# Lifetime of the mesic molecule $dt\mu$

L. N. Bogdanova, V. E. Markushin, V. S. Melezhik, and L. I. Ponomarev

Joint Institute for Nuclear Research, Dubna; Institute of Theoretical and Experimental Physics, Moscow; and P. N. Lebedev Physics Institute, USSR Academy of Sciences (Submitted 29 April 1982) Zh. Eksp. Teor. Fiz. 83, 1615–1622 (November 1982)

Zii. Eksp. 1601. 142. 85, 1015–1022 (1907611061 1962)

A lifetime of  $\tau \approx 10^{-11}$  sec is calculated for the mesic molecule  $dt\mu$  produced resonantly in the excitated rotational-vibrational state J = v = 1.

PACS numbers: 36.10.Dr, 33.70.Fd

### **1. INTRODUCTION**

It is known that in a dense mixture ( $\rho \sim 4 \times 10^{22}$  cm<sup>-3</sup>) of deuterium and tritium  $\mu^{-}$  mesons with energy ~ 10 keV are captured after a time ~  $10^{-12}$  sec by highly excited states of the mesic atoms  $d\mu$  and  $t\mu$ ,<sup>1</sup> go over after a time  $\tau_a \leq 2 \times 10^{-11}$  sec to the ground state,<sup>2</sup> and finally, after a time  $\tau_{dt} \approx 3 \times 10^{-9}$  sec, all mesons reach the ground state of the atom  $t\mu$  via the isotopic exchange process  $d\mu + t \rightarrow t\mu + d$ .<sup>3,4</sup> The fraction of muons that decay during the formation of the mesic atoms  $t\mu$  is  $\sim \tau_{dt}/\tau_0 \approx 1.5 \times 10^{-3}$ , where  $\tau_0 = 1/\lambda_0 = 2.2 \times 10^{-6}$  sec is the lifetime of the free muon.

In collisions of the mesic atoms  $t\mu$  with the molecules  $D_2$  and DT, the mesic molecules  $dt\mu$  are formed<sup>4,5</sup> during a time  $\tau_{dt\mu} < 10^{-8}$  sec in the resonance reactions

$$t\mu + D_2 \rightarrow [(dt\mu)_{J_x} d2e]^*, \tag{1a}$$

$$t\mu + \mathrm{DT} \rightarrow [(dt\mu)_{J_{x}}t2e]^{*}$$
 (1b)

in the excited rotational-vibrational (Jv) state with quantum numbers  $J = v = 1.^5$  The produced mesic molecules are deexcited by the Auger transitions<sup>6</sup>

$$[(dt\mu)_{Jv}d2e] \rightarrow [(dt\mu)_{J'v'}de]^+ + e.$$
<sup>(2)</sup>

In each of the (Jv) states of the mesic molecule  $dt\mu$  the nuclear fusion reactions

$$\frac{dt\mu}{dt\mu} = \frac{dt\mu}{dt\mu} =$$

$$^{\prime}\mu^{4}\mathrm{He}+n$$
 (3b)

take place with rate  $\lambda _{Jv}^{f}$  (Refs. 7 and 8) and the muons decay:  $\mu \rightarrow e^{-} + \nu_{\mu} + \tilde{\nu}_{e}$ .

In the present paper, we consider the de-excitation cascade of the mesic molecule  $dt\mu$  with allowance for nuclear absorption and we calculate the lifetime  $\tau_m$  of the mesic molecule (the corresponding probability of muon decay during the cascade time is  $\omega_m = \tau_m / \tau_0$ ). The value of  $\omega_m$  is needed for detailed description of the kinetics of muon catalysis.<sup>9</sup>

