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It is shown that the potential of a field created by a test body in a relativistic stream of charged 
particles includes not only a component which decreases rapidly because of the Debye screening, 
but also an oscillatory component decreasing slowly with distance and associated with the mag- 
netic interaction between currents. An exact analytic solution is obtained of the problem of a field 
formed by a charged current-carrying filament placed inside a plasma with a Bennett profile. The 
long-range field of the interaction between charges and such a current-carrying filament, and also 
of theinteraction of filaments with one another helps to understand better the nature of filamenta- 
tion of a plasma in high-current channels. The long-range magnetic interaction should affect not 
only the structure properties of a plasma but also its correlation properties, as well as its thermo- 
dynamic and kinetic characteristics. 

PACS numbers: 52.25.Fi, 52.40.Mj 

1. INTRODUCTION 

An electrostatic field created in a plasma by a single 
charge decreases rapidly with distance and becomes very 
weak at distances comparable with the Debye-Hiickel radi- 
us.' On the other hand, a magnetic field penetrates quite 
freely a plasma in a state of thermodynamic equilibrium. In 
this case the state of a system is governed by its total energy. 
The energy of individual charges is conserved in the course 
of their motion in a static magnetic field. Consequently, a 
test body carrying a current creates in an equilibrium classi- 
cal plasma a magnetic field of exactly the same kind as in 
vacuum. 

The situation changes if a plasma is not in a state of 
thermal equilibrium, for example, if a current flows in the 
plasma. In the presence of a current the electrons move as a 
whole (relative to ions) at a drift velocity v,. If v,#O, a plas- 
ma is not in a thermodynamic equilibrium state. Increase in 
deviation from equilibrium causes a magnetic field to influ- 
ence the structure and properties of a plasma because the 
individual elements of the current interact with one another 
via the magnetic field they create themselves. The spatial 
distribution of such a plasma is established in such a way 
that the pressure gradients are balanced out by the electric 
and magnetic forces. Introduction of a test charge or a cur- 
rent element in this plasma disturbs the balance of forces. In 
general, the electrostatic and magnetostatic perturbations 
aredescribed by a combined system of equations and cannot 
be separated from one another. The result of the relatively 
free penetration of a magnetic field into a plasma is a long- 
range component in the case of perturbations created in the 
plasma by test bodies; this component is additional to a 
short-range one describing the Debye screening. The mag- 
netic interaction between charges is usually ignared because 
it is relativistically weak compared with the electric interac- 
tion. However, such neglect of the magnetic interaction is 
not permissible in problems dealing with dense relativistic 
beams or with other pinch systems characterized by high 
values of the current. 

We shall consider the direction of the current to be spe- 

cial. The simplest geometry is that of a cylindrically symmet- 
ric plasma homogeneous along the current and in the azi- 
muthal direction. The charge density then depends only on 
the distance r from the axis. A test body which does not 
disturb the symmetry of the problem is a thin filament locat- 
ed on the axis. In this geometry the coordinates z and p are 
cyclic and the problem reduces to a system of ordinary dif- 
ferential equations describing the distribution of a field 
created in a plasma by a charged current-carrying filament. 
In the practically important case of the Bennett distribution 
the problem has an exact analytic solution and a complete 
investigation can be made for an arbitrary ratio of the drift 
velocity to the speed of light. In the case of a dense plasma 
when the scale of spatial changes in the field is small com- 
pared with the plasma radius we shall investigate the field of 
a filament for an arbitrary charge density distribution. 

2. INITIAL EQUATIONS 

Under steady-state conditions the fields created by plas- 
ma charges in a cylindrically symmetric current channel are 
described by the following electrostatic and magnetostatic 
equations: 

div E-4np, rot H= (4n/c) j. 

The chargep and the current j densities can be expressed in 
terms of the particle density n, and in terms of the average 
velocities of their directional motion v, : 

The summation in Eq. (2.1) is carried out over the types of 
particle: a assumes the values of e and i for electrons and 
ions, respectively. The charge densities n, are expressed in 
terms of the distribution functions fa : 

where g,  is the g factor. The charge distribution functions 
themselves depend on the fields E and H in the plasma. In 
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general, these dependences can be found from the transport 
equation. 

