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The Schrodinger equation for an electron in the field of an attraction center of arbitrary depth and 
in a uniform magnetic field is solved under the assumption that the attraction-center effective 
radius a is small compared with the magnetic length 1 = (cfi/lelH )'I2. The spectra of the bound 
and quasibound states are obtained and their dependence on the depth of the potential center Uis 
studied in detail. The width and the real part of the energy of the quasibound state in the higher 
Landau bands N #O is investigated at arbitrary values of U. A system of wave equations is 
constructed for the bound and quasibound states, as well as the wave functions of the continuous 
spectrum. On the basis of these functions it is possible to calculate any semiconductor kinetic 
coefficient due to interaction of the carriers with small-radius centers in a quantizing magnetic 
field. The transverse and longitudinal static conductivities of a carrier gas scattered by such 
centers in a quantizing magnetic field are calculated. Expressions for them are obtained in general 
form in terms of the operators for scattering by a center in an axisymmetric gauge at an arbitrary 
depth of the scatterer potential. Oscillations of the transverse and longitudinal conductivities 
with changing depth of the potential of the center are observed. It is shown that the dependences 
of the conductivity on the temperature and on the field are governed essentially by depth of the 
scatterer potential, i.e., by the type of impurity in the semiconductor. 

PACS numbers: 72.20.Dp, 72.20.Jv, 72.20.M~ 

1. The problem of the interaction of an electron with a 
center having a small radius a<l  in a magnetic field was dealt 
with in a number of studies'-6 (here a is the radius of the 
center and 1 is the magnetic length). This problem is of inde- 
pendent interest both as a study of a quantum mechanical 
system, such as a negative ion in a magnetic field, and from 
the applied viewpoint, particularly in the study of kinetic 
properties of semiconductors in quantizing magnetic fields. 
Skobovl solved the problem of scattering of slow particles by 
a short-range a41  potential. He considered only an s wave, 
and the poles of his scattering amplitude gave the energy of a 
magnetic-field-induced bound state of an electron on a cen- 
ter at a zero projection m = 0 of the orbital momentum of 
the electron L = 0 on the direction of the magnetic field H. 
Bychkov2 obtained the energy and wave function of a bound 
state of an electron with m = 0 and L = 0 by using for the 
center a S-function potential and summing the ensuing geo- 
metric progression. Demkov and Drukarev3 investigated, by 
the method of the zero-radius potential and using one pheno- 
menological parameter (the amplitude of electron scattering 
by a center at H = 0 and at zero electron energy) a weakly 
bound state of an electron with m = 0 in the Landau band 
N = 0. In Ref. 3 the obtained dependence of the magnetic 
level on the field intensity was more accurate than in Refs. 1 
and 2. Andreev4 investigated the spectrum of bound and 
quasibound states of an electron in the field of a shallow 
center (U<fi2/m*a2) in an arbitrary Landau band (N(I 2/a2) 
for weak mixing of the Landau levels by the center. In view 
of this weak mixing, the problem was reduced in Ref. 4 to 
one-dimensional. Demkov and Drukarev5 investigated 
weakly bound states of an electron with nonzero orbital mo- 
mentum L # 0 in the Landau bands N = 0 and 1. They used 

in the analysis two phenomenological parameters, the elec- 
tron binding energy on the center at H = 0 and the effective 
radius r,(H = 0) of the center. 

Owing to the presence of a magnetic field (in particular, 
since there is no spherical symmetry), the problem consid- 
ered calls for specifying the boundary conditions-joining 
the solutions of the Schrodinger equations in the region of 
the action of the potential of the center and outside this re- 
gion. In Ref. 4, where the problem was one-dimensional, the 
question of the boundary conditions was resolved in elemen- 
tary fashion. The method of zero-radius potential3 for the 
study of thes state in a magnetic field gives very good accura- 
cy (see below). Difficulties are encountered for states with 
nonzero orbital momentum at H # O  and for a non-shallow 
potential (U2fi2/m*a2). The usually employed boundary 
condition is the matching of the logarithmic derivatives of 
the wave function. Near the resonance, when a level with a 
specified L # O  appears in the well, such a boundary condi- 
tion is very sensitive to the detuning A U of the well from 
resonance and to the value of the particle energy F(H).6 In 
Ref. 5 the joining of the logarithmic derivatives was replaced 
by joining of the wave functions. It was assumed there that 
the function of the "inner" region r 5 a  does not feel the 
magnetic field at all, and no account was taken of the change 
of the normalization coefficient of the wave function at 
H $0. Yet the normalization coefficient is just as sensitive to 
A Uand to E (H ) as the logarithmic derivative, and its change 
at H #O changes the joining conditions. The condition used 
in Ref. 5 is fully applicable when a real weakly bound state is 
present in the well at H = 0, but calls for refinement when 
there is no such state. In addition, the spectrum of quasi- 
bound states at arbitrary U in higher Landau bands N # O  
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was not investigated before, and the question of formulating 
the boundary conditions in the determination of such a spec- 
trum remained open. 

