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Scattering of electrons by a force center in a homogeneous electric field is considered. The oscilla- 
tory energy dependence of the cross section, due to interference effects accompanying scattering, 
is investigated. The feasibility of experimental observation of the effects is analyzed. A multichan- 
nel theory of electron scattering by atoms and a multichannel theory of photodetachment of 
negative ions in an electric field are developed. It is shown that the phase shifts of electron 
scattering by atoms can be determined with high resolution by measuring the cross sections for 
the photodetachment of the corresponding negative ions in an electric field. 

PACS numbers: 34.10. + x, 34.80.Bm 

1. INTRODUCTION 

Interference effects that occur in photodecay of atoms 
and negative ions in a uniform electric field were considered 
earlier in Ref. 1. The same effect should appear in scattering 
of electrons by atoms. As will be seen below, the organiza- 
tion of an experiment on scattering in an electric field, aimed 
at observing interference effects, is a rather complicated 
problem. A theoretical analysis of the scattering problem, 
however, is of methodological interest. In addition, it is re- 
lated to the problem of photodetachment of negative ions, 
and experiments on photodetachment in an electric field are 
already being perf~rmed.~ The present paper considers 
therefore also the multichannel theory of photodetachment 
with allowance for the interaction of the electron with the 
atoms in the final state. 

2. SCATTERING BY A FORCE CENTER 

We consider an electron in a field U(r)-Fz (the force F 
exerted on an electron by a uniform field and directed along 
thez axis). The potential U (r) is assumed to be short-range in 
the sense that its radius r, satisfies the condition 

Fr,<E, (1) 

where E = k 2/2 is the electron energy (here the below we use 
the atomic system of units). 

The wave function of the electron satisfies the integral 
equation 

xk+ ( r )  =%:O ( r )  - IG+ (r, r ' )  U ( r l ) x k +  ( r l )  d r t ,  (2) 

where G + is the Green's function of the electron in the elec- 
tric field. 

Let the projection of the current density of the initial 
beam on the z axis be negative (directed opposite to F). The 
wave xr) consists then of two components, incident and re- 
flected from the barrier produced by the electric field. We 
express xf) in the form 

x:') =2"/"1 k,I'hF-'/e exp[i (kxx+k ,y )  I cD [- ( z f  kZ2 /2F)  ( 2 F )  ' " 1 ,  

equal to k, as Z-P co . If, however, z(k :/F, the current den- 
sityj = k. The determination of the effective scattering cross 
section depends therefore on the chosen value of j. We shall 
assume hereafter j = k. The expressions obtained for the 
scattering cross sections in the field go over then into the 
usual cross sections as FA. 

The Green's function in the quasiclassical approxima- 
tion was written out in Ref. 1, where a factor ( 2 ~ ) - " ~ 1 - '  was 
left out in the corresponding formula (19). The Green's func- 
tion is of the form 

G+ ( r ,  r')  = 

n=O 

where 

St ( r ,  r') = ( r - r f )  2 / 2 ~ + ' / z F ~  ( z f  z') - ' / 2 r F 2 ~ 3 + i / z k Z ~ ,  

.snz= ( 2 k 2 / F 2 )  [1+  ( F / k 2 )  ( z + z f )  - ( - l ) n ~ ( r ,  r ' ) ]  , 
[ S  ( r ,  r') ] '= (14- 2zF/k2)  - (1+2z fF/k2)  

- (F2/k')  [ (x-x' )  '4- (y-y') ' 1  
Equation (2) with the function (4) can be solved for all r 

only when U is a zero-radius potential. However, if we are 
not interested in the angular distribution of the electrons and 
need determine the total cross section, it suffices to consider 
the solution at distances r 2 r,. Then Eq. (2) is solved under 
the condition 

The function xP) takes in this case the form 

X:0)-2 e x p [ i ( k , x f k , y )  f sin (k , z+ak) .  (7) 
We consider next the asymptotic form of the Green's 

function (4) under the condition (1). The two terms in (4) 
correspond to the contributions of two trajectories in the 
motion from the point r' to r. At large z, interference of all 