The presence of a current in a plasma means that the 
electron subsystem moves as a whole relative to the ion sub- 
system, so that v, = v, - vi #O. We shall assume that the 
drift velocity v, is high compared with the dispersion (scat- 
ter) of the charge velocities: 

In the case of a Boltzmann plasma the quantity v, = 
(2T,/ma)'l2 is the average velocity of thermal dispersal of 
charges. 

The conditions of Eq. (2.3) mean that the electron and 
ion subsystems reach independently their states of equilibri- 
um and this happens before the relaxation of the plasma as a 
whole. The effect is due to the rapid fall of the Coulomb cross 
sections on increase in the relative velocity of the colliding 
charges. The inequalities of Eq. (2.3) allow us to ignore the 
friction of electrons on ions, and to assume both subsystems 
to be in equilibrium in electric and magnetic fields created by 
the charges themselves. The equilibrium within each sepa- 
rate subsystem (of electrons and ions) does not mean at all 
that the plasma as a whole is also in equilibrium. Only in the 
absence of drift, when v, = 0, do the temperatures of the 
subsystems become rapidly equalized and the plasma as a 
whole reaches an equilibrium state. Therefore, a convenient 
measure of the deviation of the state of a plasma from a ther- 
modynamic equilibrium is provided by the ratio of the drift 
velocity to the speed of light 0 = v,/c. 

In this formulation of the problem the charge distribu- 
tion functions can be found for arbitrary values of the ratio 
pa = v,/c, essentially without solving the transport equa- 
tions. In fact, in the case of a subsystem in equilibrium the 
distribution function depends only on the additive integrals 
ofmotion. Under steady-state conditions in the presence of a 
cylindrical symmetry the time t and the coordinates z and q, 
are cyclic variables. The integrals of motion, which are can- 
onically conjugate with these variables, are the total energy 
E,, the projection of the generalized momentum P, along 
the direction of the current, and the projection of the mo- 
ment M,. If the subsystem does not rotate as a whole, the 
distribution function is independent of M,. 

Belyaev and Budker2 showed that the distribution func- 
tion is a relativistic invariant. The relativistically invariant 
form of the dependence on the total energy and generalized 
momentum is 

Here, Pi is the four-vector of the energy-momentum; ui is the 
four-vector of the velocity of a reference system linked to 
particles of type a ,  relative to the laboratory system; 
y, = (1 - p :)- 'I2 is the relativistic factor; T, is the tem- 
perature of charges of type a ,  C, is a relativistic scalar quan- 
tity related to the number of particles N, per unit length of a 
discharge channel by the normalization condition 

OD 

Na=2n J na ( r )  r dr. (2.5) 
0 

In the case of fermions the dependence of the distribution 
function on Z,  is of the form 

fa= ( l+exp 2,) -'. (2.6) 

The total energy of a charge of type a moving in an 
electromagnetic field is 

Ea=eaAo+ ~a (P- (ealc) A) ,  (2.7) 

where A, and A are the scalar and vector potentials of the 
field and 

is the dependence of the energy of the charge on the kinemat- 
ic momentum p = P - (e,/c)A. The vector potential of the 
field for a cylindrically symmetric plasma can be selected 
conveniently in the following gauge: A = (O,O,A,(r)), so that 
div A = 0. It follows from Eqs. (2.4), (2.6), and (2.7) that the 
dependence of the distribution functionf, on the kinematic 
momentum p of the charges is 

f a (p )  ={l+exp [Ca-i- ( y a , / T a )  (ea(A,-paAz)+~a(p)-pva)l )-' 

(2.8) 
Substituting the distribution function (2.8) into Eq. (2.2) and 
integrating over the momenta, we obtain the following 
expression for the charge density as a functional of the field: 

Here, 

U, can be regarded as the "potential" of the force exerted on 
charges of type a by an electromagnetic field of the collective 
interaction. The function B,(xy) in Eq. (2.9) can be repre- 
sented in the form of a single integral: 

Noting that E = - grad A, and H = curl A, we can 
use Eqs. (2.1) and (2.9) to reduce the electrostatic and magne- 
tostatic equations to 

The expressions in Eq. (2.11) represent a complete system of 
equations which describe the electric and magnetic fields in a 
plasma. 