A general method of analyzing an electron spectrum in 
the field of a center of small radius but of arbitrary depth in a 
magnetic field was proposed by Andreev and Koshelkin.' 
We solve below, on the basis of this method, subject to the 
only assumption that a<l, the Schrodinger equation for an 
electron in a center of arbitrary depth and in a uniform mag- 
netic field. The spectra of the bound and quasibound states 
of the electron are obtained. Their behavior was investigated 
in detail for the Landau bands N = 0 and 1 and for the angu- 
lar momentum projections m = 0 and + 1. The behavior of 
the width and energy of the quasibound states in higher Lan- 
dau bands n # 0 was studied at arbitrary depths of the center, 
i.e., at an arbitrary relation between ImE and Re E. A system 
of wave functions of these states and of the continuous-spec- 
trum state was constructed. 

The constructed system of wave functions was used as 
the basis for the calculation of the static transverse and lon- 
gitudinal conductivities of a gas of semiconductor carriers 
that do not interact with one another but interact with small- 
radius scatterers in a quantizing magnetic field. 

The conductivity for such a situation was calculated 
earlier in Refs. 1 and 8, but only the contribution of the s- 
scattering of an electron by an individual center to the con- 
ductivity was taken into account. The contributions of the 
higher moments with m # O  to conductivity was taken into 
account in Refs. 9 and 10, but in the approximation of weak 
mixing of the Landau levels by an individual scatterer. 

We obtain below expressions for the transverse and lon- 
gitudinal conductivities in terms of the operators of electron 
scattering by an individual center and an axisymmetric 
gauge. The equations derived are valid for the potential of a 
center of arbitrary depth, i.e., at an arbitrary relation 
between T and #bH compared with U ( T  is the electron tem- 
perature, w, = eH/m*c is the cyclotron frequency). Ac- 
count is taken of the contribution made to the conductivity 
by all values of the angular momentum, without using the 
weak-mixing approximation. Oscillations were observed in 
the transverse and longitudinal conductivities following 
changes in the depth of the potential of the scatterers. It is 
shown that the character of the dependence of the transverse 
and longitudinal conductivities on the temperature and on 
the field depends strongly on the depth of the scatterer po- 
tential, i.e., on the type of impurity in the semiconductor. 

2. We derive an equation for the spectrum of the bound 
and quasibound states of an electron in the field of an attrac- 
tion center of small radius a<l, but of arbitrary depth and In 
a uniform magnetic field HI lz. By virtue of the axial symme- 
try of the problem, the projection m of the orbital angular 
momentum on the H direction is conserved. The integral 
equation for the wave function of an electron with a given m 
is 

Here E is the electron energy, G, is the Green's func- 
tion of the electron in the magnetic field. The Green's func- 

tion is written in the form of a series in a product of associat- 
ed Laguerre polynomials-the eigenfunctions of an electron 
in a uniform magnetic field in an axial gauge.6 The series can 
be summed over the radial quantum number'' at arbitrary 
m, after which G,  is expressed in terms of an integral in 
analogy with Ref. 5. 

The idea of obtaining an equation for the energy spec- 
trum of an electron consists in the following: owing to the 
presence of the small parameter a1 - I (  1 it becomes possible 
to find the form of the wave function $, (r) in the effective 
region r 5 a of the potential, but with an unknown energy 
parameter E. We substitute the obtained solution in the right 
and left sides of (1) and let the coordinate r tend to zero. The 
angles and the coordinate variables are then separated in the 
right-hand side of (1), and the coordinate-angle dependences 
of the right and left sides coincide. Canceling in both sides of 
(1) the common function of the coordinates and angles, we 
arrive at an equation for the spectrum. 

For a center with a small radius a41  in the effective 
region of the potential U (r) we can neglect the influence of 
the oscillator potential of the magnetic field, 

u,,, =m'ow2p2/8='/sfio~ PI 
a procedure legitimate if the following inequality holds 

' / & O H  (a l l )  'ernax {U,  E ) .  