## 2. CHARACTERISTICS OF THE BASIC PROCESSES

The nonrelativistic level J = v = 1 of the mesic molecule  $dt\mu$  with energy  $\varepsilon_{11} = -0.64 \text{ eV}$  (Ref. 10) is split by the spin-spin and spin-orbit interaction of the muon and the nuclei into 10 sublevels  $\varepsilon_{11}^{\mathscr{L}N}$  of the fine and hyperfine structure.<sup>11</sup> Here,  $\hat{\mathscr{L}} = \mathbf{S} + \mathbf{J}$  is the total angular momentum,  $\mathbf{J}$  is the orbital angular momentum,  $\mathbf{S} = \mathbf{S}_t + \mathbf{S}_d + \mathbf{S}_\mu$  is the total spin of the particles, and the index N labels the sublevels  $\varepsilon_{11}^{\mathscr{L}N}$  in a multiplet with given  $\mathscr{L}$  (which are degenerate in the nonrelativistic limit).

In contrast to ordinary atoms and molecules, the spinspin interaction in the mesic molecule  $dt\mu$ , as in the atom  $t\mu$ , is much stronger than the spin-orbit interaction, and therefore the structure of the multiplet is largely determined by the interaction of the spins of the particles (Fig. 1). The splitting of the levels  $(\mathscr{Z}N)$  that differ in the value of  $\mathbf{F} = \mathbf{S}_{\mu} + \mathbf{S}_{t}$ is greatest and is  $\sim 0.2$  eV, which is comparable with the splitting of the ortho- and para-states of the mesic atom  $t\mu$ .<sup>12</sup> The S splitting for given F is an order of magnitude less  $(\leq 10^{-2} \text{ eV})$  and, finally, the fine splitting with respect to  $\mathscr{Z}$ for given F and S does not exceed  $10^{-3}$  eV (Table I). Thus, the relativistic structure of the levels of the  $dt\mu$  molecule is to a large degree dictated by the hyperfine splitting of the levels of the  $t\mu$  atom, and therefore each of the sublevels  $(\mathscr{Z}N)$  of the multiplet (Jv) can be classified with respect to the values of F, and also with respect to the values of S and  $\mathscr{Z}$ . With allowance for the relativistic structure of the levels of the mesic atom  $t\mu$  and the mesic molecule  $dt\mu$  (see Fig. 1) the scheme (1) of resonance formation of  $dt\mu$  mesic molecules in the state J = v = 1 takes the form

$$(t\mu)_{F_a} + D_2 \rightarrow [(dt\mu)_{FS\mathcal{Y}} d2e]^*, \tag{4}$$

where  $F_a$  is the spin of the mesic atom  $t\mu$ . Only the levels  $(FS\mathscr{Z})$  for which the value of F is equal to the spin  $F_a$  are



FIG. 1. Scheme of the hyperfine structure of the levels of the atom  $t\mu$  and the molecule  $dt\mu$ . The spins  $\mathbf{F}_a$  of the mesic atom  $t\mu$ , the deuteron, and the total orbital angular momentum  $\mathbf{J}$  of the system  $dt\mu$  are added successively to the total spin  $\mathbf{S} = \mathbf{F} + \mathbf{S}_d$  and the total angular momentum  $\overline{\mathscr{D}} = \mathbf{S} + \mathbf{J}$  of the mesic molecule.

TABLE I. Relativistic structure of the multiplet (FS $\mathcal{J}$ ) of the level J = v = 1 of the mesic molecule  $dt\mu$ .

| F | S | IJ                                                       | N                | $\Delta \varepsilon^{\mathcal{T}N}, \ \mathbf{eV}$                     |
|---|---|----------------------------------------------------------|------------------|------------------------------------------------------------------------|
|   | 2 | $\left\{\begin{array}{c}2\\3\\1\end{array}\right.$       | 3<br>1<br>4      | 0.0511<br>0.0508<br>0.0501                                             |
| 1 | 1 | $ \left\{\begin{array}{c} 0\\ 2\\ 1 \end{array}\right. $ | 1<br>1<br>2      | 0.0445<br>0.0443<br>0.0439                                             |
| 0 |   | $\left\{\begin{array}{c}1\\1\\2\\0\end{array}\right.$    | 1<br>3<br>2<br>2 | $\begin{array}{r} 0.0407 \\ -0.1422 \\ -0.1424 \\ -0.1424 \end{array}$ |

Note. The table is based on the data of Ref. 11. The energies of the sublevels of the multiplet are measured from the nonrelativistic energy  $\varepsilon_{11} = -0.64$  eV of the level J = v = 1.

populated, since the electric dipole transition (4) leading to the production of mesic molecules does not affect the spins of the particles to accuracy  $\sim \alpha^2$ .

