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A general theoretical analysis is made of the inelastic scattering of neutrons by paramagnetic ions 
interacting with the environment. A situation is considered in which a paramagnetic ion interacts 
statically with a crystal field and the total angular momentum of a partly filled electron shell of 
the ion relaxes because of the contact interaction with conduction electrons. A detailed calcula- 
tion is made of inelastic scattering of neutrons in an intermetallic compound PrA1, at low tem- 
peratures. Analytic expressions are obtained for the profiles of the inelastic scattering peaks and 
for the temperature dependences of the peak parameters. It is shown that the interaction of the f 
electrons of Pr with the conduction electrons broadens and shifts the peaks corresponding to 
transitions between the f-electron states in a crystal field, and also splits the peaks and makes 
them asymmetric. 

PACS numbers: 61.80.Hg, 71.70.Ch 

The first systematic experimental investigations of 
crystal electric fields in metallic  system^'^ drew the atten- 
tion of theoreticians to the circumstance that the widths of 
neutron reflection peaks representing transitions between 
levels in crystal electric fields can sometimes be considerably 
greater than the width of the resolution function of a spec- 
trometer. Attention was drawn in Ref. 1 to the dependence 
of the width of the reflections on the temperature of a sample 
and on the splitting caused by the crystal electric field. 
Somewhat later, investigations were made of intermetallic 
compounds of the PrAl, type (see, for example, Refs. 5-7) 
with the hexagonal symmetry of the crystal lattice, corre- 
sponding to a higher degree of lifting of the degeneracy of the 
ground J multiplet than in the case of cubic systems.14 

The interest in crystal fields arises, on the one hand, 
from the direct influence of the nature of splitting on such 
macroscopic properties as the specific heat, magnetic sus- 
ceptibility, etc.; on the other hand, investigations of these 
fields make it possible to determine the coupling between a 
paramagnetic ion with the lattice or with conduction elec- 
trons in a sample by determination of the spectral character- 

We shall analyze theoretically the inelastic scattering of 
neutrons by paramagnetic ions under relaxation conditions. 
We shall develop a general approach for the case when a 
paramagnetic ion interacts statically with a crystal field of 
the environment and the total angular momentum of a partly 
filled electron shell of the ion relaxes because of the contact 
interaction with conduction electrons. We shall use the su- 
peroperator f~rmal i sm'~  to obtain a general expression for a 
doubly differential cross section of neutron scattering in 
which separate summations are carried out over the states of 
the Hamiltonian of the crystal field and of conduction elec- 
trons. 

We shall adopt the model of a gas of noninteracting 
particles for conduction electrons and approximate the den- 
sity of one-electron states in the conduction band by a con- 
stant value. We shall reduce summation over the states in the 
electron subsystem to integration and obtain an expression 
for the matrix elements of the relaxation superoperator. 

We shall demonstrate the use of the new theory by an 
analysis of the inelastic scattering of neutrons in an interme- 
tallic compound PrA1, at low temperatures. 

istics of reflections. Investigations of the mechanisms of 
broadening of the reflections by crystal electric fields have USE OF THE SUPEROPERATOR IN THE 

stimulated a number of theoretical DESCRIPTION OF INELASTIC NEUTRON SCATTERING 

The mechanism of the dynamic exchange broadening 
was investigated in Refs. 8-10. The temperature dependence 
of the broadening due to the spin-spin interaction was ob- 
tained in Ref. 11. A calculation of the spin-lattice broaden- 
ing was made phenomenologically in Ref. 12. 

Investigations of the influence of the interaction of the f 
electrons of a magnetic ion with conduction electrons on the 
single-ion susceptibility were described in Refs. 13 and 14. A 
simple expression for the line width was obtained in the case 
of a two-level system. 

An approach developed earlier in Ref. 11 was used in 
Ref. 15 to obtain the temperature dependence of the broa- 
dening of the neutron reflections due to the interaction of the 
f electrons of a rare-earth ion with conduction electrons, 
which was in good agreement with the results reported in 
Ref. 13. 