The dependence of the wave function on H then be- 
comes trivial: the field enters in the Schrodinger equation of 
the "inner"' region (r S a )  only implicitly in the energy E 
(which is to be determined) and in the paramagnetic term in 
the combination E + 1/2lm lhH. 

The system of solutions of the Schrodinger equation of 
the inner region is a product of radial and spherical func- 
tions'': 

$&m (P; 2; E; H) = R L m  ( r ;  E;  H) @ ~ m  (e) (3) 

where the radial functions RL, must satisfy as r 4  a zero 
boundary condition at L > 0 and must be equal to a constant 
at L = 0. Since at H # 0 the angular momentum L is general- 
ly speaking not a good quantum number, the wave function 
of the inner region is a superposition of (3) with arbitrary 
co&cients C,,, . However, by substituting in (1) the explic- 
it expression for the Green's function it is easy to see that if 
there is no random degeneracy of the levels with respect to L 
at H = 0, the mixing ofthestates with L #L ' inside the well 
is small in terms of the parameter 

where Ell is the energy reckoned fram thz: bottom of the 
nearest Landau band. 

This last circumstance has a simple physical explana- 
tion. The inequality a< l  is equivalent to the inequality fi2/ 
m*a2$fiwH, so that in the absence of random degeneracy in 
L a weak mixing of states with different values of the orbital 
momentum L takes place within the range of action of the 
potential. It will be shown below (see also Refs. 3 and 5) that 
a magnetic field alters radically the character of the energy 
spectrum of the electron at resonant depths of the potential, 
i.e., when an energy level appears in the well at H = 0 for 

1051 Sov. Phys. JETP 56 (5), November 1982 S. P. Andreev and S. V. Tkachenko 1051 



some value of L. Since by virtue of (4) states with foreign L 
affect this state weakly, the function of the inner region can 
be classified in terms of L and m. 

We substitute now the function (3) in the right and left 
hand sides of (1) and let r - 4 .  It becomes possible then to 
integrate in the right-hand side of (I) with respect to the 
angle variables. If the potential of the center U(r-+O) in- 
creases more slowly than F 2 ,  we have RLm ( r 4 )  = A L4. A 
similar coordinate dependence as r 4  is possessed also by 
the right-hand side of (1). The angular dependences of the 
right and left sides of (1) also coincide. Canceling the factor 
4 in (I), we arrive at an eigenvalue equation that determines 
the electron spectrum: 

d3r' sin f l  d6 ( 6 )  e ~ m  (el) 
1-0 

XU(r') G, (r; r'; E ;  H) RLm(r'; E; H )  . (5) 

In view of the excessive complexity of the Green's function 
G,  , we shall not write out Eq. (5) in explicit form, and shall 
analyze it for a concrete potential and for concrete energy 
levels. 

We point out here only two circumstances pertaining to 
the Green's function. First, when calculating the Green's 
function for energies in the upper Landau bands N # 0, all 
the bands break up into two groups: lower bands with energy 
smaller than E, and higher with energy larger than E. The 
lower bands are responsible for the width of the correspond- 
ing energy state, and the upper for the renormalization of the 
constant of the interaction of the electron with the center.' 
The lower bands, whose number is finite, remain in the form 
of a sum, and the higher reduce to an integral in analogy with 
Refs. 3 and 5. 

Second, the poles of the lower bands should be circled in 
the case of quasibound states to yield waves that diverge 
from the center az Izl-W. For bound states, however, the 
Green's function G ,  should tend exponentially to zero as 
r-W. 

3. We obtain now the spectrum of the electron for the 
case when the potential of an individual center is a rectangu- 
lar well of depth - U and radius a. In this case the functions 
RL,  and the constant AL are given by 

RLm ( r )  = (x,r/a)-'"JL+l:,(xmr/a) ; 

x,2=2rn*a2A-2{Ui-E+'/2 I m 1 h a ) ,  (6) 

where J,  + I are spherical Bessel functions and 

AL ( m )  =xmL/(2L+1)  I! (7) 

We shall investigate shallow state with energy E(fi2/m*a2, 
since by virtue of the inequality a(l  the cyclotron energy is 
small, hH(fi2/m*a2, and the influence of the magnetic 
field on the deep states, E 2 fi2/m*a2, is trivial and reduces to 
ordinary perturbation theory. 

