23) 
characteristics corresponding to the operators LA are found 

In the case of the function j(z) with lzl < I  /2 we obtain by considering harmonic oscillations when fA (t ) and v(t ) are 
taken in the form d2j/dz'+KZj=K2f, K= ( i c o / o )  ' I z =  (cc0/2o) '" ( l + i ) ,  (24) 

A ( t )  = e i ,  u  ( t )  =fje-'"t 

and Eq. ( 13) becomes 
(17) where K is a complex wave number governing the propaga- 

tion of temperature waves of frequency w. If lzl> 1 /2, Eq. 
(24) should be modified by replacing K with 

(18) K, = (i~,w,/a,) ' /~. If z = + 1/2, then at the contact 
between conductors with different values of c and w the 

Therefore, instead of the system (4, we have to solve the quantities u (i.e., c- 'dj/dz) and j should be continuous. . 
Elementary operations give 

equations - - - 
j=-o grad E+f, icoE=div j, 7 1 1 

119) r =-[- J r ( ~ ) f ( z ) a ~  +- J r ( z ) f ( z ) h ]  , (25) 
T1 , z , < 1 / 2  

oe 
where instead of time we have the frequency w and which I Z I > ~ / Z  

contain the spectral intensity of interest to us. If necessary, where 
inversion of the integral (15) can be used to calculate also the 
correlation function. 

2. ONE-DIMENSIONAL PROBLEM a h 

We shall consider an electric and a thermal circuit 
shown in Fig. 1 and consisting of a noisy conductor of length 
1 and a homogeneous conductor (external circuit) of length I, 
(see Sec. 4). However, we shall initially investigate a simpler 

-- j o f 
one-dimensional system in which the transverse cross sec- 
tions of the conductor and circuit are the same' We FIG. 2. Plane-parallel systems: a) cylindrical sample in an infinite circuit; 
shall be interested in fluctuations of the resistance R = pl  /S, b) film on a substrate. 
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sin Kz I r ( ~ ) = -  = - z  for lzl <-, 
K cos (K1/2) +H sin (K1/2) 2 

sin (KW2) exp{iK,  (z-1/2) ) r ( z )  =-r ( - Z )  = - 
K cos (K112) +H sin (K1/2) 

t I 
- - e x p { i ~ e ( z - ) }  2 for z > -  2 (26) 

and 
C C CsO % C C . 0  '12 

H=- I -  K~ = - (-i o.) = ( )  ( i ) ,  (27) 
Ce Cc 

of which the approximate expressions correspond to very 
low frequencies satisfying the conditions K1( 1 and HI( 1. 

Introducing the notation 
1 

fL (2 ,  t )  = ,- J fz (r, t )  as, (28) - 
where the integration is carried out over a transverse cross 
section z = const, we can use Eq. (5) to obtain in the one- 
dimensional problem 

@ ( 2 )  
fL(z, t ) f i ( z f ,  t ') = - 6 (z-z ')  6 ( t - t ' )  

S 

and then Eq. (25) gives, on the basis of Eq. (16), the required 
spectral intensity 

where we have assumed that the sample and the external 
circuit are at the same temperature T. 

Substitution of the approximate expressions from Eq. 
(26) into the integrals of Eq. (30) gives 

where the first term in the parentheses represents the contri- 
bution of random fluxes in the sample itself and the second 
the corresponding fluxes in the external circuit; if the exter- 
nal circuit is finite, it then follows from Eq. (32) that in the 
limit o 4  the second term is also finite. We can see that the 
law l/w is not obtained under the conditions KI<1 and 
HI( 1. 

It is appropriate to make here the following critical 
comment. Van Vliet, van der Ziel, and Schmidt6 used the 
same initial assumptions and considered a one-dimensional 
system shown in Fig. 2b and corresponding to a film on a 
substrate. If at z = 0 in Fig. 2b we substitute the condition 
j = 0 and assume that L = a,, such a system is equivalent to 
that in Fig. 2a, which is investigated above. However, in the 
calculation of fluctuations due to bulk sources (i.e., random 
fluxes to which our treatment is limited) Van Vliet, van der 
Ziel, and Schmidt6 proceeded incorrectly, namely at the 
boundary between two media they assumed the condition of 
continuity of u and adu/dz, and not of u and j,, as they 
should have done; exactly the same way at the boundary 
impermeable to heat the condition j, = 0 and not du/dn = 0 
should be satisfied. It is interesting to note that after correc- 
tion of this error the final formulas for the spectrum S, (w) 

are obtained much more simply; in the case of an external 
circuit of finite width the expressions of Eq. (26) become 

sin Kz 
r ( z ) = -  

K cos (K1/2) +H sin (K1/2) 