Let us assume that a monochromatic beam of unpolar- 
ized neutrons with a wave vector k, is scattered magnetically 
by electrons of a paramagnetic ion in a sample and that such 
scattering transfers a neutron from a state k, to a state k,, 
and the sample from a state ( i )  of energy Ei to a state If) 
with an energy Ef. In the first Born approximation the dou- 
bly differential cross section of this process is described by 
the formula9 

Here, F (k,k,) is a factor unimportant in the subsequent anal- 
ysis, 

is the energy transferred from a neutron to the sample, 
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J,=k-'[~x[Jx k ] ]  (2) 

is the component of the total angular momentum J of the 
investigated paramagnetic ion in a direction perpendicular 
to the momentum k = ko - k, transferred to the sample, 
and 

p=exp ( - H / T ) / S p [ e x p  ( -HIT)  ] (3) 

is the density matrix at a temperature T. 
We shall represent the total Hamiltonian H of the sam- 

ple in the form 

H=HA+HB+HI, (4) 

where HA is the static part of the Hamiltonian of the para- 
magnetic ion, HB is the Hamiltonian of the subsystem with 
which the paramagnetic ion is interacting (for example, the 
conduction electron system) and which we shall call-for 
brevity-the thermostat, and HI is the Hamiltonian of the 
interaction between the paramagnetic ion and the thermos- 
tat. 

Using next the S-function representation 

6 (o -Ef+E, )  =-n-' Im (o-Ef+E,+i6)-I ( 5 )  

and introducing the Liouville operator 2 in accordance with 
the definition 

EA=HA-AH, (6) 

where H i s  the Hamiltonian of the system and A is an arbi- 
trary quantum-mechanical operator, we can transform Eq. 
(I)  into (see Ref. 16): 

Here, 6 is an infinitesimally small width of a paramagnetic 
ion state. 

The problem now is to transform Eq. (7) so that it con- 
tains explicitly only summation over the paramagnetic ion 
states. We shall assume that the rate of relaxation due to the 
interaction HI is low compared with temperature so that the 
density matrix of Eq. (3) can approximately be assumed to be 
factorized: 

P=PAPBI (8) 

where p, is the density matrix of the paramagnetic ion cor- 
responding to the Hamiltonian HA and p, is the density 
matrix of the thermostat. In the slow relaxation case, we can 
follow the treatment of Ref. 16 so that the Eq. (7) is trans- 
formed identically to the form 

where 

O ( w + i 6 )  = ( o - L A - @  +i6)-' ,  
A 

the relaxation superoperator M being of the form 

@ ( o + i 6 )  =PE,Q(o-LA-E,-QEIQ+i6)  -'QE,P, (1 1) 

whereas the action of the projection operator P reduces to 
summation over the thermostat variables, i.e., 
PA = Sp, ( p B A  ). The operator Q is defined by Q = 1 - P. 

We shall assume also that the rate of relaxation is low 
compared with the characteristic separations between the 

energy levels of the paramagnetic ion. Then, the relaxation 
superoperator can be represented in an approximation 
which is quadratic in respect of the relaxation interaction: 

We can therefore see that the problem reduces to a cal- 
culation of the relaxation superoperator matrix that depends 
both on the model of the thermostat itself, governed by the 
Hamiltonian H,, and on the interaction HI between the 
thermostat and the paramagnetic ion. 

2. RELAXATION DUE TO THE INTERACTION WITH 
CONDUCTION ELECTRONS 

The matrix of the relaxation superoperator in the space 
of the states of the paramagnetic ion Hamiltonian HA can be 
obtained by assuming a specific model for the description of 
conduction electrons. We shall use the simplest model of a 
gas of noninteracting electrons with the Hamiltonian 

where gk = i?k '/2m - E~ is the energy of a free electron 
measured from the Fermi energy; C ,+, and Ck, are the cre- 
ation and annihilation operators of a conduction electron 
with a wave vector k and a spin projection a. Moreover, we 
shall assume that the interaction of the total angular mo- 
mentum of the partly filled f shell of the paramagnetic ion 
with conduction electrons is of the exchange type: 

where g is the gyromagnetic Land6 factor, Js, is the s-f ex- 
change integral, and S4 are the components of the effective 
spin operator of conduction electrons, which can be intro- 
duced conveniently as follows: 

kk' 