(3) the trajectories that start out from the point r' take place in 
where @J is the Airy function. thexy plane (Fig. la). For r(k '/F, on a sphere of radius r, the 

The densities of the incident and reflected beams are only trajectories that interfere are those which are directed 
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FIG. 1 .  ~rajectories of electrons in a uniform electric field. The trajector- 
ies shown by the solid lines correspond to the first term in the Green's 
function, and those by the dashed lines to the second term. The case a 
corresponds to the function (4) and the case b to (8). 

with and against the field (Fig. lb). In this case 

exp(iklr-r'l) 
G+ (r ,  r') = 

F + - e x p { i [ H - k ( z + z l ) ] ) .  
2n I r-r' I ' 4nikz 

The second term in (8) is a correction that yields the 
interference in the scattered wave. A correction of the same 
order, but having no effect on the interference, was left out. 

The solution of Eq. (2) with allowance for (7) and (8) is of 
the form 

where $2 is the solution of Eq. (2) at F = 0, k' is a vector 
with components (k,, k, - k,), and k0 is a vector with com- 
ponents (0, 0, k ). 

Using the integral representation of the scattering am- 
plitude, we obtain 

where fk2,, is the amplitude of the scattering by the potential 
U(r) for an initial momentum k, and a final momentum k,. 

At r R r, and Fr(k 5 the function X: takes the form 

where kf = kr/r. 
We consider now interference effects of order not high- 

er than the first in F. We separate first in (1 1) the coefficient 
of a spherically diverging wave: 

Akfk = eiakfkfk - e-iukfkfk' - akfkfkO. (I2) 
The total scattering cross section is 

o ( k )  =oO (9) +oo (k') +o, ( k )  + 0 2 ( k ) ,  (13) 
where uo(k) is the total scattering cross section in the absence 
of an electric field, 

At any arbitrarily small F, the particles are knocked out 
of the incident stream twice, before and after reflection from 
the barrier produced by the electric field. This is manifest by 
the presence of two terms in (1 3), which do not depend on F. 
If the potential U is central, their sum reduces to 2a0(k). The 
principal contribution to the interference is made by the 
term a,. Applying the unitarity condition, we obtain from 
(14) 

IS,=- (4nlk)  Im [ez'ak ( f k . k - Y k k V * )  1, (16) 
and in the case of a central potential 

ol= (8nlk)  sin (P  cos3 0 4  Im f (20k-n) , n/2<Ok<n, (17) 

where f (p) is scattering amplitude as a function of the angle 
P. 

We consider next the interference between the scattered 
wavex, and the wave X, reflected after scattering. Accord- 
ing to (1 1) 

x1 = (eiakfkfk - e-iakfkfk,) elkr/r, x2 = - akezkOr. 

The corresponding current consists of two parts: 

Calculating the integrals under the assumption kr) 1, we ob- 
tain the following correction for the cross section: 

Using (15) and the unitarity condition, we have for the first- 
order correction in F 
C 7 2 + ~ 3 = - -  (2nF/k3)  Re {(eiB-ZiakfkkO-fkrko) (eziakf-kko-f-kvko)). 

The use of nonstationary perturbation-theory formula 

makes it possible to obtain the correction a, in the form (14) 
and the correction a, (18), in which fk f ,  is replaced by the 
corresponding amplitudes in the Born approximation. 

3. SCATTERING BY A ZERO-RADIUS POTENTIAL 

If U ( r )  is a zero-radius potential, the solution of (2) is of 
the form (see Ref. 3) 

xk+ ( r )  =x:) ( r )  + x ~ C  ( r )  , 
% ,  

K C  a (rrx:" ( r l )  ) / a r l  
x k  ( r )  =-2naG+ (r ,  0) 1+2nad (r'G+ (r' ,  0) ) lar' 

where a is the scattering. 
The total scattering cross section is calculated in the 

same manner as above, and is equal to 

On the other hand, it is necessary to find the angular 
distribution at macroscopic distances from the force center, 
it is necessary to introduce a plane that is perpendicular to 
the z axis and on which the electron distribution is given by 
the differential cross section 

b o  ( r )  = k r t  1m XF (r)dX:( ( r )  ] p dp drp. [ dz (21) 

