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The problem of propagation of light across a dielectric medium with a helical structure, for 
example, through a cholesteric or a chiral smectic liquid crystal is considered. The problem is 
solved for an aribitrary angle between the wave vector and the helix axis far from a Bragg reso- 
nance. The solution is obtained to within terms -E: inclusive, where E, is the permittivity 
anisotropy. A full allowance is made for the influence of the longitudinal components of the 
electric field. A solution is also given of the electrostatic problem of the macroscopic permittivity 
of a medium with anisotropically correlated tensor fluctuations. 

PACS numbers: 61.30. - v, 77.90. + k 

The optics of chiral liquid crystals exhibiting a helical 
structure (i.e., cholesteric and some smectic liquid crystals) 
has been investigated intensively for a fairly long time. We 
recall here a number of studies in which solutions are given 
for some important special cases1+ (the reader is also re- 
ferred to general monographs on liquid and to a 
review7 devoted entirely to the optics of cholesteric liquid 
crystals). In view of the potential applications, most of the 
investigations of the optics of cholesteric liquid crystals have 
been devoted to the processes of a resonant Bragg reflection. 
Another aspect, the gyrotropy of cholesteric liquid crystals, 
has been investigated mainly for the propagation of light 
along the helix axis, when there is no disturbing influence of 
the birefringence. 

We shall consider the optics of a chiral liquid crystal far 
from a Bragg resonance. 

We shall assume that the helical pitch is not very large, 
so as to avoid the regime in which changes in the polarization 
follow adiabatically those in the orientation of the director 
(Mauguin limit). We shall use the method of expansion in 
powers of a small parameter E, E, representing the relative 
anisotropy of the permittivity tensor. In the case of a choles- 
teric this problem, was analyzed fully by Kats with the same 
accuracy using perturbation t h e ~ r y . ~  Unfortunately, it is ex- 
tremely difficult to use the results of Kats because of a large 
number of misprints. Moreover, the equations for the field 
components Ex and E,, , where z is directed along the helix 
axis, are used in Ref. 3. This method is suitable only for a 
cholesteric with a specific type of the permittivity tensor 
(E,, = ey, = 0). We shall solve the Maxwell equations in a 
covariant vector form, which makes it possible to consider 
the problem in principle also for smectics. 

gitudinal components of the fields, we shall find it more con- 
venient to use the induction vector D(r), for which we obtain 
from the system (1) the exact equality divD(r) = 0, and not 
that containing the vector E(r). The permittivity tensor will 
be considered in the form (see Ref. 7) 

Here, q = qe, is the "wave vector" of the helix; the medium 
on the right differs from that on the left by the sign of the 
parameter q. The tensors b * , , E*, , and 2, are given by 

Here, E , ,  E,, and e3 are the principal values of the local tensor 
b(r) and they are independent of r; 0 is the angle between the 
direction ofz and the principal (third) axis of the local tensor, 
which is also independent of r. The second axis of the local 
tensor is always in the ( x,y) plane. The special case of a cho- 
lesteric can be obtained from Eqs. (2) and (3) by substituting 
0 = 0 and e2 = E ~ ;  we then have 2, = b-, = 0. The spatial 
average (i.e., averaged over several periods of the helix) value 
of the tensor &(r) is 2,. Therefore, if it were possible to use the 
space-averaged tensor 2, the optical properties would have 
corresponded to those of a uniaxial crystal (with the optic 
axis along the helix axis) having the following refractive in- 
dices for the ordinary (0) and extraordinary (e) waves: 

no= ['/2 ( e l f  E~ cos2 0+e3 sin2 8)] I h ,  

2. MAXWELL EQUATIONS AND FORM OF TENSOR 2 
n,= [ E ~  sinz f3 -F~~  cosZ 81 '". (4) 

The Maxwell equations for a monochromatic 
exp( - iot ) field are of the form In this primitive approach the dependence of the length of 

the wave vector k on the angle p, where (ke,) = k cos p, 
ipD (r) =rot H, ipH=rot E, 

(1) 
would be 

Dj=&ik(r) Ek, p=w/c. k2=p2no, k;=p2 [no-' cos2 ( ~ - t - n ~ - ~  sin2 (PI-'. ( 5 )  

Since we aim to allow accurately for the transverse and lon- On the other hand, if the problem is considered in terms 
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of the induction D, it is convenient to use a tensor 4 which is 
the reciprocal of P: 

2 

i (r) = i*eisqr, 
8--2 

I , 
sinZ O+es cos2 8) + - , 

61 

* -. 1 
= = -  - (ez-el)& sin 28; 

48263 

If it were possible to use the spatial-average value of the 
tensor 7j(r), the optical properties of the medium would have 
corresponded to a uniaxial crystal width 

no= [(q.)..l-", n,= [ (qo) =.I -". (7) 

We shall introduce 
E,=EZ (~+/AI) ,  8 s ' ~ ~  (~+/AI).  