We consider first the state of an electron with zero orbi- 
tal momentum L = 0 and with zero projection m = 0 of the 
angular momentum for energies E below the bottom of the 
ground Landau band N = 0. Substituting (6) and (7) with 
L = m = 0 in (5) we obtain after straightforward but compli- 
cated transformations the equation 

'I, l / f o  ( E )  = [ i+E/U cos x o ]  =2'"qo - ~ o  (110). (8) 

Here q0 = 4 - E /hH and fo(E ) = - a/((tanxo)/ 
7t0 - 1) is the scattering length of an electron with L = 0 by 
the center in the absence of a magnetic field, while the func- 
tion po is defined by the integral 

Equation (8) differs somewhat from that obtained by 
Demkov and D r ~ k a r e v . ~  Thus, in the case of a well that is 
very close to resonance, for which fo(E )+a,, when a bound 
state arises at H = 0, the solution obtained in Ref. 3 yielded 
an energy E = 0.2 hH . Calculation in accord with (8) intro- 
duces a certain correction 

and this determines the degree of accuracy of the approxima- 
tion of Ref. 3. 

The dependence of the energy of the state 
N = m = L = 0 on the dimensionless parameter xO(E = 0) is 
shown in Fig. 1 together with the dependence of the scatter- 
ing length fo(E = 0) on xo(E = 0). 

From Fig. 1 we can discern the following pattern of the 
behavior of the levels. 

(1) At the values of the potential Uat which the scatter- 
ing length fo(E = 0) = 0 there appear additional "magnetic" 
levels, which are due to the presence of the magnetic field 
and lie under the bottom of the Landau band N = 0. We note 
that the equation of Ref. 3 that is analogous to (8) at fo > 0 is 
valid only iffo)a, and this prevents us from investigating the 
pattern of the onset of the levels. 

FIG. 1. Scattering length of electron from center and position of the elec- 
tron energy level vs the depth of the potential of the center at N = 0 and 
L = m = 0; the parameter x,(E = 0) is obtained from (6)  at rn = 0 and 
E=O. 
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(2) When the potential lies deeper than these values (but 
close to them) the levels become deeper and have at exact 
resonance fo(E = 0) = a, one and the same value, given by 
Eq. (10). 

(3) At values of the potential U such thatf,(E = 0) <0, 
the levels are due to the presence of the magnetic field and 
vanish when it is turned OR. 

(4) Owing to the magnetic field, the levels have zero 
energy not at exact resonance fo(E = 0) = oo of the potential, 
but at larger depths of the well. It is easy to obtain from (8) 
the deviation of the potential from resonance, A U,, , at which 
the n-th level has zero energy: 

(5) With further increase in depth of the potential, the 
levels go over into the region of negative energies and coin- 
cide with the natural levels of a well with L = 0 at H = 0. 

We note finally that all small depths of the potential, 
U(fi2/m*aZ, the distance of the level from the bottom of the 
Landau band is according to (8) 

AE=-'1, (fB2/z2)  OH, 

where f, is the Born scattering amplitude of an electron with 
zero energy at H = 0; this agrees with the result of Ref. 4. 

Equation (5) has solutions for states with L = m = 0 not 
only at energies E<h,/2,  but also at energies above the 
zeroth Landau band. In contrast to the ground band N = 0, 
where truly stationary "magnetic" energy levels exist at 
fo(E = 0)<0, in the higher bands N # O  such magnetic states 
are quasistationary. This is due to the possibility of their 
relaxation to the continuous spectrum of the lower lying 
Landau bands. 

The equation that describes the quasistationary state in 
the band N = 1 for m = L = 0 can also be obtained from (5), 
namely, 

The appearance of an imaginary term in the right-hand 
side of (12) is due to the fact that the corresponding term in 
the Green's function, which pertains to the Landau band 
N = 0, describes an electron that relaxes from the band 
N = 1 into the continuous spectrum of the band N = 0. 

Obviously, the roots of (12) are complex. The left-hand 
side of (12), just as Eq. (8), contains the features of the center: 
the scattering length fo(E) that determines the appearance 
and behavior of the "magnetic" levels. An analysis of (12) 
shows that the quasibound states appear, just as in the case of 
the zeroth-band levels, for potential depths at which 
fo(E = 0) = 0. 