Substituting here (4) and (19) under the conditions 
z)k :/2F and z)(w)-"~, we have 
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1 d% ( r )  sinVi/,P cos3 Ok+n/4) 4 x  directed opposite to the vector F, a kinetic energy of the 
--= 
p dp dcp ln-'tik-ike'A/3p l Z  k,k3s(r, 0 )  order X must be imparted to the beam, where X is the dis- 

tance, which is macroscopic from the beam-formation re- 
1 a s, (r ,  0) 

gion to the collision region. Therefore both the initial energy 

n=O 
and the monokineticity must be very high; this is not attaina- 
ble with present-day experimental facilities. In the case of 

t 
1 d a ] photodetachment by a laser beam, these difficulties disap- -sco (r,  0) +-ST, ( r ,  0) 

az pear-the electric field does not act on the photons and they 
are monochromatized to a high degree. 

X sinlS.. ( r ,  0) -S,(r, 0) I}. There exists, however, another possibility of observing 

The angular distribution takes the same form as in the 
case of.ph~todetachment.'.~ The first two terms in the curly 
brackets give the classical angular distribution, and the next 
term gives the interference part. 

In the case of a zero-radius potential it is also possible to 
calculate the cross section for scattering in the classically 
energy-forbidden region. The conditions ( I )  and (5) are then 
replaced by 

Fr,< 1 k Z J ,  j3,=2xZ3/3F>1, x,2=-k,Z. 

After determining the asymptotic form of the Airy 
function at k y' < 0 we obtain in the case k > 0 and k < 0 

4nk e - ~ z  cos p 
,J=- x ,  'lo-t+ik-ike'p//3~'i( I-- fi .) ' 

If k = - x2 < 0, the Green's function can be calculat- 
ed by contour integration, as proposed by Dalidchik and 
S10nim.~ Under the condition Fr<x2 we have 

where p' = 2x3/3F. It follows from (22) that 

Taking into account the next term of the expansion 
a [ r  Re G (r,O)]/drl.=, in F2 ,  we have 

At x close to a-  ', Eq. (23) describes scattering by a quasidis- 
crete level; this scattering was investigated by Demkov and 
D r ~ k a r e v . ~  At x = x, the resonant value of the cross section 
is 

a,=16nxlF. 

4. POSSIBILITY OF OBSERVING INTERFERENCE EFFECTS IN 
SCATTERING 

To be able to observe interference effects in experiments 
with beams, the following condition must be satisfied 

where A E  is the energy spread of the particles in the beam. In 
the opposite case, averaging over the energy distribution 
"smears out" the effect. The condition (24) imposes the strin- 
gent requirement that the electron beam be monokinetic and 
that the collision region be strongly localized. The situation 
is aggravated by the fact that when the initial electron is 

interference, namely, via elastic collision of the electrons 
with the atoms. In this case the electrons can be launched 
along the vector F and the parameters of the setup can be 
chosen such that the bulk of the energy accumulated during 
the motion of the electrons from the source to the collision 
region is consumed in excitation of the atom. Inelastic scat- 
tering will be investigated below. 

We shall examine also whether interference effects can 
appear in scattering indirectly, for example, in investigations 
of the parameters of a weakly ionized gas. Since the interfer- 
ence length if equal to E /F, in the presence of only elastic 
collisions it is necessary to have 

where I is the mean free path and &? the average energy of the 
electron in the gas. 

Using for the electrons in the gas the distribution func- 
tion obtained in the diffusion approximation,' we can easily 
show that the condition (25) is not satisfied at any value of F. 
Indeed, if the field is weak compared with T/I (Tis the tem- 
perature of the gas atoms), it cannot "turn around" the elec- 
tron within the mean free path, and in the case of a strong 
field the average energy of the electron is too high to be able 
to turn it around when it moves against F. 