We can now readily show that Eqs. (7) and (4) give results 
which are the same to within terms of the first order with 
respect t o p  , and p3, but differ in respect of the terms -p 12, 
p, p3, and p32. We shall find later the explicit analytic ex- 
pressions for the two eigenvalues k as a function of p accu- 
rate to within terms up to the order of p2 inclusive. With 
precision to the first order inp,  these expressions are identi- 
cal with those obtained from Eqs. (4) and (5) or from Eqs. (7) 
and (5). On the other hand, in the case of terms of the order of 
p2 it is found that not only each of the expressions in Eqs. (4) 
and (7) gives an incorrect result, but the functional depen- 
dence of the (5) type does not hold. This follows readily if 
only from the fact that according to Eq. (5) the angle p = 0 
(propagation along the axis) corresponds to kO2 = ke2. On 
the other hand, it is well known that the gyrotropy appears 
precisely in the case where light propagates along the axis of 
a cholesteric liquid crystal, i.e., in this case we can expect 
splitting of circularly polarized waves: 

Less evident is the conclusion derived below on the presence 
of corrections of the order of -E: also in the case of large 
angles p. 

3. SEPARATION INTO TRAVELING AND VIRTUAL WAVES 

The complete induction vector D(r) of Eq. (1) is de- 
scribed by 

rot rot ( G  (r) D (r) ) -pZD (r) =O. (8) 
The vector D(r) will be sought in the form of the main term 
representing a traveling wave D exp(ikr) and small correc- 
tions representing virtual waves B *, and B *, , which are of 
the first order in q + , and q + 2 ,  respectively: 

2 

D (r) =eikr (D + z B ~ * Q ~ )  . 

The vectors D and B, on the right-hand side of Eq. (9) are 

understood to be independent of the coordinates, and Bo=O. 
We next substitute Eqs. (9) and (6) into Eq. (8) and equate to 
zero separately each term of the exp(ikr + isqr) type with 
s = - 2, - 1, 0, 1, and 2, ignoring all the higher spatial 
harmonics. Moreover, we neglect the excitation of various 
spatial harmonics of the second order in q,, because the re- 
action of the main wave would appear only in thep3 order. 
Therefore, in the s # 0 case, we have 
rot rot [fioB,ei(k+w)'] -p2B ei(k+WP"- --rot rot 

(10) 
Since we are considering B, as corrections to D linear in p ,  
the tensor ijO on the left-hand side of Eq. (10) can be replaced 
with satifactory precision by &-latk, where E is any of the 
values E , ,  E ~ ,  and E ~ .  In all those cases when with satisfactory 
accuracy we can take any of the values E ~ ,  E ~ ,  and E ~ ,  we shall 
write E without a circumflex (i.e., we shall assume it to be a 
pure number) and without subscript. It then follows from 
Eq. (lo) that 

B,= [ ~ - ' ( k + s q ) ~ - p ~ ]  -' [ ( k f  sq) [(k+sq) (&D) I ] .  (1  1) 

The corrections to the induction B, are found to be purely 
transverse, as expected, because of the exact equality 
div D(r) = 0. However, in this case electric field vector E(r) 
has also longitudinal components which we shall allow for 
automatically. Without loss of generality, we can assume 
that 

k=k (e, cos cp+e, sin cp), k=pel"+O (p). (12) 

Then, with satisfactory accuracy the denominators in Eq. 
(1 1) can be written in the form 

e-' ( k f  sq) Z-pZ=s~-'q (sq+2p&Ih COS cp). (I3) 

4. FRESNEL EQUATION FOR THE WAVE VECTOR AND FOR 
POLARIZATION EIGENSTATES 

The equation for D exp(ikr) is of the form 

rotrot[joDeikr] -p2De"'--rot rot [ e i k r z  i-.B.] . (14, 

Substituting Eq. (1 I)  in Eq. (14), we obtain a linear homogen- 
eous equation for D: 

{(k26ij-kik,) [(no) iaf $jk] -P~~<~)D~'O. (15) 

In the above equation we have introduced 

The vector D satisfies the condition of transverseness 
(D-k) = 0 and, therefore, it can be written in the form 