Leaving out the computational details, we present the 
results of the analysisof (12). At small u<#/m*a2 the quasi- 
bound level N = 1, L = m = 0 lies lower than the bottom of 
the Landau band at a distance 

and its width is of the order of 

Im E- (LIZ) 'ho,<Re AE, 

IrnE 1 

FIG. 2.Plots of the real and imaginary parts of the energy of the state ofan 
electron quasibound to a center at N = 1, m = L = 0, and plots of Rex (E ) 
defined in Eq. (12). 

which coincides with the result of Ref. 4. With increasing U, 
the level goes deeper. Its depth first increases considerably 
more rapidly than its width. Thus, at Re E=: 1.35&0, we 
have Im E /Re E = 0.09. Next, however, starting with 
Re E =:0.8hH, when Re E and Im E become equal, the 
growth of the level width is faster than that of its depth. With 
further increase of the depth of the center potential, at values 
of U when fo(E = 0), a quasistationary state with Re- 
AE a (&/[ )' and Im E a ( & / I  )3, again appears below the 
bottom of the band N = 1, and its behavior repeats periodi- 
cally the described picture when U is increased. 

Plots of the real and imaginary parts of the energy of the 
state of an electron quasibound to a center are shown in Fig. 
2 for the Landau band N = 1 and for L = m = 0. 

We consider now a state in the lowest Landau band 
N = 0, with L = 1 and m = - 1. We substitute in (5) the 
functions (3) and ( 6 )  with L = 1 and m = - 1 and (7). Calcu- 
lating the integrals (5) we arive at an equation for the electron 
spectrum in the state N = 1, L = - m = 1: 

2 'h " 
cpl(q0)=(;) J dt{[i-exp(-t2) ~ - ~ - t - ~ - t - ~ ) e x p ( - q ~ ~ ) .  

0 

(15) 
For convenience in the analysis of the results and for 

comparison with the available data we used in (13) the nota- 
tion of Ref. 5: a2/2 is the binding energy of the electron on 
the center at H #O, reckoned from the bottom of the zeroth 
Landau band; ao2/2=A U/3 is the electron binding energy 
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on the center at H = 0; U, are the potential depths at which 
the well becomes resonant for L = 1 (n = 0, 1, 2, ...). 

Although Eq. (13) is very similar in form to Eq. (3.7) of 
Ref. 5, it contains a substantial difference. The right-hand 
side of (13) contains as a factor the function v(x,) whose 
zeros coincide with the zeros of the scattering length of elec- 
trons with L = 1 on the center at H = 0. The presence of this 
factor determines the conditions for the onset of new "mag- 
netic" levels in the presence of a magnetic field. In the ap- 
proximations of Ref. 5 the function u(x, )=I and the ques- 
tion of the appearance of level was not investigated. 

We examine the behavior of Eq. (13) as a function of 
A U. Let A U < 0, i.e., there is no shallow bound state with 
L = 1 at H = 0. At an arbitrary small but nonzero H, shal- 
low ( a 4 )  magnetic levels appear under the bottom of any 
Landau band.3-5 For these levels, the principal term in the 
square brackets of (13) and (15) is given by the function 
rp1(7]0)-a-1. Retaining in (13) only the senior terms, we ar- 
rive at the equation 

(al l )  (horr) "v ( x , )  =a ( ao2/2 1. (16) 

Equation (16) has solutions at v( x, )>O, when the electron 
scattering length fl(E = O)(O, and has no solutions at 
smaller A U < 0, when f, > 0, i.e., v( x, ) < 0. We decrease 
A U < 0. At certain values a% < 0 the function v vanishes (the 
zeros of v coincides with the zeros of the Bessel function 
JSl2 ( X, k ) = 0). AS X, +xkn, i.e., when a: tends to a;, , the 
right-hand side of (16) tends to a constant and v( x, )+O, 
from which it follows that a should also vanish. In other 
words, magnetic levels appear at the points of:. The corre- 
sponding values of xf: and their deviations from the exact 
resonant values x: (H = 0) are given in Table I (with the fol- 
lowing notation: n is the number of the resonance in the well, 
x: are the (dimensionless) potential depths corresponding to 
resonance at H = 0; xf: are the potential depths at which 
"magnetic" levels appear, and Ax, is the deviation of the 
potential depth from the resonant value corresponding to 
the onset of the magnetic level). The behavior of the level 
L = 1, m = - 1, N = 0 as a function of the potential. is 
shown in Fig. 3, which shows also the dependence of the 
scattering length fl(E = 0) on U. We note that the behavior 
of the magnetic levels at higher resonances n > 0 is the same, 
but differs from the behavior of the principal magnetic level 
with n = 0, which exists at all values of the potential detun- 
ing A U <  0. The behavior of the level L = 1, m = - 1, 
N = 0 near the point xf: of its appearance is given by 

TABLE I. Potential depths corresponding to the onset of magnetic levels 
of an electron with L = - m  = 1 in the Landau band N = 0. 