1 1 S+ = -x Ck,+&.,, S- = -C ~ k + + ~ k , t ;  

N (15) 
kk, kk' 

here, N is the total number of conduction electrons. 
Let us assume that (Im), Em ), (In), En ), . . . are the ei- 

genfunctions and the corresponding eigenvalues of the para- 
magnetic ion Hamiltonian HA (the ion may be subject to, for 
example, a crystal field), whereas (la),  E, ), ( I  f l  ) ,ED ), . . . are 
the eigenfunctions and the eigenvalues of H ,  . Then, the ma- 
trix element of the relaxation superoperator can be repre- 
sented in the form 

Using the defintion of the Liouville operator (6), we ob- 
tain 

aa.6tBt 
( L I )  nm;n,rnc=- ( g - I )  J s ,  [ (Jnn,SaBt) 6mmt6a~~- (Jrn,mS~za) 6nnt6antI 3 
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Substituting these relations in Eq. (16), we find that the 
matrix elements of the relaxation superoperator are de- 
scribed by the following expression: 

-]n,,iJm,mj[Sij(o-E,.+Em) -S"'( -o-Em,f  En) 1, 
(171 

where 

Using the definitions of Eq. (1 5) and the well-known commu- 
tation relations for the operators C ,+, and C,,, we can show 
that only the diagonal components of the tensor S @(R ) dif- 
fer from zero, namely 

S" (B) =SuY (B) =Srr (B) = S  ( Q )  . (19) 
We have introduced here the function 

1 
s ( Q ) = - ( g - 4 ) ' J 8 f z  

2 
kk' 

n - g k p f  E k + i b  ' 

which contains the average occupation numbers of one-elec- 
tron states at a given temperature 

We can thus see that the matrix elements of the relaxation 
operator are governed by the function S (R ) alone and the 
expression ( 1 7) becomes 

We can find the explicit form of the function S (R ) by 
approximating the density of one-electron states in the con- 
duction band by a constant quantity 

where the limiting energy is DzE,, and p, is the density of 
one-electron states on the Fermi surface. In the case of this 
simple density-of-states function the double sum in Eq. (20) 
reduces to the following integral: 

1 D D 

S (9) = - ( g -  1) 2J,:pp2 
2 

- D  - D  

Allowing during integration in Eq. (24) that T(D and RgD, 
we obtain the result 

S (Q) =S' (Q) +is" ( a ) ,  (25) 

where c = 0.577 215 664 9 . . . is the Euler constant and 

is a small parameter of the theory. 
A simple analysis of Eq. (22) shows that any constant 

(independent off2 ) correction to the real part ofS '(a ) makes 
no contribution to the matrix elements of the relaxation su- 
peroperator. Thisis why thedifferences '(0 ) - S '(0) iscalcu- 
lated. 

At high temperatures when D R ,  the functions (a )has 
the simple form 

We can thus see that the matrix elements for the inverse 
Green superoperator are 

The real part of the relaxation supermatrix determines the 
shifts of the peaks representing inelastic neutron scattering, 
whereas its imaginary part gives the broadening of these 
peaks. 

The restrictions imposed on the rate of relaxation by the 
temperature of a sample and transition energies remain valid 
right down to the lowest temperatures because the relaxa- 
tion broadening and shifts are proportional to the small pa- 
rameter y. 

3. NEUTRON SCATTERING IN AN INTERMETALLIC 
COMPOUND PrA13 

In an intermetallic compound PrA1, the paramagnetic 
P?' ions have a partly filled 4f shell containing two f elec- 
trons. In accordance with the Hund rules this electron con- 
figuration has the ground state with S = 1 and L = 5. Since 
the 4f shell is less than half-filled, the spin-orbit interaction 
produces a ground state ,H4 with the total momentum J = 4. 
Since the Pr3+ ions are in an electric field of an environment 
of the hexagonal symmetry, the splitting of the ,H4 nonet is 
described by a Hamiltonian which is invariant under the 
transformation group of the coordinates D ,, (Ref. 7): 

where 0 are the equivalent operators. According to Ref. 7, 
we have B :  = 2.37 + 0.15, B:  = - (2.21 f 0.2).10-~, B :  
= (1.25 _f 0.1).10-3, B,6 = (18.2 0.8).10-3 K. The inter- 

action (3 1) splits the nonet into three singlets r,, r,, and T4 
and three doublets r k ,  T: , and T,. 

