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Quantization rules are obtained and bands of stability loss in a strong magnetic field as well as in 
parallel electric and magnetic fields are observed for highly excited hydrogen states concentrated 
near the symmetry axis of the external field. The band boundaries are identical with the classical 
resonances at which a classical trajectory lying on the symmetry axis loses stability. The calcula- 
tion is based on matching of the Schrodinger-equation solutions that are valid near the center of 
the atom with those valid at a distance from the center and concentrated near the field symmetry 
axis. The elements of the dipole transitions from the ground state to highly excited states are 
calculated. In the case of a weak magnetic field the oscillator strengths obtained agree well with 
the numerical calculations of Clark and Taylor [J. Phys. 13B, L737 (1980)l. For a strong magnetic 
field as well as for sufficiently weak parallel electric and magnetic fields the oscillator strengths 
show a spike near one stability-band boundary and a dip near the other. 

PACS numbers: 3 1.50. + w, 32.70.Cs, 32.60. + i 

The properties of highly excited atoms in constant elec- 
tric and magnetic fields that produce a level shift larger than 
or of the order of the distance between the levels in the ab- 
sence of a field have been recently investigated in many theo- 
retical and experimental studies (see the reviews1.' as well as 
Refs. 3-10). The investigation of such systems even in the 
one-electron approximation (except for the hydrogen atom 
in a constant electric field) reduces to a solution of a Schro- 
dinger equation with nonseparable variables. A numerical 
solution of the problem can be obtained with good accuracy 
for low-lying levels. With increasing quantum numbers, 
however, the known numerical methods for calculating the 
terms become unreliable. The use of quasiclassical perturba- 
tion theory, which is natural for highly excited states and for 
a sufficiently weak external field, likewise encounters a num- 
ber of difficulties, such as the problem of small denomina- 
tors, the presence of an irregular spectrum, and others. The 
adiabatic approximation, conversely, imposes an exceeding- 
ly stringent lower bound on the magnetic field and does not 
take into account the essential three-dimensional singulari- 
ties of electron motion in a superposition of Coulomb and 
oscillator  field^.^ 

This paper considers in a quasiclassical approximation 
highly excited states of the hydrogen atom (hydrogenlike 
ion) in a constant magnetic field. The states are concentrated 
along the symmetry axis of the field. This concentration can 
arise, for example, in a sufficiently strong magnetic field, or 
can be preserved when concentrated states of the atoms are 
perturbed. We consider states with a large longitudinal and a 
small transverse momentum. We obtain for such states 
expression, quantization rules, as well as the values of the 

levels of a hydrogen atom in a magnetic field. A term qua- 
dratic in the field is obtained in the case of a weak field. The 
quantization rule for a strong magnetic field can be reduced 
to the form (29). It is shown that when the field is varied the 
stability regions of the considered states form bands whose 
boundaries coincide with the classical resonances. As a 
boundary is approached, the wave functions considered 
spread out in opposite directions. The physical cause of the 
existence of such bands is that when the magnetic field is 
varied the trajectory located on the symmetry of the axis 
loses and regains stability periodically. 

It is shown in Sec. 4 that the phenomenon caused by the 
loss of the stability of the states localized near the symmetry 
axis of the potential takes place also in sufficiently weak par- 
allel electric and magnetic fields. An expression for the ener- 
gy levels in the stability bands is obtained for this case. Also 
considered here is the case of strong parallel magnetic and 
electric fields. 

Section 5 is devoted to a calculation of the oscillator 
strengths for transitions from the ground state into the con- 
sidered highly excited states. In the case of a weak electric 
field the equations obtained coincide with the known ones." 
Good agreement with the numerical results of Ref. 3 is ob- 
tained also for a weak magnetic field. The oscillator 
strengths are calculated for a strong magnetic field. It is 
shown that the radiation intensity has a spike near one of the 
stability-band boundaries, and a dip near the other. Expres- 
sions are also obtained for oscillator strengths in weak paral- 
lel electric and magnetic field. In this case, too, the radiation 
intensity has a spike or is damped near a stability-band 
boundary. 

dipole matrix elements. 
In Secs. 1 and 2 we expound the method of solving the 1- DESCRIPTloN OF 

