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A dispersion equation for surface spin waves in the isotropic superfluid phase of 3He (the B- 
phase) is derived and investigated. It is shown that the spectrum has an end point at small wave 
vectors k. The velocities of spin waves of various polarizations in a thin 'He-B layer are calculated 
in the limit of large k. 
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The order parameter for the superfluid phases of 'He is 
of the form A (p,T)A 5 where A (p ,T)  is a scalar factor that 
depends on pressure and temperature and vanishes on the 
superfluid transition curve, while A "s a normalization fac- 
tor that expresses the angular dependence and transforms 
like a vector with respect to the index i in rotations of ordi- 
nary (orbital) space, and like a vector, but in terms of the 
index j, in spin-space rotations. The invariant properties of 
the matrix A " are determined by the particular superfluid 
phase of 'He involved, and its form depends, of course, also 
on the arrangements of the coordinate axes in orbital and 
spin spaces. 

In particular, for the isotropic superfluid phase of 'He 
(the B phase), A " is a real orthogonal matrix that sets a one- 
to-one correspondence between the vectors in spin and orbi- 
tal spaces. By rotating the coordinate axes of the spin space 
relative to coordinate axes of orbital space, we can always 
transform the matrix A "nto the unit matrix 6,. 

It is known (see, e.g., Ref. 1) that with this choice of the 
coordinate axes the linearized equations of the B-phase spin 
dynamics, expressed in terms of the small rotation angle uk 
that describes the deviation of A from its equilibrium value 
4 ,  : 

Ai'=6,j+~ik'6,t~R, 

assume the simplest form and reduce, if the dipole interac- 
tion is neglected, to an ordinary vector wave equation 

a2u/at2=cZtL\u+ (c?-ct2) grad div u. (1) 
Starting only from the fact that an equation of exactly 

the same form (where u is the strain vector) describes the 
elastic oscillations of an isotropic solid, MarchenkoZ reached 
the conclusion that surface spin waves analogous to Ray- 
leigh waves in a solid should exist on a flat 3He-B boundary. 

In fact, since the boundary condition for 3 H e - ~  (the 
vanishing of the spin current through the boundary is ex- 
pressed in terms of u (Ref. 1): 

cannot be reduced to a simple analogy with Rayleigh waves 
in a solid and calls for a separate study, to which this paper is 
devoted. It is also of interest to take the dipole interaction 
into consideration. 

DERIVATION OF THE DISPERSION EQUATION FOR 
SURFACE SPIN WAVES 

We consider first 3He-B in a half-space bounded by a 
rigid wall with which it does not interact. Let n be the 
outward normal to the boundary. We confine ourselves to 
the case of zero temperature and neglect the difference 
between the coefficients in the gradient terms in the expan- 
sion of the potential energy from their values on the curve of 
the transition into the superfluid state. 

If we disregard the dipole interaction, the minimum of 
the energy of such a system is reached in any of the states 
with a matrix A " that is homogeneous over the volume. 
When the dipole interaction in the volume of the liquid is 
taken into account, this degeneracy is partly lifted, and the 
minimum of the energy is reached only for states at which 
the orthogonal matrix homogeneous over the volume, A Y is 
the matrix that effects a rotation through an angle arc- 
cos( - 4) around an arbitrary axis.4 Allowance for the sur- 
face dipole interaction lifts also the degeneracy in the rota- 
tion-axis directions and separates, as the states with 
minimum energy, two states for which the angle of rotation 
through the indicated angle is parallel to n, and the rotation 
directions are different.' The form of the equations obtained 
subsequently does not depend on which of these states is 
taken to be the unperturbed state of the system. 

To simplify the equations it makes sense to assume that 
the coordinate axes in spin space are so rotated that A = 6, 
in the chosen unperturbed state. We write down the Lagran- 
gian of the system in the quadratic approximation, express- 
ing in terms of u the kinetic energy, as well as the gradient 
and dipole terms in the potential energy': 

aui 1 auk 1 auk 
cl'nk- + - (c12-ct2) nk-+ - (c12-c:) ni - = 0, 

au' aut au' 1 

a 2  2 ax' 2 a x k  
(2) -c:zz-i 

does not coincide with the boundary condition for an elastic aui auk I 
+ - ) ] - - n u  d ~ - f  j b i j u i U j d ~ .  (4) 

solid (vanishing of the normal components of the elastic- dx' axk 2 

stress tensor) [Ref. 3, 5241: 

1 
It was taken into account here that the anisotropy axis is a ui a uk auk 

c:nk- +c?nk- + ( c 1 2 - 2 ~ : )  ni - = 0, (3)  parallel to n:gD and b "-g, co are constants that character- 
axk dxi d 2  ize the dipole interaction. It is clear from symmetry that the 

the question of the existence of surface spin waves in 'He-B tensor b ' j  is of the form 
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bt (6ij-ninj) + b,ninj. 