Just as in the analysis of experiments with beams, the 
situation turns out to be more favorable when account is 
taken of the excitation of the atoms. Consider a weakly ion- 
ized gas in which the predominant role is played by excita- 
tion of a certain level, and let the average electron energy be 
close to the excitation potential. The energy of the bulk of the 
electrons after the excitation is then low enough for the inter- 
ference length to be shorter than the mean free path. Since 
the cross section for elastic scattering by atoms usually ex- 
ceeds the excitation cross section, such a situation is difficult 
to realize in a monatomic gas. It can occur, however, if in 
place of atoms one chooses polar molecules that have large 
cross section for rotational excitation with change of the ro- 
tational quantum number by unity. In addition, it is also 
possible to consider the distribution function of the electrons 
in a solid, when the most probable scattering process is 
phonon excitation. This problem was investigated by Dmi- 
triev and Tsendin.* A quantitative analysis of interference 
effects in kinetics problems, however, is made difficult by the 
need for solving a transport equation with a complicated 
dependence [similar to (17)] of the cross section on the ener- 
gy. Furthermore, a region exists in which there is no known 
analytic form for the cross section, owing to the condition (1) 
and (5). 
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5. MULTICHANNEL SCATTERING THEORY 

We write down in place of Eq. (2) a system of strong- 
coupling equations that take into account the coupling of N 
scattering channels 

x:i,i(r) =e i - , : f ' i ( r ) -  5 G' ( r ,  r ' )  ~ ~ * ~ ( r ' ) ~ : ~  j i ( r t ) d r ' ,  

(26) 
wherex; i'i is the function of the channel i' when an incident 
wave with momentum k, is present in the i-th channel. 

We separate next the group A of degenerate (or almost 
degenerate) channels with low energy, in which interference 
effects are significant. It follows from Sec. 2 that is it neces- 
sary to include in group A channels with energies lower than 
or slightly higher than F2I3 .  In the case of really attainable 
fields, these may be channels whose energies differ only on 
account of the Stark splitting of the atomic levels, or else on 
account of the spin-orbit interaction. 

Using the Green's-function representation (8), we ob- 
tain the solution of the system (26) in the form 

The summation in (27) is only over the group A,  and we 
assume that the initial level i does not belong to A. Other- 
wise, we would have in place of $&, just as in (9), 

+ - i [exp( iar ,  )$ii { p i  - exp (-iak, )$< i f i l .  

Assuming that the change of the atomic wave function 
under the influence of the field can be neglected, and using 
the integral rule representation of the scattering amplitude 
in the absence of a field, we obtain for the coefficient a,,(k,) a 
system of linear equations 

(ki) = - - ' eiBi' [ f i f i ( - k : ,  k;) +if i j i (k i ) f i r i ( -k : , ,  k i ) ]  , 
2 kz, 

i 

wheref;.,(k,. , k,) is the amplitude of the transition from the 
state i into it. 

In the first-order approximation in F we have 

To calculate the total cross section it is necessary to 
determine the current corresponding to the solution (27) at 
distances r >  r,, but such that Frxk  :. Then, if the final state 
if does not belong to the group A, we can introduce a new 
scattering amplitude 

so that the cross section is 

The sum in (29) has a simple physical meaning. It de- 
scribes a transition of the atom from a state i into j E A and 
scattering of the electron in the direction opposite to F fol- 
lowed by reflection of the electron from the potential barrier 

and the transition of the atom into the state i', the summation 
being taken over all j E A. 

If i ' ~  A, it is necessary also to take into account in the 
asymptotic form of the solution the term i exp(ik, r)a,.,(k,) 
that interfers with A,, (k, , k,) exp (ik, r)/r. Allowance for 
this interference in first order in F leads to the contribution 

2nF 
0:. i ( k i )  = - - Re {exp ( ib i r )  fivi(-ki." k i )  [ f i r i (k i ,"  k i )  1'). 

kiki:? 