According to the theoretical<sup>5</sup> and experimental<sup>4</sup> estimates, the rate of resonance production of  $dt\mu$  molecules is  $\lambda_{dt\mu} > 10^8$  sec. The mesic atoms  $t\mu$  are produced in the states with total spin  $F_a = 1$  and  $F_a = 0$  with probabilities 3/4 and 1/4, respectively. From the state  $F_a = 1$  there is an irreversible spin flip reaction:

$$(t\mu)_{F_{a=1}} + T_2 \rightarrow (t\mu)_{F_{a=0}} + T_2,$$
 (5)

whose rate  $\lambda_t = 10^9 \sec^{-1}$  (Ref. 13) is comparable with the rate  $\lambda_{di\mu}$  of resonance production (4) of the mesic molecules. The competition between these processes determines the populations  $P_F$  of the multiplet (FS $\mathscr{Z}$ ) of the level (Jv) = (11) with given F:

$$P_{F=i} = \frac{3}{4} \frac{\lambda_{di\mu}(F=1)}{\lambda_i + \lambda_{di\mu}(F=1)}$$

$$P_{F=0} = \frac{1}{4} + \frac{3}{4} \frac{\lambda_i}{\lambda_i + \lambda_{di\mu}(F=1)},$$
(6)

where  $\lambda_{dt\mu}(F = 1)$  is the rate of production of  $dt\mu$  molecules in the reaction (4) for  $F = F_a = 1$ .

The sublevels  $(FS\mathscr{Z})$  of the level (Jv) = (11) of the mesic molecule  $dt\mu$  for given F are populated, with probabilities  $P_{FS\mathscr{Z}}$  proportional to their statistical weights, already at temperatures T > 300 K, since the width of the Maxwellian distribution with respect to the energies of the atoms  $t\mu$  at this temperature exceeds the splitting of the level F with respect to S, which, as can be seen from Table I, is of order 0.01 eV. Note that sublevels  $(FS\mathscr{Z})$  with different  $\mathscr{Z}$  for given Fand S are populated statistically even at the liquid hydrogen temperature  $T \approx 30$  K. The populations  $P_{FS}$  of the components (FS) of the hyperfine structure are determined by

$$P_{FS} = \sum_{\mathcal{Y}} P_{FS \ \mathcal{J}} = P_F \sum_{\mathcal{U}} \frac{(2\mathcal{J}+1)}{(2F+1)(2S_d+1)(2J+1)} = P_F \frac{(2S+1)}{3(2F+1)}.$$
(7)

The populations  $P_F$  depend on the particular conditions of the experiment, in particular, the temperature and density of

the  $D_2 + T_2$  mixture, variation of which can change the relationship between the rates  $\lambda_{dt\mu}(F = 1)$  and  $\lambda_t$ .

The rate  $\lambda_{J_{vFS}}^{f}$  of the nuclear reaction (3) from the state (JvFS) is equal to the sum of the rates  $\lambda_{J_{vFS}}^{f}(j^{\pi})$  from the states of the relative motion of the nuclei d and t with total angular momentum j and parity  $\pi$ :

$$\lambda_{JvFS}^{f} = \lambda_{JvFS}^{f}({}^{3}\!/_{2}^{+}) + \lambda_{JvFS}^{f}({}^{1}\!/_{2}^{+}) + \lambda_{JvFS}^{f}(j^{-}).$$
(8)