3. BENNElT DISTRIBUTION 

In the limiting case of the Boltzmann statistics, when 
unity in the denominator of Eq. (2.10) can be ignored com- 
pared with the exponential function, the charge density sub- 
jected to the normalization condition (2.5) is given by the 
explicit expression 
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where 

is the normalization integral. In the case of a Boltzmann 
plasma the equations (2.11) governing the structure of the 
field are 

The notation in Eq. (3.1) is simplified by introducing relativ- 
istic two-component vectors of the field potential 
A, = (Ao,A,) and of the velocity ua, = (ya,ya/3,). The scalar 
product of the vectors is A,B, = A,$, - A,B,; summation is 
understood when the Latin indices i,k,. . . are repeated. 

In general, the state of a system is governed by six pa- 
rameters: 

Since the electron and ion subsystems are in a thermodyna- 
mic equilibrium, the values of Ta and Pa are independent of 
the radius. A suitable selection of the reference system can 
ensure that one of the quantities pa vanishes. We shall as- 
sume that ions considered as a whole are immobile in the 
laboratory reference system. Then, /3, = O,P, =/3 ,...., and 
Ye = Y. 

A detailed investigation3 has shown that an equilibrium 
in a Boltzmann plasma subject to just the collective forces of 
the interaction between charges is possible only if the energy 
of the magnetic compression e:N :B '/2 of the charges, the 
energy of their electrostatic repulsion 1/2(8ea Nu )2, and the 
energy of thermal motion in the radial direction ENa Ta /ya 
are balanced out exactly: 

Another important property of the system (3.1) is the 
scale invariance of the equations. In fact, if A,(r) represents 
solutions of Eq. (3. I), then the functions A, (br) are also solu- 
tions for any value of b. This means that if the parameters of 
the system (3.2) satisfy the energy balance equation of Eq. 
(3.3), a plasma equilibrium is possible for an arbitrary value 
of the discharge channel radius. In other words, the value of 
the pinch radius considered in the Boltzmann statistics ap- 
proximation is governed not only by the conditions of a me- 
chanical equilibrium in a plasma in its own field, but it de- 
pends also on finer properties of the system and on its 
interaction with the ambient medium and external fields. 

In general, the system (3.1) can be integrated only par- 
tially. In the special case when the parameters of Eq. (3.2) 
satisfy the relationships 

a system of two second-order equations in Eq. (3.1) degener- 
ates into one second-order equation which can be integrated 
analytically. The solution first found by Bennett4 is 

naB ( r )  = (Nalnro2)  (I+F/r,Z) -', va=rO2/2, 

In the case of the Bennett distribution the dependences of the 
charge density on the radius are the same. Using the rela- 
tionships in Eq. (3.4) and the condition Pi = 0, we find that 
out of the six parameters in Eq. (3.2), three of them 

remain arbitrary. When the relationships of Eq. (3.4) are 
obeyed, the energy balance condition (3.3) is satisfied identi- 
cally. 

4. FIELD OF A TEST FILAMENT 

We shall assume that a current-carrying thin charged 
filament is introduced into a plasma whose structure is de- 
scribed by the system (2.1 1). The perturbation resulting from 
the presence of this filament does not disturb the symmetry 
of the system and only the quantitative values of A, and A, 
are affected. We shall assume that the filament current and 
charge are sufficiently small and we shall linearize the sys- 
tem (2.11) with respect to perturbations A and A of the 
field potentials. The index "(1)" indicates that these are per- 
turbations of the potentials and we shall omit this index in 
future. It is convenient to represent the linearized electrosta- 
tic and magnetostatic equations in the tensor form: 

the tensor a, is determined by the unperturbed values of the 
potential of the field A $'. Its components are of the form 

The repeated Latin indices indicate summation; in Eq. (4. l), 
we have 

The function B, is the derivative of the function B, of Eq. 
(2.8): 

In the case of a Boltzmann plasma we have B, (xg) = 
xB,(xy), so that 
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In the special case of the Bennett distribution of Eq. (3.5), we 
obtain 

If a plasma is compressed until it becomes strongly de- 
generate, the function x ch- ' [x (y  + z - 1)/2 ] is equivalent 
to the S function: 

5 
lim 1 

1 
= - 6 (y+z-I). 