Varying (4), we can write down the Lagrange equation 
d2u -- 
at2 

- C? Au+ (c12-ci2)grad div u-ci2 f ,%(nu) (5) 

and the boundary condition 

which are generalizations of Eqs. (1) and (2) with allowance 
for the dipole interaction. Here 

E D =  ( ~ c l ~ / y ~ g D )  ' " > f O t  

B'k=yZfDZb'k/~~12go=Bt (6,k-nink) +B,nink, B t ,  Bn-1. 

To find a surface-wave-type simultaneous solution of (5) 
and (6), we must take their Fourier transforms with respect 
to time (with frequency w) and with respect to the coordi- 
nates along the boundary plane (with wave vector k 1 n), 
after which u,, is a function of only the coordinate z = n r; 
we shall omit hereafter the subscripts w and k of u,, . 

A solution of the surface-wave type should be con- 
structed as a linear combination of different linearly inde- 
pendent solutions of Eq. (5); these solutions attenuate in the 
interior of the liquid (as z -+ - WJ ) and are obviously of the 
form u, exp(xz) with x > 0. The equation obtained for x, as 
the condition for the compatibility which follows from (5) for 
the system of scalar linear algebraic equations, breaks up 
into two equations (biquadratic and quadratic). The solu- 
tions of the biquadratic equation 

c ~ ~ c I ~ x ~ -  [ctZc? (ED-'+ 2k2) - (ct2+ci2) a'] X Z  

+ [ ( ~ 1 ~ k ~ - - 0 ~ )  ( C ? E D - ~ + C , ~ ~ ~ - O ~  )I =(I (7) 
correspond to the direction vector u, that lie in the plane of 
the vectors k and n. Since Eq. (7) always has a positive deter- 
minant, the necessary and sufficient conditions for its having 
two different positive roots x ,  and x, (let x ,  < x,) is that both 
coefficients in the square brackets be positive. The quadratic 
equation 

~ ~ = k ~ - w ~ / ~ ~ ~  

has a positive root x, and w < c, k. The corresponding direc- 
tion vector u,, is perpendicular to the vectors n and k. 

Substituting in (6) a linear combination of the three 
above-described solutions of Eq. (5) with arbitrary coeffi- 
cients a,, we can write down the dispersion equation of the 
surface spin waves as the condition for the compatibility of 
the obtained system of equations for these coefficients: 

The positive functions x,(w, k ) and x,(w, k ) in this equation 
were defined above. 

By solving Eq. (8) it is possible to write down in explicit 
form the values of the coefficients a i  in the sought linear 
combination, and obtain the explicit form of the distribution 

of the oscillations in the surface spin wave. We shall not do 
this here, but confine ourselves only to the remark that this 
combination does not contain a solution with a direction 
vector perpendicular to the vectors n and k, but the two 
other solutions are contained in it. Thus, a surface spin wave 
exists only if Eq. (7) has two positive roots; in this case the 
vector u oscillates in the plane of the vectors n and k. 

To find the direction of the oscillation of the magnetiza- 
tion [which is expressed in terms of the time derivative of A 
(Ref. I)], it is necessary to change over from the vectors u of 
orbital space to the vectors of spin space with the aid of the 
matrix A ". This shows that the magnetization oscillations 
are elliptically polarized and take place in a plane perpendi- 
cular to the boundary and making an angle arccos ( - 1) with 
the wave vector. 

ANALYSIS OF DISPERSION EQUATION OF SURFACE SPIN 
WAVES 

In the analysis of the region k , l ,  ', we can neglect 
the terms due to the dipole interaction, so that Eq. (8), after 
elimination of the irrational factors, reduces to the bicubic 
equation 

In contrast to the analogous equation that arises in the 
problem of Rayleigh waves in an elastic solid (Ref. 3, §24), 
Eq. (9) can be resolved into rational factors. Only one of its 
three roots, namely 

corresponds to a real spectrum that lies below the spectra of 
the bulk modes (as should be the case for a surface mode), 
and furthermore only if c, lies in the interval 
c, < c, < (1 + fi)c,. From the fact that c: = 2c: for 
(Ref. 1) we can conclude that it has exactly one mode of 
surface spin waves that have a linear spectrum and a speed 

A complete analysis of Eq. (8) with allowance for the 
terms corresponding to the dipole interaction) shows that at 

it has no purely real solutions such that Eq. (7) has two real 
positive roots. This means that there is no surface spin wave 
at kgk,. 