- 

Schrodinger equation for the state considered and derive Let the wave function of an electron be concentrated in 
thereby quantization rules and expressions for the wave the vicinity of the symmetry axis z of the potential. For the 
functions. highly excited states considered in this paper, with large lon- 

The equations derived are used in Sec. 3 to calculate the gitudinal quantum numbers n (which will be determined be- 
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low), the solution of the Schrodinger equation 

1 / 2 A Y  + ( E - V )  Y =0, V ( z ,  p)  =-a(z2+p2)-'+W (2 ,  p )  

(1) 
can be obtained in the following manner. We divide the re- 
gion of electron motion into two. The first is localized near 
the atom center, and here we neglect the external field 
W ( x ,  p), i.e., a pure Coulomb potential is assumed. The sec- 
ond is localized near the z axis. In this region we assume that 
p(z and expand the potential, accurate to terms quadratic in 
P : 

V ( z ,  P )  =v"( (z+i /zp2vPpo(~) .  (2) 

The solution is sought by the parabolic-equation method.I2 
The solutions indicated are then joined and it is required that 
the obtained wave function decrease exponentially at large 

I z I  and p. As a result we obtain the eigenfunctions and the 
quantization rules. 

We consider first classical motion near the symmetry 
axis of the potential. The equation for the classical trajector- 
ies p(z) takes in the approximation linear in p the form 

pi,+ (p,lp)p,+ (V,,01p2),p=0, p ( 2 )  = 12 (E -Vo  ( z )  ) I  ". (3) 
This equation is derived in Appendix 1. It is valid ifp(z and 
also if p,(l, i.e., the corresponding classical trajectories 
must be close in phase space to the trajectory lying on the z 
axis. We shall find it more convenient to rewrite this equa- 
tion in reduced form 

yz*+ ( ~ , 2 / 4 ~ ~ - p z z / 2 ~ + v , , O / p ~ )  y=O, Y ( z )  =p ( z )  ( P  ( z )  )'". 
(4) 

In the first region, where a Coulomb potential is as- 
sumed, Eq. (4) can be solved exactly. The corresponding so- 
lutions are 

yio ( z )  =zp", yZU ( z )  = ( z l a )  p'", w ( yio, y 2 )  = 1 (5) 

(w is the Wronskian). It is easily seen that these solutions 
define classical trajectories p(z) for a Coulomb field, with a 
small orbital momentum. 

Equation (4) can also be solved near the momentum 
turning point z,(p/z,) = 0). In fact, as z-z, the first two 
terms in the parentheses of (4) become much larger than the 
third. Neglecting the latter, we obtain the following solu- 
tions: 

These solutions correspond to classical trajectories with 
small transverse energy, for a potential that depends only on 
z. 

Let y, and y, be solutions of (4) that go over at small z 
respectively to the solutions (5). The functions y, and y, then 
go over in the vicinity of the turning point z, into linear 
combinations of the solutions (6). We define now the con- 
stant matrix T by means of equation 

This matrix transforms the solutions of Eqs. (3) and (4), 
which are valid in the Coulomb region, into solutions near 

the turning point z,. The quantization rules obtained below, 
as well as the values of the dipole matrix elements of the 
transitions into the considered highly excited states, are 
uniquely defined in terms of the elements tij of this matrix. 

The classical-trajectory equation (3) does not hold in the 
immediate vicinity of the center and of the point z,. Joining 
together the solutions in these regions, we can, knowing the 
matrix T, find the boundaries of the stability regions of the 
states in question; these boundaries coincide with the classi- 
cal resonances (see Appendix 1). 

2. QUANTIZATION RULE AND EIGENFUNCTIONS 

To determine the eigenfunctions, we find the solutions 
of the Schrodinger equation in the regions indicated above, 
and then join them in the region where they overlap. 

In the first region, where a pure Coulomb potential is 
assumed, particular solutions are obtained in the form of 
products of Laguerre polynomials and confluent hypergeo- 
metric functions: 

where 6 and q are parabolic coordinates. The wave functions 
(8) tend to zero both at large p and as z-t - a,. Therefore 
linear combinations of such functions satisfy the boundary 
conditions for the eigenstates asp+ co and as z+ - a,. 