,,, c h [ x ( y + z - 1 ) / 2 ]  n 

In the case of a strong degeneracy the function B, is 

We shall assume, for simplicity, that the test filament is 
located along the axis of flow of the current r = 0. Near the 
filament the field perturbations increase logarithmically. 
Denoting the charge per unit length of the filament by a, and 
the current along the filament by I = co;, we find that the 
boundary conditions for the potentials in the limit r-0 can 
be written in the form 

Introduction into a plasma of a charged current-carry- 
ing filament alters the total current and charge per unit 
length of the system as a whole. However, outside the system 
the field is governed by the total values of the charge and 
current. Therefore, the boundary condition imposed on per- 
turbations of the potentials outside the plasma are also of the 
form 

The system (4.1) subject to the boundary conditions (4.3) and 
(4.4) describes completely the field perturbations induced in 
a plasma by a charged current-carrying filament. In general, 
electric and magnetic fields are mutually coupled. Only in 
the limiting case ofp-0, when there is no current in a plas- 
ma, can we find a reference system in which only one element 
of the tensor a,, namely a,,, differs from zero. In this case 
the system (4.1) splits into two independent equations. One 
of them describes the Debye screening: 

and the other represents free penetration of a magnetic field 
into a plasma: 

5. EXACT SOLUTION IN THE CASE OF THE BENNETT 
DISTRIBUTION 

The system (4.1) with the r-dependent components of 
the tensor a,  cannot be integrated analytically. In the pres- 
ent section we shall consider perturbations of a plasma with 

the Bennett profile for which we can obtain an exact solution 
of this system of equations, which we can then investigate 
fully. 

In the case of the Bennett distribution of Eq. (3.5) the 
system (4.1) becomes 

LAi=cikAk, 

where 

and instead of r, we shall now introduce a new variable 

The components of the tensor c, are independent of the co- 
ordinate: 

The parameters Ga are given by Eq. (3.6). Their values are 
not limited by the Bennett equilibrium conditions (3.4) and 
can be arbitrary. 

The eigenfunctions of the operator 2 

are the Legendre functions 

defined in the interval ( - 1,l). When r is increased from zero 
to inknity, the quantity f varies from - 1 to + 1. The oper- 
ator L is invariant under the change of the sign of f .  There- 
fore, Pv( - f ) is a solution of (5.3), and Pv(c) and P,( - f ) 
are linearly independent. 

It is natural to seek a solution of Eq. (5.1) in the form 

Substituting Eq. (5.4) into Eq. (5.1) and allowing for Eq. (5.3), 
we obtain a system of homogeneous linear algebraic equa- 
tions for the two-component vector ai: 

The condition of solubility of the system (5.5) is 

det (cik+A2Gik) =O 

and it defines two eigenvalues A ': 

Here, 

is the trace of the matrix c, and A is the determinant of the 
matrix: 

The determinant A is negative because the numbers of parti- 
cles Nu and their temperatures Ta are positive quantities. It 
vanishes when electrons cease to drift relative to ions, and 
the plasma reaches an equilibrium. It follows from Eq. (5.6) 
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that il <0 and A : > 0. The eigenvalues v are defined in 
terms ofA,,  in accordance with Eq. (5.5) and are given by 

In this definition the eigenvalue v ,  is real, whereas v2 is com- 
plex for [A, 1 > 1/2. 

The general solution of the system (5.1) can be repre- 
sented conveniently in the form 

where the vectors ai and pi satisfy the expressions in Eq. 
(5.5) with il = A:, whereas y, and 6) satisfy the expressions 
in Eq. (5.5) with il = A :. In view of the homogeneity and 
linearity of the equations in the system ( 5 4 ,  these vectors 
are given by the equations only to within constant factors. 
The four constant factors are found by applying the bound- 
ary conditions: two near the filament (4.3) and two outside 
the plasma (4.4). 

The Legendre function P, (c ) is regular for 5 = 1 and we 
have P,(1) = 1, and it also has a logarithmic singularity in 
the limit f+ - 1. The absence of a singularity of P,(c ) at 
f = 1 is the justification for the selection of the general solu- 
tion in the form of Eq. (5.8). For this general solution the 
vectors ai and yi are governed by the boundary conditions of 
Eq. (4.3) near the filament irrespective of the vectors Pi and 
Si, which are obtained using the boundary conditions (4.4) 
outside the plasma. 