FIG. 3. Scattering length of electron on center and position of electron 
energy level vs the depth of the center potential at N = 0 and 
L =  - m = l .  

The behavior of the level L = m = + 1 in the band 
N = 1 with change of the depth of the potential Uis comple- 
tely analogous to the behavior of the level L = - m = 1 in 
the band N = 0, but the energy should be reckoned from the 
bottom of the band N = 1. The corresponding equation is 
obtained from (5) upon substitution of functions (6) and (7) 
w i t h L = l a n d m =  + l .  

To obtain the correct dependence of the energy on 
A U < 0 in Eq. (3.6) of Ref. 5 for the level L = 1, m = 0, N = 0 
it is also necessary to introduce v as a multiplier for the last 
two terms of the right-hand side. These levels also appear at 
potential depths for which fl(E = 0) = 0. 

Besides the foregoing, the left-hand side of (1 3) does not 
contain the term - aia/3 contained in Eq. (3.7) of Ref. 5. At 
AU< 0 in the region below resonance this term becomes 
pure maginary, leading to a small but nonzero width of the 
levelL= 1 , m =  - l i n thebandN=O(andL=m= + 1 
in the band N = 1); these are certainly stationary in the sin- 
gle-center problem. Finally, putting H = 0 in (13) we obtain 
the equation for the energy level with L = 1 at H = 0, accu- 
rate to terms a a. 

Substituting the obtained E (H,U) dependences in the 
functions (3) of the "inner" region, and then the functions (3) 
in (I), we obtain the system of wave functions of the bound 
and quasibound states of the electron. 

The scattering problem is solved in the following man- 
ner. We substitute the function (3) of the inner region with 
Eli =p2/2m*, multiplied by an unknown constant BL (m), in 
the integral equation for the inhomogeneity-containing 
wave function that describes the incident wave. We let r - 4  

1054 Sov. Phys. JETP 56 (5), November 1982 S. P. Andreev and S. V. Tkachenko 1054 



and arrive at a linear equation for BL (m). The solution of this 
equation is equivalent to finding the amplitude for the scat- 
tering of an electron on a center in a uniform magnetic field. 
The poles of the obtained amplitude yield the equations of 
the spectrum of the bound and quasibound states considered 
above. 

The obtained wave functions make it possible to calcu- 
late all the kinetic coefficients governed by the interaction of 
the carriers with small-radius centers. 

4. We consider a gas of electrons interacting with 
spherically symmetric centers of radius a in a quantizing 
magnetic field in a semiconductor, at an arbitrary ratio of a 
and I .  We express the transverse and longitudinal conductiv- 
ities of such a gas in terms of the operators of electron scat- 
tering on an individual center in an axisymmetric gauge. In 
the calculation of the conductivity we assume the following: 

(a) the carriers do not interact with one another; 
(b) ryTP1<T, where r is the characteristic electron-mo- 

mentum relaxation time; 
(c) the scatterer density is low: ng3<1 and no12Z1, (1, 

where TI, = fi/(m* T)'". 
We emphasize that the potential Uof an individual cen- 

ter is not assumed to be small either in comparison with the 
characteristic energy of the longitudinal motion of the elec- 
tron T, or in comparison with the characteristic energy h, 
of the transverse motion. 

An expression for the transverse conductivity in a quan- 
tizing magnetic field in terms of Landau gauge functions was 
obtained by Magarill and SavvinykhI2: 

X l ~ ~ ' l V 1 $ ~ > 1 z ( y a - y a ~ ) 2 ~  

(17) 
Here a [ N , y o , p , ]  is the set of Landau quantum 

numbers, pa and $, are the wave functions of the free mo- 
tion and of the scattering problem, respectively, taken in the 
Landau gauge; V (r) is an arbitrary scattering potential; f (E, ) 
is the electron (assumed Boltzmann) distribution of the elec- 
trons in energy. 

The Landau gauge is usually employed to obtain the 
general equations of cond~ctivity, '~ since the Schrodinger 
equation for an electron in crossed field can be solved in it 
exactly. We change over in (17) to functions of the axisym- 
metric gauge, in which we know how to solve the scattering 
problem. 