D=e$,+eP,; e,=e, cos cp-e, sin cp. (17) 

Then, the system (15) transforms into 

i [kZ (e,<,e,) +pZe (ev$ey) -p21 Duf pa& (e,$e,) D;=o, 

P% (e,Ge,)~,+ [ k2 ( e , ~ ~ e ~ )  +p2e (e,&J -pal D,=0. 
(18) 

In the derivation of the system (18) we have allowed for the 
fact that (e, 7joe, ) = (e, +,e, ) = 0; moreover, in terms - 4 
the factor k can be replaced with satisfactory accuracy by 
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p2&. Equating the determinant of the system (18) to zero, we 
obtain the following equation for the eigenvalues of k 2: 

[k2-k,2 ( $ ) I  [k2-k," ( r p )  1 - ' /&A2 ( ( ~ ) [ k $  ((P) -ke2 (9 )  I '=0 ,  (19) 

k,2 (9) =p21 (qo) y y - - p 2 ~ 2 $ w ;  k,2 (9) =p2/  ( q ~ )  t O - ~ 2 ~ Z $ p t , ,  (20) 

A'($) =4 I $ u c 1 2  [ (qo) ,? -  ( q ~ ) y ~ l - ~ .  (21) 
The solution of Eq. ( 19) is 

( k 2 )  ,,2='/2[k,Z+k,2+ (k.2-k,") ( l+AZ) '"]  . (22) 
We shall now consider the limiting cases. In the case of mo- 
derately small angle p - 1 the difference between ko(p ) and 
k, (p ) or between (7jO)yy and (7jo),,, is of the first order inp. We 
then haveA ccp2, the productA '(k, - ke2) is ofthe order of 
p3, and the roots of Eq. (22) are 

klZ=k,Z ( r p )  +0 (p3) ; kZ2=ke2 ( r p )  +O (p3). (23) 

The wave at I k 1 = k, has mainly the polarization ey , and the 
wave lkl = k, the polarization e, . I f p  = 0, i.e., in the case of 
propagation exactly along the helix axis we find that 

( q ~ )  w=(qo) cr, k o ( ~ = O )  =ke ((P=O) 

and the roots of Eq. (19) are 

( k 2 )  1.2=ko2 (rp=O) * E ~ ~ ~ I  $cu(rp=O) I .  (24) 

The limiting case Iq)+w will be considered below in Sec. 5. 
We shall now write down the explicit formulas for cho- 

lesterics. In this case, we have 

0=O, ei=e,,, e z = e ~ = e ,  8 , - E L = & ,  

and we can obtain 

1 
COS' cp + - sin2 cp, 

E l  
FJI 

E .  pze (1-7 cos2 cp) +8q2 
"'=- .(T ,328 (q2-pzb C O S ~  (p) ' 

( Ea ) ' p3&'" COS' (p ( ~ + G o s ~  (p) 
% = ~ u v  COS' cp, $uw'=$wu=-i - 

E . 329 (q2-p2e cos2 q) ' 

In the case of relatively small angles the wave is of the o type, 
characterized by D - ey and by a small ellipticity: 

Du -= 
pSe" ( I f c o s t  r p )  ctgZ (p 

im=ie.- 
Dw 16q (qa-pZ& cos2 9 )  ' 

In the case of an e-type wave, the ellipticity is also small: D ,  / 
Dy = im. 

The transition from the regime of linear (p- 1) to the 
regime of circular (p = 0) birefringence occurs at p- (E, / 
&)'I2. In this region we can make the substitution sin2p+p2 
in all the expressions and, moreover, we can regard p2 as a 
small parameter proportional to E, . With the same preci- 
sion, we obtain 

We can see from Eq. (27) that the parameter x describing the 
transition from the circularly to the linearly polarized nor- 
mal waves contains not only the factor &p2/&, but also the 
dimensionless factor q(q2 - k 2)/k 3. If q - k, there is no reso- 
nance and this second factor is of the order of unity. On 
approach to a resonance the role of the virtual waves in- 
creases and the range of circular normal waves, character- 
ized by O(p(x and x - 1, becomes wider. In the limit 9-0, 
this range again widens formally, but the situation is no long- 
er described by our results because in the limit 9-4 the adia- 
batic Mauguin limit is reached. 