(30) 
Thus, near each threshold with number j all the cross 

sections are oscillating and have a phase P, that is modified 
by the presence of a factor containing amplitudes of different 
transitions. 

It is interesting that the amplitude of a certain transi- 
tion in an electric field contains information on amplitudes 
of other transitions in the absence of a field. This circum- 
stance obtains also in photodetachment of ions. 

6. MULTICHANNEL THEORY OF PHOTODETACHMENT 

The photoionization of a hydrogenlike atom in a uni- 
form electric field is the subject of a large number of theoreti- 
cal papers (see, e.g., Refs. 9-1 1). We consider here a some- 
what different problem, namely the photodetachment of a 
negative ion. In contrast to our earlier paper,' we take into 
account the interaction of the electron with the atom in the 
final state, and the multichannel character of the problem. 

The problem reduces to solution of the system (26), in 
which G,. + is replaced by G ; = (G ,? )*, followed by deter- 
mining the matrix elements of the dipole moment with the 
functions XG,, where the index i labels the final state. 

Solving the system in the same manner as in Sec. 4 and 
using the relation 

we obtain 
- 

X ~ , ~ ' ~ = ( P L  ;tri-i z$-koj ivjbjf(ki)  9 (31) 
I 

where 

cpk iiri=$k: iri, bji(ki) =- (F/2k;) e-'@l[fij ( k i ,  k j O )  ] l', (32) 

i f idAand 
c p k ,  i , i = - i [ e x p ( i a k i ) ~ ; i  i , i -exp(- iak,  )'$k:iri], (33) 

-exp(- iari  ) [ f i j (k i ,  -k,") I * ) ,  (34) 

i f i ~ A .  
We confine ourselves for simplicity hereafter to photo- 

detachment of an ion consisting of a core with charge + 1 
and two valence electrons in the singlet state (for example, 
H - or alkali-element ions). By virtue of the symmetry of the 
coordinate parts of the functions of the initial and final 
states, it suffices to consider the matrix element 

xki ,= J[Y< i ( r ,  la) ].eph(r+ro) 'J'o ( r .  ra)drdra. (35) 

where e,, is the polarization vector of a linearly polarized 
photon, Po is the wave function of the initial negative ion, 
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and Y G  is a nonsymmetrized final-state function:. 

where @, are the atomic wave functions. 
We assume that the function Yo and @, are insignifi- 

cantly altered by the electric field. Then, if i 6 A (i.e., we are 
considering the cross section for photodetachment with for- 
mation of an atom in the state i near the threshold of the 
formation of an atom in a higher state), we obtain from (3 l),  
(32), and (35) 

where Mkri is the photodetachment matrix element in the 
absence of a field. 

The second term in (36) describes photodetachment 
with transition of the atom in the state id and of the elec- 
tron in the state of motion against the vector F, followed by 
reflection of the electron from the potential barrier and tran- 
sition of the atom into the state i. 

Thus, the photodetachment cross section oscillates near 
each threshold of atom formation in a certain excited state. 

If i E A (i.e., we consider the cross section for photode- 
tachment with formation of an atom in the state i near the 
threshold of this very same process), then 

We consider now in greater detail the photodetachment 
of an electron from the s2 subshell of an alkali-atom ion. For 
each state i of the atom we separate the principal quantum 
number n, the orbital angular momentum I, and its projec- 
tion m,. Writing out the strong-coupling expansion in the 
total-angular-momentum representation", we obtain 

where K is a certain combination of the radial matrix ele- 
ments, the explicit form of which is of no importance to us, C 
are Clebsch-Gordan coefficients, and ML is the projection of 
the total angular momentum on the vector F and is equal to 
zero in the case of a polarization of the photon (parallel to F) 
and to & 1 for a polarization (perpendicular to F). 

We express the scattering amplitude in the form 

where T = 1 - S is the transition matrix and S is the scatter- 
ing matrix. The summation in (39) is over the angular mo- 
menta of the scattered electron in the initial and final states. 