The coefficients of the transition from the wave func- 
tions pN, @) of free motion in an axisymmetric gauge to the 
functions in the Landau gauge, i.e., the expansion 
coefficients: 

were calculated by Pogosyan and ~ e r - ~ n t o n y a n ' ~  and are of 
the form 

where pk are the oscillator wave functions.15 
Knowing the coefficients Cz(19), we obtain the con- 

nection between the functions of the scattering problems in 
the two gauges: 

(20) 
Substituting (20), (19), and (18) in (17), retaining in the 

sums over a and a' only the terms with N = N ' = 0 (quantiz- 
ing magnetic field), we have an equation for the transverse 
conductivity in terms of the operators T Tk, for electron scat- 
tering by an individual center in the axisymmetric gauge: 

+- 
a,,=2ne2no S dk,  d k , ' ~  (E,,-E,,') 

- m 

with 

here Ell is the longitudinal energy of the electron and no is the 
density of the scatterers. 

In the approximation of weak mixing of the Landau 
level by an individual scatterer, U / h ,  ( 1, Eq. (21) coin- 
cides with the result of Ref. 9. 

The longitudinal conductivity is calculated in analogy 
with Ref. 16 and is expressed in terms of the T-operator in 
the form 

In the approximation lowest in U /h, < 1, Eq. (22) coincides 
with the result of Ref. 16. 

Equations (21) and (22) are valid for a spherically sym- 
metric potential of an individual center of arbitrary depth U 
and radius a. If the solution of the problem of electron scat- 
tering by such a center in a magnetic field is known, it yields 
the temperature-field dependences of the transverse and lon- 
gitudinal conductivities uyy (U,H,T) and u,, (U,H,T ), respec- 
tively. 

5. We investigate now the behavior of the conductivity 
as a function of the depth of an individual scatterer in the 
case of centers of small radius agl .  Hereafter, generally 
speaking, U is everywhere much larger than the electron 
temperature. We shall show that the conductivity has an 
oscillatory dependence on the well depths. With rising tem- 
perature, the oscillations become stronger-their amplitude 
increases and their width decreases. 

Solution of the scattering problem leads in the case of 
rectangular well to the following expression for the scatter- 
ing operator (m = L ): 
,,, h2a(2n)" U I ~ I  

T k f ;  = m'x, Az/m'a2 
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where 

-+ 1 - d t e x p  ( - q o t 2 - - -  12 2 ,  
X{ ( -2%) .  i, 

In the approximation linear in U /h, 4 1 Eq. (23) goes 
over into the corresponding expression of Ref. 16. The poles 
of (23) yield the equations considered above for the bound 
states. Equation (23) does not depend on the relative direc- 
tions of the momentap, andp', , i.e., the scattering along the 
z axis, is, just as in the case of a one-dimensional S potential, 
isotropic. 

For the lowest angular momentum projection m = 0 
(L - 0) it is easy to obtain from (23) and (24) 

where 
(25) 

Equation (25) for the scattering operator differs 
from Skobov's results,' first in the presence of a second term 

FIG. 4. Plots of the transverse and longitudinal conductivities vs the 
depth of the scatterer potential at high temperatures: ( ( ~ / I ) [ t i o , / T ] ' / ~ <  1. 

in the square bracket of the denominator. This term gives for 
the bound states a somewhat different dependence on the 
magnetic field intensity3 than the poles of the amplitude of 
Ref. 1. Second, Eq. (25) contains the amplitude for scattering 
of the electron at H = 0 not as a function of a zero electron 
energy, but of the true one. At agl,  except for very narrow 
regions of resonances of the potential U, the behavior of the 
conductivity is determined by the states m = 0 and 
m = - l(L = 0 and L = 1). 

Without presenting the general cumbersome equations, 
we shall investigate the asymptotic behavior of the conduc- 
tivity. Greatest interest attaches to two limiting cases: 

(a) case of very low temperatures: 

(b) case of high temperatures: 

In the first limiting case the conductivity depends little 
on the scatterer potential: 

here n, is the electron density. 
We consider now the inverse limiting case (28) of high 

temperatures. We investigate first the behavior of the trans- 
verse conductivity. Except for the situation when 
fo(E = 0)-+0, the transverse conductivity is determined at 
a1 - '< 1 by the scattering operator Tiz, If fo(E = 0) # W ,  

the transverse conductivity depends weakly on the magnetic 
field and is given by 

If, however, the scatterer potential has a depth close to 
resonance, i.e., 

the transverse conductivity increases abruptly by(1 '/a2)(T/ 
@,)a 1 times (see Fig. 4). In this case the conductivity equals 

2'~~e'nenon"az~2 " 
0,;= 

f i ~ a  
TYIm.s/, 0 d e e x p [ - e 7 ]  

As fo(E = 0 ) - 4  the conductivity uyy is determined by 
the scattering of carriers with m = - 1 by the center and is 
smaller by a factor ( ~ / l ) ~  than in (3 1). 