By virtue of the resonance nuclear interaction of d and tin the state  $j^{\pi} = 3/2^+$  near the dt threshold, the rate  $\lambda f_{J_{vFS}}(3/2^+)$  is dominant for the states (FS) of the mesic molecule that admit parallel orientations of the spins I = 3/2 of the nuclei. The quantities  $\lambda f_{J_{vFS}}(3/2^+)$  are related to the previously calculated<sup>7,8</sup> rates  $\lambda f_v(3/2^+)$  of the reactions (3) from the states (Jv) of the mesic molecule  $dt\mu$  with zero orbital angular momentum, L = 0, of the relative motion of the nuclei d and t and total spin I = 3/2 of the nuclei as follows:

$$\lambda_{J_{vFS}}^{f}(^{3}/_{2}^{+}) = a_{FS}\lambda_{Jv}^{f}(^{3}/_{2}^{+}).$$
<sup>(9)</sup>

Here,  $a_{FS}$  are the weights of the configurations with total spin I = 3/2 of the nuclei in the hyperfine structure states  $(FS)^{11}$ :  $a_{01} = 2/3$ ,  $a_{12} = 1$ ,  $a_{11} = 1/3$ ,  $a_{10} = 0$ .

In the state (FS) = (10), the rate (8) of the nuclear reaction (3) is determined by the value of  $\lambda f_{J_{v10}}(1/2^+)$ , which can be obtained by using the experimental data<sup>14</sup> on elastic and inelastic dt scattering at energies  $E \leq 3.4$  MeV:

$$\lambda_{Jv10}^{f}(1/2^{+}) = 3.6 \cdot 10^{-2} \lambda_{Jv}^{f}(3/2^{+}).$$
(10)

Note that the estimate (10) is based essentially on the assumption of Ref. 14 that there exists a broad  $1/2^+$  resonance in the cross sections of the reactions  $dt \rightarrow n^4$ He and  $dt \rightarrow dt$ . The errors in the estimate we have given depend on the accuracy in the determination of the parameters of this resonance.

As was noted in Refs. 7 and 8, the rates  $\lambda_{J_v}^f(j^-)$  of the nuclear reaction (3) form the state of relative motion of the nuclei d and t with orbital angular momentum L = 1 can be appreciable only for the states of the mesic molecule with angular momenta J = 1 and J = 2. To estimate  $\lambda_{J_v}^f(j^-)$ , we have used the data of Ref. 15, according to which the *p*-wave cross section  $\sigma_p$  of the reaction (3) at energy  $E_{\rm cms} = 240$  keV is ~1% of the total cross section. Taking the value  $\sigma_p = 8$  mb, for the constant  $A_p$  of the nuclear reaction (3) we obtain

$$A_{p} = \lim_{v \to 0} (v\sigma_{p}/9k^{2}C_{1}^{2}) = 1.2 \cdot 10^{24} \text{ F}^{5}/\text{sec.}$$
(11)

Here, v is the relative velocity, k is the relative momentum of the d and the t, and

$$C_{1}^{2} = \frac{2}{9} \pi \eta (1 + \eta^{2}) (e^{2\pi \eta} - 1)^{-1}$$

is the Gamow factor for the p wave  $(\eta = \alpha c/v)$ . The rate  $\lambda_{J_v}^f(j^-)$  of the nuclear reaction is related to the reaction constant  $A_p$  by an equation that can be obtained by the method explained in Ref. 16 for the s wave:

$$\lambda_{J\nu}^{j}(j^{-}) = A_{p} \int d^{3}r \left| \nabla_{\mathbf{R}} \Psi_{J\nu}(\mathbf{r}, \mathbf{R}) \right|_{\mathbf{R}=0}^{2}, \qquad (12)$$

where  $\Psi_{Jv}(\mathbf{r}, \mathbf{R})$  is the wave function of the mesic molecule<sup>10,17</sup> in the state (J, v). In the following calculations, we set