As k -+ k, + 0 we have x ,  -+ 0. This means that the 
"depth of penetration" of the surface spin wave into the inte- 
rior of the liquid increases. At k = k, this penetration depth 
becomes infinite, and in place of a surface spin wave we ob- 
tain the usual bulk longitudinal spin wave with a wave vector 
parallel to the surface. In a small vicinity of the point k, (but 
of course at k > k,) the surface of the surface spin wave takes 
(in first approximation) the form 

This curve is tangent at the point k, to the straight line 
w = c, k which comprises, for the given geometry, the spec- 
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trum of bulk longitudinal spin waves with a wave vector 
parallel to the surface. 

The absence of surface spin waves at small k can be 
explained in the following manner. The presence in the ener- 
gy [and hence also in the Lagrangian (4)] of a dipole orienta- 
tional surface term should lead generally speaking to a gap- 
like spectrum at small k. At the same time, two of the three 
spin-wave bulk modes are gapless. Thus, at small k the spec- 
trum of the surface spin wave should be located above the 
spectra of the two bulk spin-wave modes, but this is certainly 
impossible. The spectrum of an undamped surface wave can 
lie only above the spectrum of the bulk modes, otherwise its 
propagation is accompanied by emission of bulk waves and is 
subject to damping. 

It must be noted that since the obtained frequency of the 
surface spin wave in the entire region k,, < k 4 2, ' of its 
existence is much higher than the frequency of a capillary- 
gravitational wave on a free 3He-B surface, equal to 

o= [gk+ (olp)  k3] '" (10) 
for the same value of k, the result obtained above for 3He-B 
bounded by a rigid noninteracting wall can be used also for 
the case of a free 3He-B surface. Propagation of surface spin 
waves leaves the surface practically plane (the rotation an- 
gles of the normal vector n will be much smaller than the 
rotation angles of the matrix A '3 because the mechanical 
motions are relatively slow. 

The presence of a surface dipole interaction, it is not 
only the spin waves that lead to certain (albeit negligibly 
small) oscillations of the free surface, but also on the con- 
trary, the mechanical motions accompanied by the surface 
oscillations inevitably give rise to oscillations of A u. 

A combined analysis of the equations of hydrodyna- 
mics and of the spin dynamics of 3He-B shows that the sur- 
face dipole interaction splits the spectrum of the capillary- 
gravitational waves into two branches that correspond to 
different polarizations of the accompanying spin motion. 
The frequency of each of these branches, however, differs 
from the frequency given by (10) by not more than 
b VC- 

SPIN WAVES IN A THIN LAYER 

Besides the surface spin waves, one can observe also 
two-dimensional spin excitations such as spin waves in a 
planar thin layer. 

When dealing with distributed oscillations, the problem 
of oscillations in a thin layer (plate) is treated separately. 
This problem is regarded as relatively simple, since it can be 
solved without determining the explicit distribution of the 
oscillations over the layer thickness. By calling the layer thin 
in this case, one implies that such an approach, which does 
not take its finite thickness into account, is applicable to the 
layer. For spin waves in 3He-B this method can be used only 
in the limiting case 9; ' 4 k 4 L -' (L is the layer thick- 
ness), when one can neglect besides the finite layer thickness 

also effects connected with dipole interaction. The analysis 
that follows is restricted to just this last case. 

We use a modification of the customary method (see, 
e.g., Ref. 3, $25) of solving the problem of elastic oscillations 
in a thin plate. We represent the vectors d/dxk=vk and u in 
the form of the sums V, + V, and u, + u, of vectors normal 
(n) and tangent (t ) to the plane of the thin layer. We can then 
separate in each of Eqs. (1) and (2), which must be used to 
solve this problem, the parts normal and tangent to the thin 
layer, and treat them subsequently as independent equa- 
tions. Application of the operators V, and V, to the equa- 
tions obtained from (2) in this manner yields relations with 
which the equations obtained from (1) are reduced to a form 
that does not contain V, : 

where 

Equation (1 1) describes a spin wave polarized perpendi- 
cular to the plane of the layer, while Eq. (12) describes one 
polarized in the plane of the layer; the latter, obviously, 
breaks up into two individual branches, longitudinal and 
transverse. All three waves have a linear spectrum, and their 
velocities are given by relations (13). We recall that here, as 
before, wave polarization is taken to mean the direction of 
the oscillations of the vector. The direction of the magnetiza- 
tion oscillations can be obtained from this direction by rota- 
tion through an angle arccos ( - a) around n. 

Since the remark made at the end of the preceding sec- 
tion is equally applicable to the present situation, the results 
are valid whether the film is bounded on any side by a rigid 
noninteracting wall or by the free surface of 3He-B. 

Thus, despite the similar mathematical formulation, for 
spin waves in a thin 3He-B layer we have a situation some- 
what different from that for elastic waves in thin plates, 
where only two waves have a linear spectrum, and the wave 
polarized perpendicular to the plane of the plate (the flexure 
wave) has a spectrum of the form o a Lk *. 

The author thanks A. V. Smirnov for helpful remarks. 
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