1 c K.1. 
for lzl <-, H=-K,ctg- 

2 CP 2 

= - sin (K1/2) sin K,  (LIZ-z) 
I 

K cos ( ~ 1 / 2 )  +H sin ( ~ 1 / 2 )  ' sin (K,1,/2) 

I t 
for - < z < -  

2 2 '  L=l+l,, 

and in the second integral of Eq. (30) the upper limit should 
be taken as L /2. 

3. FLICKER NOISE IN A ONE-DIMENSIONAL SYSTEM 

The spectral intensity S, (w) obtained in the preceding 
section gives, as expected, an integral (3) which converges at 
w = 0. For this reason the law l /o  cannot be obtained at 
very low frequencies. 

We shall now assume that the system satisfies the condi- 
tions 

K1<1, HlB1, (33) 
which is possible if the following parameter is small: 

This means that heat exchange with the external circuit is 
difficult because of the low thermal conductivity of this cir- 
cuit. Under the conditions of Eq. (33) the function T (z) can be 
replaced by approximate expressions 

22 
r ( z ) = - - -  

1 
HZ 

for lzl <- 
2 ' - 

1 
r ( z ) =  - ~ e x p { i ~ . ( z - 3 ) )  for I > - .  (35) 

H 2 

Neglecting the second integral in Eq. (30), which determines 
the contribution of an infinite external circuit, we obtain the 
expression 

SR (o) /R2=2ky2g/3Co,  (36) 

describing a noise with the l/w spectrum in the one-dimen- 
sional system under consideration. 

If we assume that the expression (36) is valid in the fre- 
quency range w, < w < w,, we find that the total intensity of 
the flicker noise is 

and a comparison with Eqs. (2) and (3) leads to the inequality 

which limits the possible values of the ratio w,/w,. If w, is 
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defined by the condition [ K  11 = 1 and w, by the condition 
/ H I / =  1, weobtain 

and the inequality (38) becomes strong, i.e., the noise with 
the l/w spectrum represents only a small proportion of the 
total fluctuation intensity. 

The expression (36) is obtained by dropping the second 
integral (30) which has a different frequency dependence and 
is much greater than the first. In considering this problem, 
we shall introduce a dimensionless frequency v and a dimen- 
sionless spectral intensity s(v) satisfying the condition 

m 

Js(v)dv=i  (40) 
0 

in accordance with the formulas 

Representing s(v) in the form 

where si (v) is governed by the sources in the sample and s, (v) 
by those in the external circuit, we can describe r (z) by the 
exact expressions in Eq. (26), assume that H  = - iK /l ' 1 2 ,  

and calculate the integrals of Eq. (30) without any approxi- 
mations. In this way we obtain 

4E2 sh p-sin p 4c5" ch p-cos p 
si (v) = - 7 s,(v)=- 

n p3N n p3N 9 (43) 

where 

and, in particular, if f = 1, then 

T si (v) d~ = - 
1 1  

e-Qp = - - -In 2=0.28, 
2 n 

i.e., only 28% of the mean square of the fluctuations is due to 
random sources located in the selected part of the homogen- 
eous system. In this case the function si (v) cannot be propor- 
tional to l/v. 

I f p g l ,  the expressions in Eq. (43) become 

2E 1 1 2 'h 
si (v) = - 1 

3n ~ + ~ 2 v ) ~ ~ + v  * S ~ ( V ) = R  (T) 1+(2y)lh+V . 

Hence, it follows that in the case of small values off andp we 
always havesi (v)(s, (v) so that a simple one-dimensional sys- 
tem is not described by the law l/w corresponding to Eq. (36) 
or to the dimensionless formulas 

sr (v) =2E/3nv (v> 1). (47) 

However, it is clear that the usual idea that the spectral in- 
tensity of any random process should have a zero derivative 
of w = 0 (i.e., a horizontal asymptote if the logarithm of the 
frequency is plotted along the abscissa) does not apply to the 
present case. 