TABLE II. Binding energies  $-\varepsilon_{Jv}$  of the states Jv of the mesic molecule  $dt\mu$ , Auger transition rates  $\lambda_{nn}^{-}$ , and the nuclear reaction rates  $\lambda_{J\nu}^{f}(3/2^{+})$  and  $\lambda_{Jv}^{f}(j^{-})$ .

| n                | (Jv)                         | <i>−e<sub>Jv</sub></i> , eV     | λ <sub>nn'</sub> ,                         | 1011 sec <sup>-1</sup>    | $\lambda_{Jv}^{f} (\mathfrak{s}/_{2}^{+}),$<br>sec <sup>-1</sup>                                   | $\lambda_{Jv}^{f} (j^{-}),$<br>sec <sup>-1</sup> |
|------------------|------------------------------|---------------------------------|--------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 5                | (11)                         | 0.64                            | $n' = \begin{cases} 4\\ 3\\ 1 \end{cases}$ | 11.4<br>1.3<br>0.02       | 3.9.107                                                                                            | 1.3.107                                          |
| 4<br>3<br>2<br>1 | (01)<br>(20)<br>(10)<br>(00) | 34.9<br>102.5<br>232.4<br>319,2 | $n'=2 \\ n'=2 \\ n'=1 \\ -$                | 0.44<br>0.56<br>0.42<br>- | $\begin{array}{c} 1.0\cdot10^{12}\\ 1.0\cdot10^{5}\\ 1.0\cdot10^{8}\\ 1.2\cdot10^{12} \end{array}$ | 3.6·104<br>2.1·103<br>3·1·107<br>4.8·104         |

 $\lambda_{JvFS}^{f}(j^{-}) = \lambda_{Jv}^{f}(j^{-}).$ 

In Table II, we give the energies  $\varepsilon_{Jv}$  of the states n = (Jv)of the  $dt\mu$  mesic molecule, <sup>10</sup> to rates  $\lambda_{Jv}^{f}(3/2^{+})$  of the nuclear reaction, <sup>7,8</sup> and the rates  $\lambda_{Jv}(j^{-})$  calculated in accordance with Eq. (12). In calculating the rates  $\lambda_{nn'}$ , we used the values of the Auger transition rates  $\lambda_{2n'}^{(2)}$  (Ref. 6) in the molecule  $dt\mu$ , which is the "core" of the molecular complex  $[(dt\mu)^+ d 2e]$ , and we also took into account the results of Ref. 18, in which a study was made of the molecular-ion reactions accompanying the investigated cascade in the molecule  $dt\mu$ . The molecular ion  $[(dt\mu)^+ de]^+$  formed during the first transition (2) of the cascade in the molecule  $dt\mu$  participates with rate  $\lambda \gtrsim 10^{13} \sec^{-1}$  in the reaction

 $[(dt\mu)^{+}de]^{+} + D_{2} - \underbrace{\langle [(dt\mu)^{+}2d2e]^{+} + D_{3}}_{(dt\mu)^{+}e + D_{3}^{+}}$ 

with probabilities 3/4 and 1/4, respectively. These reactions are, respectively, analogs of the molecular reactions<sup>19</sup>

 $DH^++H_2 \rightarrow DH_2^++H$ ,  $DH^++H_2 \rightarrow H_3^++D$ .

According to Ref. 18, the rates of the Auger transitions from the final states are, respectively,  $\lambda_{nn'}^{(3)} = 0.78\lambda_{nn'}^{(2)}$  and  $\lambda_{nn'}^{(1)} = 0.66\lambda_{nn'}^{(2)}$ , i.e., the second transition of the cascade takes place with rate

$$\lambda_{nn'} = \frac{1}{4} \lambda_{nn'}^{(1)} + \frac{3}{4} \lambda_{nn'}^{(3)} = 0.75 \lambda_{nn'}^{(2)}$$