Application of the above theory to the scattering of neu- 
trons by the paramagnetic Pr3+ ions under conditions of 
relaxation of the total momentum of an ion due to the inter- 
action with conduction electrons can be demonstrated most 
clearly at low temperatures T 5  1 meV, when in practice only 
the singlet T ,  and the doublet T,  are populated and when the 
momentum projections are m, = 0 and m, = f 1. In this 
case we can assume that the effective momentum of an ion is 
J = 1 and consider a simplified system of the ion levels in a 
crystal field which contains the singlet r, and the doublet 
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r,. Then, the dimensions of the supermatrices are not very 
large and the difficulties associated with inversion of a ma- 
trix in the calculation of the Green superoperator (10) can be 
overcome relatively easily. Summation in Eq. (9) over the f- 
shell states of the ion in a polycrystalline sample gives the 
simple result: 

-Gii;-i-i-G-i-i;iil+pi[Goi;oi+Go-i;o-1+Goi;-io+Go-i;ioI 
+po[Gio,io+G-10;-io+Gio;o-,fG-io;oiI}. (32) 

Here, the factor F ( b k , )  is omitted and we have 

p0=[1+2 e r p  (-A/T)] -I, (33) 

PI=PO exp (--AIT) , (34) 

where A  is the energy of the doublet state (relative to the 
singlet state). 

The matrix elements in the first brackets of Eq. (32) 
describe elastic neutron scattering by the f shell of the inves- 
tigated ion, which is in the doublet state. The second and 
third brackets contain the matrix elements describing inelas- 
tic neutron scattering which is accompanied by a transition 
of the f shell from the doublet to the singlet state and by the 
reverse transition. The matrix elements of the Green supero- 
perator have the following symmetry: 

I i -  - -  i i - - -  i Got; oi=Go-1; 0-i, 

Gio; io=G-10; -10, Goi; -io=Goi; 10=G10; 0-i=G-10; 01, 

which can reduce the number of the required calculations. 
Since only inelastic scattering is of interest to us, it is permis- 
sible to limit calculations to just three matrix elements of the 
Green superoperator: Go,;,, , G,,;,, , and Go,; - ,, . The con- 
tribution to the scattering cross section near o = - A  is 
made by the matrix elements 

and 

yhere the matrix elements of the relaxation superoperator 
M are calculated for w = - A .  The form of the scattering 
cross section near w = A  is governed by the matrix elements 

and 

yhere the matrix elements of the relaxation superoperator 
Mare calculated for w = A .  

The expressions (35)-(38) for the matrix elements of the 
Green superoperator near w = + A are obtained within the 
framework of the above approximation of slow relaxation 
corresponding to y< 1. After calculation of the relevant ma- 
trix elements of the relaxation superoperator from Eq. (22) 

and substitution of the matrix elements of the Green supero- 
perator of Eqs. (35)-(38) in the expression for the scattering 
cross section (32), we obtain the following energy depen- 
dences: 

near w = - A  and 

near w = A .  The width Td,, and the shifts A,,, are given 
below. 

The above expressions (39) and (40) demonstrate clearly 
all the effects described by the theory developed above. In 
addition to the already known relaxation broadening and 
shift of the inelastic scattering peaks, our theory predicts 
splitting of the peaks because of the interaction of the f elec- 
trons with conduction electrons, as well as asymmetry of 
these peaks. The interaction between the f and conduction 
electrons results in a relaxation shift and broadening of each 
component of a doublet by a different amount. Therefore, a 
doublet splits into lower (d ) and upper (u) states. The inelas- 
tic scattering peaks shift toward lower energies o transferred 
to a neutron because the f electron energy decreases due to 
the interaction with conduction electrons. 