In the vicinity of this singularity at c = - 1 the Le- 
gendre function has the following asymptote5: 

sinvn 13-b 
P. ( I )=  +y+21p ( v + i )  +n ctg v n  , 1 

In the direct vicinity of the filament, i.e., at r - 4 ,  we have 

r(dAildr) = ( 2 1 ~ )  (a i  sin vln+yi sin v 2 n ) ,  r+O. (5.9) 

Outside the plasma in the limit r+ w the logarithmic deriva- 
tive of the field potential is 

r(dAildr) =- (2In) ( p i  sin vin+Gi sin v 2 n ) ,  r+=. (5.10) 

Comparing Eqs. (5.9) and (5.10) with Eqs. (4.3) and (4.4), we 
obtain the following system of equations for the vector coef- 
ficients in Eq. (5.8): 

ai sin vln+yi sin v,n=-noi, 
(5.11) 

(cik+hz26a) ak=o, (ci,+hi26,,) y,=O. 

The vectorsp, and 6, are identical, apart from the sign, with 
a, and y, : 

Multiplying the first equation in the system (5.1 1) by the 
matrix cik on the left and then using the second and third 
equations of the system (5.1 I), we find that 

. . 
-hz2ai sin vln-h12yi sin v2n=-nCikok. 

Using this relationship and the first equation in the system 

(5.1 I), we obtain the vectors ai and yi in the form 
n sk+h?6ih 

at=-! GAT 
sin v l z  hZ2-hi2 

n ~ ~ + h , ~ 6 ,  
yi=-- .  Ok. sin v2n hz2-hi2 

It therefore follows that the field of a test filament in a plas- 
ma with the Bennett profile is given by the formula 

I ;  - - (cik+A,'6s) Ai ( r )  = - 
sin v,n 

- P v z ( I ; ) - P v s ( - G )  ( c i , + ~ ; 8 i k ) )  o,, c=th ln (r / ro) .  
sin v2n: 

If [ A ,  I > 1/2, the index v2 is complex: 

The Legendre functions with the complex index of Eq. 
(5.14), defined in the interval ( - 1,1), are known as the cone 
functions. An important property of these functions is that 
for real u, the functions P - ,,, + , (f ) are real and positive. 

We shall now consider the changes which occur in Eq. 
(5.13) in the limit of a small number of particles in a plasma 
when G, > 1 and Gi .( 1. If the parameters G, of Eq. (3.6) are 
small, then the components of the tensor c, of Eq. (5.2) are 
also small. The eigenvalues A :,, of Eq. (5.6) and, therefore, 
the Legendre-function indices vlq2 of Eq. (5.7) are also small. 
The transition to the limit v 4  occurs in accordance with 
the formula 

n 
lim - i+E 

[PY ( g )  - P v  ( - I ; )  I = In - . ,.-,, sin vn 1-I; 

Using the relationship (5.13, we can reduce Eq. (5.13) to 

The field given by Eq. (5.16) does not differ from the field 
created by a charged current-carrying filament in vacuum. 
The conditions G, ,Gi (1 mean that the radius of a plasma 
channel r,, is much less than the Debye radius 

In fact, using Eq. (4.2), we find that 

ro/rd=2 (G,+Gi) I h /  ( l+r2/ro2) < I ,  G,, G 6 1 .  

Under these conditions there is no screening of the field by 
the plasma. 

6. FIELD NEAR A FILAMENT IN A DENSE PLASMA 

We shall now consider a high-density plasma, such that 
the parameters G, of Eq. (3.6) are large: 

We shall assume that fl is arbitrary: 0- 1. Under the condi- 
tions of Eq. (6.1) the Debye radius is small compared with the 
plasma radius: 
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In the range defined by Eq. (6.1) subject to the condition 
8- 1 the absolute values of the Legendre-function indices 
are large: v,) 1,u) 1 [see Eq. (5.14)]. In the case of large in- 
dices it is convenient to use the following asymptotic formu- 
las for the Legendre functions: 