The sequence of molecular-ion reactions accompanying the Auger transitions in the systems  $[(dt\mu)^+2d\ 2e]$  and  $(dt\mu)^+e$  has the consequence that the final (third) transition of the cascade in the molecule  $dt\mu$  occurs in the molecular complexes  $[(dt\mu)^+2d\ 2e]$  and  $(dt\mu)^+e$  with probabilities 7/8 and 1/8, respectively,<sup>18</sup> i.e., with rate

$$\lambda_{nn'} = ({}^{7}/_{8} \cdot 0.78 + {}^{1}/_{8} \cdot 0.66) \lambda_{nn'}^{(2)} = 0.77 \lambda_{nn'}^{(2)}$$

The calculated values of the rates  $\lambda_{nn'}$  are given in Table II.

### 3. DE-EXCITATION CASCADE IN THE MESIC MOLECULE $dt\mu$

The de-excitation cascade in the mesic molecule  $dt\mu$  (Fig. 2) begins from the state J = v = 1, in which it is produced in accordance with (1).

In electromagnetic transitions, the quantum numbers Fand S are conserved with accuracy  $\sim \alpha^2$ , and therefore the cascades from the different states (FS) develop independently. (At the same time, the statistical population with respect to  $\mathscr{Z}$  of the sublevels (FS $\mathscr{I}$ ) is conserved during the cascade.) Knowing the characteristics of the cascade for unit initial populations  $P_{FS} = 1$ , we can calculate the cascade time for the real  $P_{FS}$  (6) determined by the experimental conditions.

Introducing abbreviated notation for the states n = (Jv)(see Table II) and omitting the indices (FS), we determine the populations  $P_n = P_{nFS}$  of the states n = (Jv) of the mesic molecule, the probabilities  $r_n$  of the nuclear reactions (3) from these states, and the intensities  $y_{nn'}$  of the Auger transitions from the states n to n' < n by means of the following formulas:

$$P_{n} = \sum_{n' > n} y_{n'n}, \quad P_{5} = 1, \quad y_{nn'} = (\lambda_{nn'} / \overline{\lambda_{n}}) P_{n},$$

$$r_{n} = (\lambda_{n}^{t} / \lambda_{n}) P_{n}, \quad \lambda_{n} = \lambda_{n}^{t} + \sum_{n' < n} \lambda_{nn'}.$$
(13)



FIG. 2. Scheme of cascade processes in the mesic molecule  $dt\mu$ .

The lifetime  $\tau_n = \tau_{nFS}$  of the molecule  $dt\mu$  in the state *n* and the total time  $\tau_{FS}$  of the cascade from the state (FS) of the level n = 5 are

$$\tau_n = P_n / \lambda_n, \quad \tau_{FS} = \sum_n \tau_{nFS}.$$
(14)

The results of the calculations are given in Table III. For (FS) = (01), (12), (11) the cascade develops as follows (see Fig. 2). From the initial state n = 5, the mesic molecule  $dt\mu$ goes over with probability 0.9 to the state n = 4, where the probability 0.80-0.86 the nuclear fusion reactions (3) take place. The ground state (n = 1) is populated with probabilities 0.20–0.14 mainly through the intermediate state n = 2, the rate of the nuclear reaction from this state being much less than the rate of Auger de-excitation. Thus, for population of the hyperfine structure states (FS) = (01), (12), and (11) the nuclear fusion reaction takes place with probability effectively equal to 1 from the mesic-molecular states n = 1and n = 4 with J = 0, and the rates  $\lambda_{J_{VFS}}^f \approx \lambda_{J_{VFS}}^f (3/2^+)$  of the nuclear reaction significantly exceed the rates  $\lambda_{nn'}$  of the Auger transitions. The total cascade time in this case is determined basically by the de-excitation rates  $\lambda_{nn'}$  and is  $\tau_{FS}$  $\leq 10^{-11}$  sec.