We shall now consider the physical meaning of the ex- 
presions (46) and (47) for si (v), and also of the condition f 4 1. 

We can easily show that the reflection of a propagating tem- 
perature wave by the boundaries of a sample at z = + 1 /2 is 
represented by the coefficient 

This coefficient applies to j so that the heat flux reaching a 
boundary is almost completely turned back and this is why 
temperature perturbations accumulate giving rise to a char- 
acteristic resonance at zero frequency with a resonance de- 
nominator 1 + (2v)'I2 + v. A monotonic rise of s, (v) on re- 
duction in v is explained by the fact that damping of 
temperature waves decreases on reduction in the frequency. 
It is important to note that the reflection of temperature 
waves is not total, because in the case of total reflection (i.e., 
in the case when 5 = 0 the value of AT does not vary with 
time and there are no fluctuations. The parameter f repre- 
sents heat exchange between a sample and the external cir- 
cuit, and l/w, is of the order of the time needed for equaliza- 
tion of the temperature in an isolated sample. 

The additional factor (2/v)'I2 in the formula for s, (v) is 
due to the fact that the damping coefficient I d ,  of the 
temperature waves in the external circuit is proportional to 
w"' SO that fluctuations in the sample at a frequency w are 
created by those sources in the external circuit which are 
located at a distance from the sample of the order of l/ImKe 
or closer. If the expressions in Eq. (32) are used to allow for 
the finite dimensions of the external circuit, the behavior of 
the spectral intensity in the limit w-0 agrees with the usual 
ideas (see above). However, it is not quite clear which mod- 
el-with an infinite or a finite external circuit-corresponds 
closer to reality, because in the case of lowering of the fre- 
quency (and in some experimental investigations, frequen- 
cies of the order of Hz have been reached) the impor- 
tant channels of heat exchange between a given system and 
the external world are those which can be ignored at higher 
frequencies. 

4. THREE-DIMENSIONAL PROBLEM 

We can now go over to the three-dimensional problem 
and allow both for different transverse dimensions of a sam- 
ple and the external circuit (Fig. l), and for their transverse 
inhomogeneity, i.e., for the dependences of c and u on the 
transverse coordinatesx and y. As before, we shall regard the 
side surface of the whole system impermeable to heat and, 
moreover, we shall assume that the product of the complex 
wave number of temperature waves and the transverse size is 
shall in the absolute sense, and the transverse dimensions 
themselves are small compared with the length of the sample 
I. Under these conditions the three-dimensional problem un- 
der discussion can be reduced to the one-dimensional form, 
exactly as it is done in the theory of transmission lines obey- 
ing the telegraph equations (see, for example, Ref. 7). Using 
the expressions in Eq. (19), we integrate over the transverse 
cross section z = const to introduce the quantitites 

I= J 7. ds, F= J f ,  as, (I=;-' CE as, J 
(49) 
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which depend only onz (2. and Bchange abr$ptly at z = + I / 
2 assuming the values of 2, = c,S, and a, = o,S, for the 
homogeneous external circuit). Assuming that at each cross 
section 2 = const the function u is approximately constant, 
and replacing u with U, we obtain the equations 

analogous to the system of equations (22) and solvable in the 
same way; the boundary conditions at z = + 1 /2 reduce to 
the continuity of U and J. 

In view of this analogy, assuming that .. .. ..A ,.A 

K= ( i&/G) '", K,= (ic,olo,) '", H=-iK/E", f=c,a,/co, 

(51) 

we eventually obtain the same formulas (43), (46), and (47) in 
which we have to introduce now the coefficient C/?l and 
assume that 

where the parameter 6 occurring in the expressions for si ( Y )  

and o, determines the rate of heat exchange between the 
sample and the external circuit. In fact, the ratio U/J  for a 
temperature wave traveling along the z axis of a homogen- 
eous system with the parameters 2. and B is given by 2, 
where 

Z= (i/^cGo) '" (53) 
can be called the wave impedance of the system; the quantity 

f '" =ZIZ. (54) 

determines, in accordance with Eq. (48), the coefficient of 
reflection of a wave from the boundary between a sample and 
the external circuit. The sample may consist, for example, of 
a conducting film (parameters c and a ,  transverse cross sec- 
tions, heat capacity C = cS1) on an insulating substrate (pa- 
rameters cd and ad , cross section Sd ); then, 