In the second region, where it is assumed that z>p, and 
also that z ~ n ( 2 k  + Im I + l)/a, the solution can be obtained 
by the parabolic-equation meth~d""~:  

Here d ( z )  is a quadratic form made up of the solutions, indi- 
cated in the preceding section, of Eq. (4): 

A is a symmetric matrix of the free parameters, with a unity 
determinant. The solution (9) was obtained in a quasiclassi- 
cal approximation with respect toz. Just as Eq. (3), it is valid 
if the transverse-momentum component is much less than 
the longitudinal one, and takes into account their ratio to 
first order. 

The plan of the subsequent calculations is the following. 
We join together linear combinations of the solutions (8) and 
(9), and then stipulate an exponential decrease of the ob- 
tained solution as z+ + a, . As a result we obtain the eigen- 
function of the problem considered. 

We use the asymptotic form of (8) as a/x+a, (highly 
excited states) and at p(z (Ref. 14): 
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It is easy to verify that the wave function Ymk(r) coincides 
- ~ i t h ( 1 2 ) i f w e p u t i n ( 9 ) a , , = a ~ ~  '=x/aanda,,=O.This 

joining, however, fixes all the free parameters a,, of the ma- 
trix A, which should remain arbitrary so far and should be 
determined by the quantization rule. At arbitrary a,,, the 
solution (9) is joined to a linear combination of the functions 
!PF1 (I = 0,1,2, ...) : - 

We shall be interested hereafter only in the case a,, = 0 [see 
(15)l. We then obtain for the Fourier coefficients Cmk, 

where F(a,b;c;x) is a hypergeometric function that can be 
expressed in elementary fashion in terms of a Jacobi polyno- 
mial. We now replace !Py in (13) by the function ( IVY)* 
[see (1 I)] and again sum this expression over a formula simi- 
lar to (13). As a result we find that an exponential decrease as 
z+ - co is given by a linear combination of Ymk+Ymk*, 
where P,,,, * is a function formally conjugate to Ymk (i.e., it is 
necessary to replace i in (9) by - i), in which a,, is replaced 
by - a,, in expression (19) for u(z). 

Near the turning point z,, where the solution (9), being 
quasiclassical in z, no longer holds, the joining can be effect- 
ed by the standard-problem method.I3 It is found in the up- 
shot that, in analogy with the one-dimensional Jeffries rule, 
when the wave (9) is reflected from z, it is replaced by its 
formal conjugate multiplied by exp(i?r/2). In addition, the 
off-diagonal elements of the matrix T1AT (1 denotes the 
transpose), which like A is symmetrical, reverse sign. 

Thus, upon "reflection" of the wave (9) from the center 
and from the tuning point z,, the off-diagonal elements of 
the matrices A and ALTA, respectively, reverse sign. The re- 
quirement that a wave function go over into itself after two 
reflections [that the solution have in the classically allowed 
region the form cos( ...)I leads to the condition that the indi- 
cated matrices be diagonal: 

and to the quantization rule 

n>2k + Iml + 1; k>O;.n and k are integers. It is shown in 
Appendix 1 that a positive radicand in (16) is equivalent to 
the condition for the stability ofthe trajectoryp = 0 in phase 
space. As seen from (1 6), the degeneracy of the levels Em,, in 
k and m is preserved in the approximation considered. 

As a result we obtain in the region z>p the following 
expression for the normalized eigenfunctions: 

(17) 
This equation does not hold in a small vicinity of the atomic 
center, wherez-n(2k + Im I + l /a.  In this region theeigen- 
functions are determined by Eqs. (13) and (14) at E = Em,, 
and go over into (17) at z>p and z>a-'. 

If the perturbation W (zg) is symmetric aboutz (as in the 
case of a hydrogen atom in a magnetic field), the correct 
wave functions are given by 

ymnk* (2 ,  PI (P) =2-"'(~mnh (2, P, CP) y m n k  (-2, P, (P) 1. (1 8) 
The levels Em,, are in this approximation additionally dou- 
bly degenerate in parity, inasmuch as in determining the ei- 
genfunctions Y,,, we have neglected the interaction W 
where the functions Pmnk are exponentially small. 
Allowance for W in this region leads to an exponentially 
small level splitting, which is not considered in the present 
paper. 