5. QUASISTATIC APPROXIMATION 

In the case when the period of a helix is much less than 
the wavelength of light in the liquid-crystal medium, i.e., 
when J q \ > p ~ ' ' ~ ,  the electric field can be regarded as quasi- 
static over one pitch of the helix, i.e., the Maxwell equations 
can be replaced with 

Di(r )  = ~ i k  (r)Ek ( r )  , (28a) 
div D ( r )  =0, rot E ( r )  =O.  (28'4 

We shall assume that E, (r), E(r), and D(r) can be represented 
in the form of spatially averaged parts and fluctuations with 
zero mean value: 

~ , , ( r )  = z ~ ~ + S E ~ ~  ( r )  , D ( r )  =D+-GD ( r )  , E ( r )  =%+GE ( r )  . 
(29) 

We then have the problem of calculation of the effective per- 
mittivity of such a medium, i.e., of the coefficient &:[ in the 
relationship 

~ ~ = e ~ k ' " E ~ .  (30) 

In the case when the fluctuations SE, (r) are, firstly, scalar, 
i.e., 

6Eik ( r )  =68 ( r )  6ik, 

and, secondly, are isotropically correlated 

(88 ( r i )  Se(r2) )=f ( 1 ri-r21) 7 

this problem was solved in Ref. 8 (59), where the permittivity 
of a mixture was calcualted. We shall show how to solve this 
problem without recourse to the above restrictions. 

We shall adopt the Fourier representation 

A ( r )  =A+ x c i k r ~ ( k ) ,  (31) 
k 

where A is any of the quantities in Eq. (29) and2  (k) does not 
contain the term with k = 0. Then, with precision quadratic 
in respect of SE, we have 

si ( k )  =~ikRk ( k )  )+ik ( k ) E k 7  (32) 

The vector equation (32) (i.e., three relationships) links 
six unknowns: g x ,  Ey,  g z ,  b , ,  b y ,  and b z .  Therefore, for 
the purpose of the single-value determination of these un- 
knowns in terms of the known quantities ( E, Zik , and E,  ) it is 
necessary to use the electrostatic equations of the system 
(28b). They can be solved particularly simply in the Fourier 
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representation: 

E, (k) = (k,/k) E (k) , 0 (k) k)  =O, (34) 

i.e., the vector is purely longitudinal and has just one inde- 
pendent component, whereas the vector D is purely trans- 
verse (with respect to k) and has two independent compo- 
nents. For these quantities the system (32) is now fully 
determinate. In particular, combining Eq. (32) with the vec- 
tor k, we obtain 

Ej(k)  =-kjkm~,k(k)EJ~,,k,k,. (35) 

Substituting this expression in Eq. (33), we find that the ef- 
fective permittivity is given by 

In the specific case of fluctuations the expression on the 
right-hand side of Eq. (36) should be averaged over an en- 
semble and then, in principle, it can be expressed in terms of 
the spatial correlation function (rI)S~,, (r2)). In the 
case of scalar fluctuations if 2, = 28, and in the situation 
when the correlation function (E(k)E( - k)) depends only on 
I kJ, the tensor kj k, /k may be replaced withSj,,, /3 and then 
Eq. (36) yields the well known result (see 59 in Ref. 8): 

eeff = Z - ' / ~ ~ E ~ / E .  (37) 

We shall now apply Eq. (36) to the problem of a chiral liquid 
crystal with ( q l ~ p ~ 1 ' 2  = w&lt2/c. The substitution of Eqs. 
(2) and (3) in Eq. (36) gives 

In particular, in the case of cholesterics we have 6 = 0 and 
e2 = E ~ ,  SO that if lqlsp~1'2, then 

ea =etk+O (82). (39) 

It follows that in the limit q-+m it is possible to deal with 
cholesterics by an approach in which the tensor & and not the 

tensor E- ' is averaged in space. In the case of smectics, none 
of the above approaches isapplicable and only an expression 
of the (36) type is correct. Finally, if I q I -p~112 (but not near a 
Bragg resonance) the complete electrodynamic problem can 
be solved. 

It is interesting to study also the behavior of the specific 
rotation of the plane of polarization da/dz in the course of 
propagation along the z axis. In this case the specific rotation 
for cholesterics is 

whereas in the case of smectics, it is 

da 
-Ei 

k' 
(pi-pa sinz 8) '. 

dz 32q (qZ- k') 

A characteristic feature is the fast (as q-3) fall of the 
gyrotropy in the limit q-W.  It therefore follows that the 
gyrotropy is in this case an effect of the third order of small- 
ness with respect to a/A, where a arq-' is the pitch of the 
helix. 

The authors are deeply grateful to V. A. ~ e l ~ a k o v ;  V. E. 
Dmitrienko, E. I. Kats, and Yu. S. Chilingaryan for valuable 
discussions. 
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