The asymmetry of the peaks corresponding to transi- 
tions to the lower state of a doublet is due to interference 
between the scattering of neutrons by the f and conduction 
electrons. The second scattering channel is strongly sup- 
pressed because of the quadratic dependence of the process 
on the s-fexchange interaction, so that the interference ef- 
fects are small. Similar coherent relaxation effects appear 
also in the determination of the Mossbauer emission spec- 
trum. 17,18 

The Breit-Wigner parametrization of the inelastic scat- 
tering cross section near a resonance under relaxation condi- 
tions is an approximate process but this approximation is 
fully justified in the case of slow relaxation when the relaxa- 
tion rate is a slowly varying function ofa,  compared with the 
cross section itself in the region of a resonance. 

The temperature dependences of the parameters of the 
peaks are 

A, (T) =-4s' (A) 

1/21?u (T) =y [T+2A (cth (A/2T) -I)], (42) 
'/,I?d (T) =y [T+4A cth (A/2T) 1, (43) 

The shift of the lower doublet state is A, = 24,. It follows 
that the doublet splitting is A, - A,  = A , .  

An analysis of Eqs. (42) and (43) for the peak widths 
shows that at low temperatures T<A the scattering of neu- 
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dZcr dcud~2' 'el. units 

FIG. 1. Profiles of peaks due to inelastic neutron scattering. The curves 
are calculated using the formulas (39) and (40) describing the profiles of 
peaks due to inelastic neutron scattering accompanied by a transition of 
the f shell from a doublet to a singlet state (on the left) and with a reverse 
transition (on the right). The scale for the left-hand part is 100 times 
greater than for the right-hand part. The parameters of the curves are 
calculated from Eqs. (41)-(46) and (33)-(34) assuming that 
y = 0.63 X lop< A = 4.5 meV, D = 10 eV, and T = 0.5 meV. 

trons is only on the lower doublet state which relaxes at a 
finite rate Jr, (0) = 44 y, whereas the rate of relaxation of the 
upper state is $r, (0) = 0. When temperature is increased, 
the splitting between the upper and lower doublet states de- 
creases and the widths of the corresponding peaks increase 
proportionally to temperature. 

The asymmetry coefficient 0 of a peak corresponding 
to the lower doublet state is governed only by the value of the 
parameter y at low temperatures, i.e., P(O) = 2y. In this 
model the peak asymmetry increases on cooling. The model 
predicts a particularly strong asymmetry of the peak corre- 
sponding to ineleastic scattering and accompanied by a tran- 
sition of the f shell from the lower doublet state to a singlet. 
An interesting property of the model is that the intensity of 
the peak corresponding to this transition has a minimum at a 
temperature T z 0 . 3  meV and it increases on further cooling. 
This model effect is associated with an increase in the relaxa- 
tion shift as a result of cooling. The change in the shift is 
governed by the ratio between the positions of the doublet A 
and the effective width of the conduction band D. 

The magnitudes of all the effects are proportional to the 
relaxation parameter y which can be estimated for the Pr3+ 
ion using the gyromagnetic Land6 factor g = 0.8, the ex- 
change integral Jsf = 0.2 eV (Ref. lo), and the density of 
states p, = 0.5 eV-'. The substitution of these values into 
Eq. (28) gives y = 0.63.10W3. 

Figure 1 shows curves calculated using Eqs. (39) and 
(40) for y = 0.63.10-3, A = 4.5 meV, D = 10 eV, and 
T = 0.5 meV. Since the scale for the left-hand side is 100 
times greater than for the right-hand side, it is clear that the 
areas under the peaks corresponding to transitions to the 
lower doublet state differ by just two orders of magnitude, 

whereas the population of the doublet represents only 
- lop4 of the singlet population. 

It should be pointed out that in an analysis of the cross 
section for the scattering of neutrons by the Pr3+ ions at 
temperatures above 1 meV we must calculate the popula- 
tions p, and p ,  allowing for all the nonet states r , ,  r , ,  r,, 
Ty' ,  r y ) ,  and r , .  It should be pointed out that at tempera- 
tures T < 0.1 meV we can no longer use our theory because at 
T = 0.1 meV the relaxation shift is A ,  = 0.03 meV. 