According to Eq. (47), the law l/w may be obeyed by the 
assumed models only in that part of the spectral intensity 
which is due to the sources in a sample, and only for small 
values of the parameter 6, i.e., when the exchange of heat 
between the sample and the external circuit is slow. How- 
ever, under these conditions the spectral density due to the 
external sources of fluctuations predominates and has a dif- 
ferent frequency dependence. If we attempt to attribute the 
l/w dependence to equilibrium temperature fluctuations, 
we then encounter generally two problems: we have to find 
the reason why the effects of external sources become weaker 
(they are "frozen" or "screened") and the reason for the en- 
hancement of the internal sources (in powder resistors this 
behavior is exhibited by contracts between powder grains, 
which conduct heat poorly, as can be confirmed by calcula- 
tions). It is very difficult to find these reasons. 

Another difficulty is associated with the fact that at 
I- 1 cm the upper frequency for the l/w law in accordance 
with the first formula in Eq. (39) is found to be less than 1 Hz. 

Since the l/w law is observed also at much higher frequen- 
cies, it can only be due to temperature fluctuations in fine 
and very fine structures whose very existence is in doubt. 

Recently published experimental results8 indicate that 
the l/w noise in metal films (Au, Bi, and Cr) is such that the 
separate parts of the system fluctuate practically indepen- 
dently (the mutual spectral intensity vanishes at low fre- 
quencies at which temperature flucutations result in an al- 
most uniform temperature distribution) and much more 
strongly than one would expect of temperature fluctuations 
(though a calculation of the latter is carried out in a not very 
convincing manner). Hence, it follows that in these experi- 
ments there is an additional and a stronger mechanism of 
fluctuations which is of local nature. However, in other ex- 
periments (see, for example, Ref. 9) a strong spatial correla- 
tion has been observed. 

CONCLUSIONS 

In the simplest electric circuit consisting of a source of a 
current with a constant emf $ and a resistance R, the cur- 
rent I i s  given by the relationship Z? = RI. If we consider the 
noise of physical origin in such a system we find that fluctu- 
ations of $ are usually due to the thermal noise, spontaneous 
fluctuations of I give rise to the shot noise, and fluctuations 
of R are referred to as the flicker noise using the term to 
indicate the slowness of this process and its nonelectrical 
origin. Therefore, the flicker noise is an essential element of a 
trio which determines the unavoidable electrical fluctu- 
ations in any physical system. 

In the absence of a current, when a system is in a state of 
thermodynamic equilibrium, its resistance R can only de- 
pend on thermodynamic parameters (temperature, volume 
and number of particles of different kinds) and R can change 
because of fluctuations in these parameters. This is also true 
during the passage of a current that does not alter signifi- 
cantly a thermodynamic equilibrium. 

We have carried out a theoretical investigation of fluc- 
tuations of the resistance due to equilibrium fluctuations of 
temperature (average over the volume of a cylindrical sam- 
ple), giving rise to fluctuations of the voltage and current in 
the electric circuit containing a sample. Since temperature 
fluctuations described by Eq. (1) are due to heat exchange 
between a sample and the ambient medium, the frequency 
distribution of the intensity of these fluctuations depends 
strongly on the nature of heat exchange. Our aim has been to 
determine under which conditions the spectral intensity of 
such fluctuations is proportional to l/w. The results indicate 
that such a spectrum appears under conditions of hindered 
(slow) heat exchange, when temperature waves which appear 
inside a sample or near it because of thermal motion hardly 
leak outside and result in accumulation of temperature per- 
turbations in the interior of a sample. However, additional 
calculations indicate that temperature waves excited in the 
external circuit far from the sample contribute a dominant 
term in the formula for the spectral sensitivity, which has a 
different frequency dependence. It follows that temperature 
fluctuations do not give rise to the l/w noise in its pure form 
(at least within the framework of the adopted models) and 
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they are usually masked by a more intense noise of different 
origin. 

The practical importance of the flicker noise is associat- 
ed not only with the fact that it predominates at frequencies 
below 5 or 10 kHz, but also because it determines the fre- 
quency instability of oscillators operating at much higher 
frequencies. Vakmanl0 carried out a rigorous calculation for 
triode oscillators, but the results can easily be extended also 
to other types of oscillator (semiconductor, laser, etc.). 

The author is grateful to A. Ya. Shul'man for construc- 
tive criticism. 
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