3. HYDROGEN ATOM IN A MAGNETIC FIELD 

The potential (2) for a hydrogen atom in a magnetic field 
can be represented in the form 

(19) 
We have left out here a trivial paramagnetic term. We intro- 
duce the dimensionless coordinate { = x2z/2a and the di- 
mensionless parameter w = ya2/x6.  Equation (4) is then 
transformed into 

%Yf-%)?yrr+ [ % a + ~ S 3 ( 1 - f ) ]  Y=O. (20) 

We shall consider the cases of weak (wg 1) and strong 
(w) 1) magnetic fields. 

a. At wg 1 Eq. (20) can be solved by iteration. The result 
in first order in w is 

From (21) follows directly stability of the symmetry axis for 
small w. Thus, using the results of the preceding section, we 
arrive at a formula for the energy levels1': 

and at an expression for the constants in the expansion (13), 
(1 4): 
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As w - 4  this equation determines together with (13) and (14) 
the correct zeroth approximation for the wave function of a 
hydrogen atom in a magnetic field. The degeneracy of the 
unperturbed Coulomb problem manifests itself in our case in 
the fact that in the zeroth approximation in w the matrix T is 
diagonal [see (21)] and an indeterminacy of type 0/0 arises, 
according to (15), when the constants a, are determined by 
perturbation theory. 

Obviously, the smaller s in (14) the faster the conver- 
gence of the expansion (13) and consequently the closer the 
system considered to a system with separable variables. For 
a hydrogen atom in a constant electric field it can be easily 
found that s = 0 in the zeroth approximation, and the sum 
(13) consists of only one term. For the considered case of a 
magnetic field, the value of s in the zeroth approximation 
equals 0.382 according to (23). 

b. To solve Eq. (20) at large o ,  we obtain first the solu- 
tions ofthis equation in the region wJ 3, 1 by the WKB meth- 
od, and then join them with the solutions, expressed in terms 
of Bessel functions, at [( 1. As a result we obtain the uniform 
asymptotes y, and y, at w) 1: 

where J,,(u) is a Bessel function, whence 

and the quantization rule (16) takes the form 

It can be seen from this equation that when the magnetic 
field is varied the trajectory lying on the symmetry axis of the 
potential loses and regains stability periodically. The regions 
of stability, or of the positiveness of the redicand in (26), are 
determined by the condition 

where q) 1 and is an integer. The values o = w b  coincide 
with the classical resonances (see Appendix 1). Assume, e.g., 
n = 100, q = 10, 11, 12 ,..., and a = 1. The magnetic field 
corresponding to o; runs through then to the values 2.5 1, 
2.74, 2.98, ..., T. At the boundaries of the stability bands the 

Fig. 1 .  Behavior of the terms in the stability bands at 
n = 100andm = O .  

arctangent in (26) is equal to zero or to ~ / 2 .  In this case, as 
can be seen from (26), additional level degeneracy is possible. 
If, for example, the arctangent at w = o: is zero, at fixed m 
and n the terms corresponding to different quantum 
numbers k come closer together, then at fixed m and n, when 
the magnetic field y comes closer to the values a2(o:)'l2/n3 
the terms corresponding to different quantum numbers k 
come closer together (see Fig. 1). In the immediate vicinity of 
these "pseudocrossings" the quasiclassical approximation 
no longer holds, and a quantum approach is essential. The 
vicinities ofw: where the approximation used in the present 
paper becomes invalid are indicated in Appendix 2. 

The approximation of the potential in a region around 
the atomic center with a radius of the order of 
n(2k + Im I + l ) /a  by a pure Coulomb potential, an approx- 
imation which we used when joining the solutions in Sec. 1, 
as well as the condition that the transverse momentum be 
small, impose an upper bound on the magnetic field, so that 
the quantization rule (20) is valid at 

n/(2k+Iml+l)>o">l. (28) 

The phase ?r/3 appears in (26) because of the interaction 
of the degrees of freedom in the region where the variables 
are not separable, i.e., where the terms in the parentheses in 
the expression (19) for the potential are of the same order. 
The influence of this interaction on the quantization rule is 
appreciable in a sufficiently strong magnetic field and at a 
sufficiently large quantum number n, and under the condi- 
tion (28) the levels (26) do not include the Landau levels. In 
order that the second term in the right-hand side of (26) de- 
scribe harmonic-oscillator levels it is obviously necessary to 
replace the phases ?r/3 by zeros. 