We consider the photodetachment with formation of an 
atom in a certain state nl,m, near the threshold of the very 

same process. Accordingly, we substitute (38) and (39) in 
(37). Calculating next the cross section of the process with a 
singled-out oscillating contribution of the order of P;  ', in 
exactly the same manner as used in Ref. 1, and summing over 
m ,, we obtain 

Onrt cos fin - =z I K n l , n ~ 2  - -z ( -1 )  ' z '  [ (21,+1) (2L2'+ I )  1''' 
h n  

[a jpn talar  

where T !,l,,12nl,12 are the elements of the Tmatrix in the repre- 
sentation in which the total angular momentum is equal to 
unity. Under the conditions that the final-state function is 
normalized to S(k, - k;), we have 

where o is the photon frequency and c is its velocity. 
At I, = 0 we obtain 

where a"', is the cross section for photodetachment in the 
absence of a field, qn l  is the singlet phase of thep scattering 
by the n-th s state. The Kronecker delta in the second term 
means that the oscillating correction is negligibly small in 
the case IML I = 1 (i.e., in the case of a polarization of the 
photon). Indeed, according to Ref. 1, the interference effects 
are strongest if the emitted electron has an angular momen- 
tum projection m, = 0 (i.e., is emitted predominantly along 
and against the field). From the angular-momentum conser- 
vation law it follows that at I, = 0 this can take place only in 
the case of a polarization (IM, I = O), and at 1,) 1 this can 
happen for both a and u polarization. We note that the re- 
sults pertaining to the case of a polarization are equally ap- 
plicable to the case of unpolarized light whose wave vector is 
directed along F. 

We note that it follows from (41) that the phase of the 
singlet p scattering of an electron by an alkali atom can be 
determined by measuring the phase of the oscillation of the 
photodetachment cross section of the corresponding nega- 
tive ion in an electric field. It is interesting that in experiment 
one can measure directly the phase, and furthermore with a 
high accuracy with respect to energy, since the degree of 
monochromatization of the laser beam greatly exceeds the 
degree of monokineticity of the electrons when experiments 
with beams are performed. 

If the final state of the atom has a nonzero orbital angu- 
lar momentum, the interference part of the cross section 
contain elements K,,l,,z with different I, and there is no such 
simple relation between u,,, and d!:, as would follow from 
(41). In this case, however, we can use the fact that near the 
threshold we have K,l,lz - (kn)12, so that from among all the 
K it suffices to retain K ,,,,, - , . We then obtain 

971 Sov. Phys. JETP 56 (5), November 1982 1. I. Fabrikant 971 



By virtue of the conservation of the total an lar mo- Y' mentum and of the parity, this formula contains two ele- 
ments of the T matrix, T!,,,,, - - , and T~,, , , , , , , ,  + , . Near 
the threshold they are proportional to k, because of the qua- 
drupole interaction in the final state (see, e.g., Ref. 13), so 
that they are of the same order of magnitude. These elements 
are determined by three real parameters, two of which can be 
determined by measuring a,,, for two polarizations. 

When considering the formation of an atom in a certain 
state nl,  near the threshold of a higher state n'l ', [the process 
described by the matrix element (36)] ,  the expression for the 
interference part of the cross section contains the product of 
M,,, and M,, - ko,, SO that the connection between a,,, and 

the elements of the T matrix is much more complicated for 
the n t n '  transition. 

To my knowledge, only one experiment has been per- 
formed to date on photodetachment in an electric field.2 It 
consisted of measuring the cross section for photodetach- 
ment of H- by unpolarized light with formation of a hydro- 
gen atom in the ground state. As follows from (41), no noti- 

ceable cross-section oscillations should be observed in this 
case. It would therefore be of interest to perform the experi- 
ment either with polarized light or with measurement of the 
cross section for photodetachment with formation of an 
atom in the state with I , >  1. It  must be noted, however, that 
since the hydrogen atom is subject to the linear Stark effect, 
the theory of photodetachment of H- with formation of H in 
the excited state should be modified somewhat. This remark 
does not apply to alkali atoms. 
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