We consider now the behavior of the longitudinal con- 
ductivity in the limiting case of high temperatures (28). In 
the case of the nonresonant situation, fo(E = 0) + w , the con- 
ductivity is determined by the scattering operator Tizktz : 
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If, however, fo(E = 0)- oo , the longitudinal conductivity is 
determined by the scattering of carriers with m = - 1 and 
increases sharply compared with (33) (see Fig. 4): 

where B, is a root of the equation ( t a d  )/B - 1 = 0. 
The investigated conductivity oscillations (see Fig. 4) 

have a simple physical explanation. We shall discuss the os- 
cillations of the transverse conductivity. As seen from Fig. 4, 
the transverse conductivity increases abruptly for well 
depths U that are at resonance at L = 0. The relative oscilla- 
tion amplitude increases with rising temperature: 

while the width of the peak decreases 

As follows from (21) and (25), the transverse conductiv- 
ity is proportional to the product 

The factor, which increase linearly ar 1 fOl2, is the square of 
the electron-center interaction constant, the second term 
that decreases with increasing 1 f O l 2  is the coefficient of the 
passage of an electron having a characteristic kinetic energy 
a T through the effective one-dimensional S potential due to 
the joint action of the center and of the magnetic field." 

With increasing 1 f O l 2  the right-hand side of (37) in- 
creases and tends at fo-+ + 03 to a constant 

which corresponds to (35) and to the relative amplitude of 
the transverse-conductivity oscillation (see Fig. 4). The 
width (36) of the oscillation peak can be easily obtained from 
(37). Indeed, near resonance we have fo a a/A U [see Eqs. (8) 
and (9)]; hence, estimating the effective vlaue of A U from the 
condition that the first and second terms in the denominator 
of (37) be equal, we obtain the estimate (36). 

The longitudinal conductivity has a maximum at the 
points U were fo(E = 0) = 0. In this case the electrons with 
m = 0 do not "feel' the center (To = 0) and the contribution 
to the conductivity is made by the state with m = - 1. The 
operator T -' is in this case of the order of a2/1 ', making the 
relative amplitude of the oscillation - I T - ' 1 '  a I 4/a4. 

6. The problem considered by us, of the energy spec- 
trum of an electron in the field of a short-range attracting 
potential, was recently investigated experimentally by Tani- 
guchi and Narita. l7  They investigated isolated D - states and 
D - complexes in Ge doped with Sb or As, in a uniform mag- 
netic field of intensity in the interval 0-25 kG. The samples 
were taken at a temperature 0.35 K and at impurity densities 
S X  1013, 9 . 9 ~  1014, and 5~ lOI5 cmP3 for Sb and 6X loi3 
and 6X 1014 for As impurities. At impurity densities 5 X 1013 

cmP3 the D - states were well i~o l a t ed . ' ~ . ' ~  The photocon- 
ductivity was measured for a transition of an additional elec- 
tron bound to the impurity from the ground state to the N-th 
Landau band, and the maximum number of distinctly obser- 
vable peaks was four. The ground-state energy of the addi- 
tional electron was measured in Ref. 18 and was equal to 
1.15 and 1.33 meV for Sb and As, respectively. The absorp- 
tion peaks observed in Ref. 17 were spaced &a, apart with 
an effective mass m* = 0.082 m in single-valley Ge obtained 
for samples under pressure, and m* = 0.135m in multivalley 
Ge. The parameter a1 -' at H = 5 kG is of the order of 
0.1441 for the indicated impurities. Absorption peaks can 
appear only when the final state of the electron N #O, 
m = + 1 is of magnetic character, i.e., when in the absence 
of a magnetic field there are no bound states of the additional 
electron on a neutral atom of the impurity with L = 1 and 
m = + 1. In the opposite case, as shown by simple calcula- 
tion with the aid of the obtained functions (I) ,  the Landau 
levels are strongly mixed by the center and the peaked ab- 
sorption picture vanishes. Estimates of the bound-state ener- 
gies of the additional electron, obtained by us from a com- 
parison of the energy difference between the principal 
absorption peak and the satellite peaks17 with the corre- 
sponding formulas calculated from the wave functions (1) 
and the functions of the scattering problem, yield 0.83 meV 
for Sb impurities and 0.94 meV for As impurities. 
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