The quantization rule (26) can be solved by iteration 
under the condition (28). We then obtain in first order in the 
perturbation of the Coulomb spectrum: 

(29) 
The stability condition (27) takes the form 
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4. HYDROGEN ATOM IN PARALLEL ELECTRIC AND 
MAGNETIC FIELDS 

The phenomenon connected with the loss of stability of 
the symmetry axis is observed also for a hydrogen atom in 
parallel electric and magnetic fields, which can furthermore 
be relatively weak. Assume that an electric field 8 z  has been 
added to the potential (19): 

The matrix T has in this case, in first order in y2 and 8 ,  the 
form 

from which we obtain an expression for the energy levels2': 

'la 
4a 

At y = 0 Eq. (34) is exactly the formula for the linear Stark 
effect for the hydrogen atom.'' The cause of this remarkable 
result is that in first order in 8 the level shift is linear in the 
difference between the parabolic quantum numbers. 

For the considered eigenfunctions to exist it is neces- 
sary to satisfy the condition for the stability of the trajectory 
p = 0 [which is equivalent to the condition that the radicand 
in (34) be positive]: 

It can be seen from (34) that, just as in the strong-mag- 
netic-field case considered in the preceding section, terms 
with different 2k + Iml + 1 come closer together when the 
boundaries of the stability regions (35) are approached. The 
corresponding wave functions become smeared out with re- 
spect top, and the method employed is no longer valid. It is 
shown in Appendix 2 that the region where the method is 
valid is determined by condition (A7) .  

We consider now the case of a strong magnetic field, 
o) 1, and a moderate electric field, E 5 1 .  In this case, in 
analogy with the preceding section, the WKB method can 
yield uniform asymptotic solutions of Eq. (4) .  As a result we 
arrive at the quantization rule 

where E( p ) and K( p ) are complete elliptic integrals of the 
first and second kind. As € 4 0 ,  Eq. (36) goes over into (26). 
The stability bands are determined from (36) by using a for- 
mula similar to (27): 

u , - ( E )  ( E ) ,  [ag*(&) ]  ' h = ( ~ l P ( ~ )  ) (q+'Izf l i e ) ,  

(38) 
where q )  1 and is an integer. 

5. DIPOLE MATRIX ELEMENTS 

Although the expression obtained in Sec. 2 for the elec- 
tron eigenfunctions is quite cumbersome, it can be used to 
derive simple analytic expressions for the dipole matrix ele- 
ments. They are obtained below for transitions from the 
ground state into a highly excited one (m,n,k ). The calcula- 
tion of the dipole matrix elements 

y - <I2 - ' / 1 ~ - a ~ / 2  (YolrlYtnnk), 0-a n (39) 

reduces in fact to integrals with the Coulomb functions, 
since the low-lying states, and in particular the ground state 
!Po, are concentrated near the center, where the external field 
can be neglected. From (1 3) and ( 1  7) we have 

where @ is defined by Eq. (8) with E = Em,,, while C,,, 
is defined by Eqs. (14). According to the selection rules, a 
nonzero value of the matrix elements in (39) is obtained only 
at m = 0 and + 1. Calculating the integrals in (40) by using 
the formulas of 9 f in  Ref. 15, we find 

Calculating the sum in (41) in accord with Ref. 14 we obtain 
ultimately 

We obtain analogously an expression for the oscillator 
strengths in the case of transverse polarization ( m  = + 1 ) :  

For a hydrogen atom in a weak electric field we have 
a = 1 ,  a,, = n, the integral in (42) and (43) is equal to m3, 
and k coi~lcides with the parabolic quantum number. Equa- 
tions (42) and (43) coincide then with the asymptotic forms, 
as n-m, of the expressions for the oscillator strengths." 