P, (cos 0 )  

l o ( ( v + ' / z ) O ) ,  M i ,  vBl,  
={ sin nvNo ( ( v f 1 / Z )  ( n - 0 )  ) + CQS vn10 ( (v+ '/a) ( n - 0 )  1, 

(6.2) 

Here, Jo(x) and No(x) are the Bessel functions of the first and 
second kind, Zo(x) is a Bessel function with an imaginary 
argument, Ko(x) is the Macdonald function. At distances 
from the filament small compared with the plasma radius, 
r(ro, we can use the asymptotes (6.2) and (6.3) to reduce Eq. 
(5.13) for the field to 

Near the filament over distances r(ro the filament field 
consists of two components. The last term in the braces of 
Eq. (6.4) decreases exponentially on increase in r and de- 
scribes the Debye screening process. However, in addition to 
the exponentially decreasing component, the filament field 
in the plasma also has a slowly decreasing and oscillating 
component [represented by the first term in the braces of Eq. 
(6.4)]. IfP- 1 and G, -Gi) 1, the parameters v, and [A, 1 are 
both large and of the same order of magnitude: they are of 
the order of the ratio of the plasma radius ro to the Debye 
radius r, in the region where the filament is located. Then, at 
distances r(ro the characteristic spatial scale of both screen- 
ing and oscillations is of the order of the Debye radius. 

In the vicinity of the filament the field is largely deter- 
mined by the local properties of the plasma. In fact, at dis- 
tances from the filament which are small compared with the 
plasma radius, r(ro, the plasma parameters vary only slight- 
ly and we can assume in the expressions in Eq. (4.1) that 
a, (r) = a, (0). The eigenfunctions of the Laplace operator 

are the cylindrical functions Zofpr): 

SubstitutingAi = a,Zo&r) in Eq. (4. I), we obtain a system of 
algebraic equations 

These equations are governed by the properties of the plasma 
in the direct vicinity of the filament and, therefore, they are 

valid for an arbitrary radial profile of the charge density. 
The eigenvaluesp2 are given by the same formulas (5.6), 

but now S and A are the trace and determinant of the matrix 
a,(O). The general solution of the system (4.1) near a fila- 
ment for a plasma of arbitrary profile can be represented in 
the form 

Ai ( r )  = a i K o (  Ipl ( r )  + P i l o  ( 1 pi 1 r )  + ~ i N o ( p * r )  +6,J0 ( p 2 r ) ,  

The vector coefficients ai and yi in Eq. (6.5) are determined 
by the boundary conditions (4.3) on the filament: 

ai=n ( ~ 2 ' - p i 2 )  -' (aik+pIZ6ik) OR, 

r i=-2  (p z2 -p i2 )  -' (aiR+pZ26tk) (Sk. 

The coefficients 0, and Si can be determined using the 
boundary conditions outside the plasma (4.4) if we know the 
nature of the solution not only for rar, but for any value 
r- ro. As far as the vector pi is concerned, we find that under 
the conditions (6.1) it is exponentially small and can be as- 
sumed to be zero. In fact, Io(lpllr) is a function increasing 
exponentially when r is increased. Therefore, for r-ro we 
have I,( lp, lr) - exp(lp, 1 ro). Since the filament charge and 
current are finite, it follows from Eq. (4.4) that pi 
exp( Jp ,I ro) - u, and hence pi - o, exp( - Ip , I  ro). 

The coefficient Si in Eq. (6.5) cannot be determined sim- 
ply from the local properties of the plasma near the filament 
even subject to the condition (6.1). This coefficient is found 
by applying the boundary conditions outside the plasma. It 
is not exponentially small and it depends on the fine details 
of the structure of the whole plasma. In the special case of the 
Bennett distribution, we have 

Comparing Eqs. (6.5) and (6.4), we find the vector Si for the 
Bennett profile: 

Under the conditions of Eq. (6.1) the vector 6, is a rapidly 
oscillating function of the plasma parameters. 