An analysis of high-resolution experimental data on 
neutron scattering can give the temperature dependences of 
the peak parameters in accordance with the parametrization 
of Eqs. (39) and (40). Then, a comparison of these depen- 
dences with those given by Eqs. (41)-(46) will demonstrate to 
what extent the proposed model describes the process of neu- 
tron scattering by paramagnetic ions under relaxation con- 
ditions. Low-resolution experimental data can be used to 
check the model by comparison of the experimental depen- 
dences of the areas under the peaks. 

The authors are grateful to I. P. Sadikov and P. A. Alek- 
seev for their constant interest and a discussion of the re- 
sults. 

'K. C. Turberfield, L. Passell, R. J. Birgeneau, and E. Bucher, J. Appl. 
Phys. 42, 1746 (1971). 
'R. J.  Birgeneau, E. Bucher, J. P. Maita, L. Passell, and K. C. Turberfield, 
Phys. Rev. B 8, 5345 (1973). 

'A. Furrer, J. Kjems, and 0. Vogt, J. Phys. C. 5,2246 (1972). 
4A. Furrer and E. Warmining, J. Phys. C 7, 3365 (1974). 
5P. A. Alekseev, I. P. Sadikov, I. A. Markova, E. M. savitskg, V. F. 
Terekhova, and 0. D. Chistyakov, Fiz. Tverd. Tela (Leningrad) 18,676 
(1976) [Sov. Phys. Solid State 18, 389 (1976)l. 

'P. A. Alekseev, I. P. Sadikov, A. A. Filipov, E. M. Savitskii, V. F. Terek- 
hova, I. A. Markova, and 0. D. ~his tGkov,  J. Phys. (Paris) 40, Colloq. 
5, C5-147 (1979). 

7P. A. Alekseev, I. P. Sadikov, Yu. L. Shitikov, I. A. Markova, 0. D. 
Chistyakov, E. M. Savitskii, and J. Kjems, Proc. Fourth Intern. Conf. on 
Crystal Field Effectsand Scattering of Electrons in f-Electron Systems, 
Wroclaw, 1981 (ed. by R. P. Guertin and W. Suski), p. 274. 

'A. Furrer and H. Heer, Phys. Rev. Lett. 31, 1350 (1973). 
9A. Furrer, Solid State Commun. 16, 839 (1975). 
''A. Muraski, A. Furrer, and Z. Kletowski, Solid State Commun. 19,65 

(1976). 
"K. Sugawara, Phys. Status Solidi B 81, 313 (1977). 
"H. Heer, A. Furrer, W. Halg, and 0. Vogt, Proc. Second Intern. Conf. 

on Crystal Field Effects in Metals and Alloys, Zurich, 1976 (ed. by A. 
Furrer), Plenum Press, New York, 1977, p. 278. 

I3K. W. Becker, P. Fulde, and J. Keller, Z. Phys. B 28,9 (1977). 
I4K. W. Becker and P. Fulde, Proc. Second. Intern. Conf. on Crystal Field 

Effects in Metals and Alloys, Zurich, 1976 (ed. by A. Furrer), Plenum 
Press, New York, 1977, p. 284. 

I5K. Sugawara, Phys. Status Solidi B 92, 317 (1979). 
I6A. M. Afanas'ev and V. D. Gorobchenko, Zh. Eksp. Teor. Fiz. 66,1406 

(1974) [Sov. Phys. JETP 39,690 (1974)l. 
I7E. Kankeleit and A. Kording, J. Phys. (Paris) 37, Colloq. 6, C6-65 

(1976). 
"A. M. Afanas'ev, V. D. Gorobchenko, and V. N. Peregudov, Fiz. Tverd. 

Tela (Leningrad) 22,2257 (1980) [Sov. Phys. SolidState22,1315 (1980)l. 
I9G. Feller, A. Frieser, B. Lippold, and E. Miihle, Abstracts of Papers 

presented at Fourth Intern. Conf. on Crystal Field Effects and Scatter- 
ing of Electrons in f-Electron Systems, Wroclaw, 1981, p. 11. 

Translated by A. Tybulewicz 

1063 Sov. Phys. JETP 56 (5), November 1982 Peregudov et al. 1063 