We consider now a hydrogen atom in a magnetic field. 
In this case the wave functions, according to (18), are doubly 
degenerate in parity. Transitions are allowed to odd states in 
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the case of longitudinal polarization and to even ones in the 
transverse case. The corresponding oscillator strengths \\.ill 
obviously be double those of 1421 and 1431. 

For a weak magnetic field 104 1 I. using expression 12 11 
for the matris T. we obtain 

As ( 9 4 .  these equations differ only by constant factors 
from the asymptotic las !I--+ x I matrix elements on the para- 
bolic wa\e functions.ll The oscillator strengths for the tran- 
sitions into the states under consideration are maximal for 
longitudinal polarization of the radiation and minmal for 
transverse. In Fig. 2 are compared the oscillator strengths 
obtained from 1441 Im = 0 1  with the results of a numerical 
calculation' for a magnetic field of 4.7 T I;/ = 2 x ~ O - ' I  using 
1500 basis functions. The agreement is very good up to 
n = 37 lo( 1 I. 

In the case of a strong magnetic field lo> 1 I we use the 
\-alue of the matris T 1251. As a result we obtain for the transi- 
tion from the ground state Y, to a highly excited state with 
m = 0. according to 1431 

sin ( x u : , ' - ~  :3) 
/j = 

sin (TO) .-2z 3) ' 

and for an analogous transition into a state with m = t 1 

Equations 1461 and 1471 show that the oscillator strengths 
oscillate with changing magnetic field las well as at fixed y 
with changing n ~ .  Oscillator strengths were numerically ob- 
tained in Ref. 3 at ;. = 2 x lo-' and n = 16, ..., 50  in this case 
w ' '=;vz3<2.5 I. The dependence of the oscillator strengths 
on n. according to Ref. 3, likewise ceases to be monotonic in 
the tail of the investigated spectrum following after a strong 
mixing at ;.n'- 1. The results (461 and 1471 correspond to the 
case yn"1 and describe the behavior of the oscillator 
strengths in the stability zones. Although the parameter o' ' 

is not large enough for the states considered in Ref. 3, Fig. 2 
shows a comparison of the oscillator strengths in the case 
m = 0 in the stability zones corresponding, according to 
(271. to rz = 41.42.43 and n = 49,50.51. 

At the boundary of the stability bands, at o = o; , ex- 
pressions (461 and 1471 have a singularity due to the decay of 
the states considered, and at o = w; it vanishes. The rela- 
tive increase of the radiation intensity near o; is deter- 
mined by the factor b ' ' for m = 0 and by the factor b for 
m = I: 1. Near resonance we have 

Equation (481 is valid under the conditions (A51 and (2.61 of 
Appendix 2. The maximum value of b can be estimated by 
putting. according to IA81, 0 - 0; h w1  ' / n 2 ,  whence 
b 5 n'. 

We present. finally. expressions for the oscillator 
strengths in the case of a hydrogen atom in weak parallel 
electric and magnetic fields. They are obtained in elemen- 
tary fashion from Eqs. (421,1431, and (331: 

It can be seen that near the boundaries of the stab~ilty zones 
we have here, too, either a spike or a dip of the radiation 
intensity. 

We note in conclusion that the symmetry plane z = 0 
possessed by the hydrogen atom in a magnetic field goes 
over, after separating the azimuthal factor exp(imp) in the 
Schrodinger equation, into a symmetry axis in the (z, p )  
plane. The natural oscillations in the vicinity of the z = 0 
plane were considered in a number of papers (see Ref. 4 and 
the literature cited there). They can also be investigated by 
the method proposed in the present paper. In particular, the 
corresponding quantization rule for large m is contained in 
Ref. 16. 

The author is deeply grateful to G. M. Zaslavskii, I. V. 
Komarov, B. S. Monozon, E. A. Solov'ev, 0 .  B. Firsov, and 
M. I. Chibisov for a discussion of the work. 

Fig. 2. Comparison of the oscillator strengths calculated by Eq. 1441 (points, n<371 with the 
numerical calculation.' The last six points were calculated from Eq. 1461 in the stability bands. 
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APPENDIX 1 

We derive the equations from the classical trajectories 
(3). To this end we substitute the function p(z) in the initial 
Newton's equations 

i'=-dV/'ldz, p=-c?'~/dp, 

and eliminate the time derivative, making use of the energy 
integral. As a result we obtain for the functionp(z) the equa- 
tion 

2 ( ~ - V )  av av 
pzz + - pz-+-= 0. 

dz dp 

Assumingp andp, to be small quantities, and also using the 
expression (2) for the potential at small p ,  we linearize this 
equation with respect top. As a result we arrive at (3). 