In the limiting case of a dense plasma defined by Eq. 
(6.1) the vector Si should be regarded as a random quantity. 
The long-range component of the field of a test filament in a 
dense plasma seems to consist of two parts: a fixed part 
yiN0(p2r) and a term S,Jo(p,r) with a random amplitude, 
whose average value is zero. If the inequalities of Eq. (6.1) are 
obeyed by such a large margin that fluctuations of the quan- 
tities G, are also large, then fluctuations of the parameter 
p2r0 are large compared with the period of the tangent. 
Then, Eq. (6.5) should be averaged over the plasma fluctu- 
ations. The averaged expression for the field in the vicinity of 
the filament, subject to the conditions of Eq. (6.1) fulfilled by 
a large margin, no longer contains the term Si Jo(p2r). 

If the inequalities of Eq. (6.1) are not too strong, so that 
the variance of the parameterp2ro is small, there is no justifi- 
cation for the averaging procedure. In this case the filament 
field depends strongly on its position in the plasma and on 
the parameters of the plasma itself. 
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If@- 1, the components of the tensors c, + A :Sik and 
cik + A  :aik in Eq. (6.4) are of the same order of magnitude. 
A typical oscillation period corresponding top -  1 is of the 
order of the Debye screening radius. It follows that in the 
case of a relativistic electron beam the field of a charged body 
inside the beam is not simply Debye-screened, but penetrates 
to a considerable distance inside.the plasma and it also oscil- 
lates. 

Whenp decreases, the period of the spatial oscillations 
of the long-range component of the field increases, 

and the relative amplitude of the oscillating term of the field 
decreases. 

We shall now consider how the filament field changes as 
fi approaches zero and a plasma assumes an equilibrium 
state. If G, ) 1 and p( 1, the determinant A becomes much 
smaller than the trace S. We then have 

where )A : 1 $1 and A : ( 1. The Legendre-function indices 
are then v, =A:(1 and v2= - 1/2+ilAll. In the first 
term of Eq. (5.13) we can go to the limit (5.1 S), whereas in the 
second we can use the asymptotic formula (6.3). Bearing in 
mind that sin v27r=. - 1/2 exp(lA, l.rr), we obtain the follow- 
ing expression for the filament field 

Inside an electron beam at distances r<ro we can ignore the 
second term in the brackets. We then finally have 

Ifp(1, the matrix elements in Eq. (6.6) are 

In the limit 0-4, we obtain 

Noting that A: - A : = G, + Gi in the limit P - 4 ,  and sub- 
stituting Eq. (6.7) into Eq. (6.6), we find that 

A. (r) =2aoKo(2 1 hi I rlr,) , A , ( r )  =-2& ln ( rho) ,  P+O. 

(6.8) 

The first formula in Eq. (6.8) describes the Debye 
screening of the filament charge, whereas the second gives 
the distribution of the magnetic field created by the filament 
current. This magnetic field does not differ in its effects from 
the current in vacuum, which is to be expected because in the 
limit = 0 a plasma assumes an equilibrium state. An equi- 
librium plasma is penetrated freely by a magnetic field. The 
distribution function of an equilibrium plasma is determined 
by the total energy of the charges. However, the energy of a 
charge moving in a static magnetic field is independent of the 
field. 

In the case of metals the high density of conduction 
electrons n - cmP3 usually makes the drift electron ve- 
locity very small. We find that j = envo- 1O3v0. Even at a 
relatively high current densityj- lo6 A/cm2, the drift veloc- 
ity is only vo- lo3 cm/sec. In the case of metals these effects 
can appear only in the presence of extremely high currents, 
for example, those encountered in experiments involving ex- 
ploding wires. Oscillations of the field of a test body ob- 
served at large distances are characteristic of relativistic 
streams of charged particles and also of pinch systems in 
which the magnetic compression by the magnetic field of the 
current itself plays the dominant role. 

7. CORRELATION PROPERTIES OF CHARGED-PARTICLE 
STREAMS 

Experiments have shown that the plasma in a high-cur- 
rent discharge does not usually represent one structure but 
consists of a number of thin  channel^.^ An investigation of 
the correlation properties of plasma streams makes it possi- 
ble to understand the nature of filamentation of a high-cur- 
rent discharge into a system of such channels. 

We shall assume that in a high-current channel the ac- 
tion of the excess force of the magnetic self-compression and 
rapid radiation cooling causes part of the plasma stream to 
contract into a thin filament. We shall consider the field 
created in the plasma by this filament. This field determines 
the correlation properties of the individual plasma charges 
relative to this filament. 