Since the motion described by Eq. (13) [or (4)] is finite 
and is contained in the interval (O,z,), these equations can be 
regarded as periodic with a period 22, on the entirez axis. We 
can then determine the constant monodromy matrixI2 that 
connects the solutions on the interval (0,22,) with the solu- 
tions on the interval (2qz1,2(q + lk , )  (i.e., after q reflections 
from z,), using the formula 

y (z+ 2qzl) =Bqy (2). 

It is known that the determinant of the monodromy matrix 
B is equal to unity. Its eigenvalue can therefore be represent- 
ed in the form 

The quantity p is called the characteristic exponent. It can 
be easily shown that thez axis is stable if the matrix B can be 
diagonalized by a the nonsingular transformation Q-'BQ 
and ifp is real. This condition is also necessary for stability. 
It is obvious that if the characteristic exponent is equal to a 
rational fraction of P ( p  = p ~ / q ) ,  all the trajectories are 
closed after q reflections from z,. In particular, at p = 0 all 
the trajectories are closed after one revolution. Thus, reso- 
nance sets in after p = p ~ / q  (Ref. 17). 

The monodromy matrix is expressed in elementary fa- 
shion in terms of the matrix T introduced in Sec. 1: 

To obtain this equation it suffices to note that the solutions 
y,' (6) and y,' (5) reverse sign after reflection from z, and 
rotation around the center, respectively, and the solutions 
y,' and y,' remain unchanged. From (Al)  we obtain 

~ = 2  arc tg (-t,2t21/tiitz2)"2. (A21 

This is just the expression contained in the quantization rule 
(16). 

than the characteristicquantity z-n2/a. In a weak field 
2-zp/x and (A3) is equivalent to the condition 
2k + Iml+ l o .  

In a strong magnetic field, at wf 3> 1, the quantity u(z) is 
defined by the equation 

4a [ ( sin (ndA+2n/3) 
0' (z) = 

x2 (ob) '" sin (no'"-2~13) 

+ ( 
sin (no'"-2n/3) dbc'" 

) " s i i ( u + $ ) ]  , u=w'j - 
sin (no1"+2n/3) (1-f)" ' 

If w is not close tow: , we have $-ax-'/(wf )'I2 and 
the condition (A3) is satisfied at k, m<n. Near w: thez axis 
has nodal points determined by the zeros of the cosines in 
(A4), where the wave function is possibly not smeared. Out- 
side the nodal points, at o close to w$ , the width of the wave 
function is 

and the condition (A3) can be rewritten in the form 

For a hydrogen atom in weak parallel electric and mag- 
netic fields we obtain for a(z) in the zeroth approximation in 
the field 

Let, for example, 1 - 3 ~ / w < l .  The main contribution to 
(A6) is then made by the second term in the square brackets 
(we assume that 1 - 6- l) ,  and we have for the characteris- 
tic width of the wave function 

Thus, according to (A3), the method considered is valid un- 
der the condition 

We have taken into account here also the case 5 - 3~/w(  1. 
For a hydrogen atom in a strong magnetic field, the 

approximation considered is generally speaking correct 
when p) l/n and 1 p - P I  % l/n [see (A2) and (26)], where 1/ 
n is the quasiclassical error of the quantization rule. These 
restrictions lead to the condition 

which are stronger than (AS) at k - 1 and m - 1. 
APPENDIX 2 

The approximation considered is not valid in the imme- 
diate vicinity of the boundaries of stability zones, since the 
wave functions are smeared out here with respect top. The 
characteristics width of the wave function, according to (9), 
is estimated at 

p0-op-'" (2k+ 1 m 1 +I) "2<n2/8a. (-43 
The inequality in (A3) means that po should be much less 

"Here and elsewhere we omit the paramagnetic term ym that is linear in 
the field. 

''A correction was introduced here for a numerical error incurred in Ref. 
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