If the charge per unit length of the filament and the 
current in the filament are small compared with the total 
charge and current in the system, then the filament field 
satisfies the system of equations (4.1). In the filament itself at 
r-0 we still have the boundary condition (4.3). In contrast to 
a test body, in the present case the average field of the collec- 
tive interaction and the average plasma density should be 
considered for the system as a whole, including the charge 
and current of the part of the plasma that has contracted into 
the investigated filament. In this case the filament charge 
and current are not introduced into the plasma from outside, 
but are the properties of the plasma itself. The field outside 
the discharge, governed by the total values of the charge and 
current, is not affected by the filament contraction. There- 
fore, in an investigation of the correlation properties of the 
plasma the boundary condition outside the discharge is of 
the form 

In the case when the contraction into a filament occurs in a 
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plasma with the Bennett profile, the general solution for the 
field still has the form (5.8). The vectors ai and yi are given 
by the formulas in Eq. (5.12) and we also have Pi = Si = 0 in 
accordance with the boundary condition (7.1). 

Under the conditions of Eq. (6. I), when the Debye radi- 
us is small compared with the plasma radius, the filament 
field is given by Eq. (6.5) and the condition (7.1) yields the 
following value for the vector Si in Eq. (6.5): Si = yi ctg Y,B. 

The average value of the vector Si vanishes and when the 
conditions of Eq. (6.1) are satisfied by a large margin, the 
field should be averaged over fluctuations. In the intermedi- 
ate range r, (rgr ,  the filament field averaged over the plas- 
ma fluctuations is 

WhenP or v ,  decreases, the period of the spatial oscilla- 
tions of the field increases and in the range v ,  - 1 it becomes 
of the order of the plasma channel radius r,. Oscillations 
then disappear and the division of the field into the local and 
"random" components becomes meaningless. It is impor- 
tant to note that the filament field corresponding to v ,  - 1 is 
an oscillatory function of r. The plasma charges moving in 
this field may be captured by the filament and go over to the 
region of finite radial motion as a result of energy losses due 
to emission of radiation. This process may cause splitting of 
the plasma into concentrated tubular structures which are 
located at minima of the filament potential. These structures 
can then split into separate filaments in such a way that the 
mutual energy of their correlation interaction is minimal. 

Filamentation of a strong current into separate chan- 
nels is manifested by an instability of a system of this kind 
when radial plasma oscillations of wavelengths 
i1 >A,, = r, /B are built up in magni t~de .~  The critical 
wavelength A,, is equal to the period of spatial oscillations of 
the long-range component of the correlation field. An analy- 
sis ofthe stability given in Ref. 3 and an independent analysis 
of the correlation properties demonstrate that there is a ten- 
dency for a high-current channel to split into separate fila- 
ments and this tendency is common to pinch systems irre- 
spective of the spatial structure of the discharge-channel 
plasma. 

Our derivation of the distribution function (2.8) is valid 

in the case of a system which is stationary and homogeneous 
along the current. It allows us to find a two-dimensional 
distribution of the field created by a one-dimensional test 
body, but it is unsuitable for the calculation of microfields 
generated in a plasma by individual charges. The field of 
charges moving in a plasma is neither stationary nor homo- 
geneous along the direction of the current. However, it is 
clear that the presence of a long-range component of the field 
may alter drastically the structure of a plasma, as well as its 
thermodynamic and kinetic properties. It would be of great 
interest to find the field generated in relativistic plasma 
streams by individual charges. The long-range component of 
the field may give rise to bound states of electron pairs be- 
cause of their correlation interaction, i.e., it may give rise to 
the Cooper effect.' The correlation energy of the interaction 
between two electrons should include an oscillatory function 
decreasing slowly with distance. Near the positions corre- 
sponding to minima of the correlation energy the relative 
motion of electrons is finite. Cooling of the electron subsys- 
tem by the loss of energy as radiation may have the effect that 
the more favorable (from the energy point of view) state of a 
system will be that in which electron pairs form bound 
states. This presents an interesting possibility of a transition 
of a plasma in a high-current channel to the superconducting 
state. This transition of a plasma in a relativistic stream to 
the superconducting state can be investigated only outside 
the approximation adopted above that the system is station- 
ary and homogeneous along the current axis. 
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