For (FS) = (10), the rates of de-excitation are large compared with the rates of the nuclear reaction (3), and it therefore takes place with probability 0.60 from the ground state n = 1 of the mesic molecule  $dt\mu$  and only with probability 0.40 from the state n = 4. The lifetime of the mesic molecule in this case is determined not only by the de-excitation rates  $\lambda_{nn'}$  but also by the nuclear reaction rates  $\lambda_{0v10}^{f}(1/2^{+})$  and is  $\tau_{10} = 4 \times 10^{-11}$  sec.

The lifetime  $\tau_m$  of the mesic molecule is calculated in

|                                                                                        | n                          | P <sub>n</sub>                            | r <sub>n</sub>                                                                                                     | $n \rightarrow n'$                                                        |                                                               | T DSec                             |
|----------------------------------------------------------------------------------------|----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|
|                                                                                        |                            |                                           |                                                                                                                    | n'                                                                        | y <sub>nn</sub> ,                                             | n, psec                            |
| $\left.\begin{array}{c}F=0\\S=1\\\tau_{01}=7.7\text{ psec}\end{array}\right\}$         | 5<br>4<br>3<br>2           | 1<br>0.90<br>0.10<br>0.16<br>0.16         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                             | $ \left\{\begin{array}{c} 4\\ 3\\ 1\\ 2\\ 2\\ 1 \end{array}\right. $      | 0.90<br>0,10<br>1.6·10 <sup>-3</sup><br>0,055<br>0,10<br>0.16 | 0.8<br>1.2<br>1.8<br>3.7           |
| $F=1 \\ S=2 \\ \tau_{12}=6.9 \text{ psec} $                                            | 1<br>5<br>4<br>3<br>2<br>1 | 0,16<br>1<br>0,90<br>0.10<br>0.14<br>0.14 | $\begin{array}{c} 0.16 \\ 4.1 \cdot 10^{-5} \\ 0.86 \\ 1.9 \cdot 10^{-7} \\ 4.3 \cdot 10^{-4} \\ 0.14 \end{array}$ | $\left\{\begin{array}{c} -\\ 4\\ 3\\ 1\\ 2\\ 2\\ 1\\ -\end{array}\right.$ | 0.90<br>0.10<br>1.6·10 <sup>-3</sup><br>0.037<br>0.10<br>0.14 | 0.2<br>0.8<br>1.8<br>3.3<br>0.1    |
| $ \left. \begin{array}{c} F=1\\ S=1\\ \tau_{11}=10 \text{ psec} \end{array} \right\} $ | 5<br>4<br>2<br>2<br>1      | 1<br>0.90<br>0.10<br>0.20<br>0.20         | $\begin{array}{c} 2.1 \cdot 10^{-5} \\ 0.80 \\ 6.9 \cdot 10^{-8} \\ 3.1 \cdot 10^{-4} \\ 0.20 \end{array}$         | $\left\{\begin{array}{c}4\\3\\1\\2\\2\\1\\-1\\-1\end{array}\right.$       | 0.90<br>0.10<br>1.6·10 <sup>-3</sup><br>0.10<br>0.10<br>0.20  | 0.8<br>2.2<br>1.8<br>4.8<br>0.5    |
| $\left.\begin{array}{c}F=1\\S=0\\\tau_{10}=40\text{ psec}\end{array}\right\}$          | 5<br>4<br>3<br>2<br>1      | 1<br>0.90<br>0.10<br>0.60<br>0.60         | $ \begin{array}{c} 1.1 \cdot 10^{-5} \\ 0.40 \\ 1.0 \cdot 10^{-8} \\ 4.9 \cdot 10^{-4} \\ 0.60 \end{array} $       |                                                                           | 0.90<br>0.10<br>1.6·10-3<br>0.50<br>0.10<br>0.60<br>-         | 0.8<br>11,3<br>1,8<br>14,3<br>13,9 |

TABLE III. Characteristics of cascades in the mesic molecule  $dt\mu$ .

accordance with

$$\tau_m = \sum_{FS} P_{FS} \tau_{FS}, \tag{15}$$

where  $P_{FS}$  and  $\tau_{FS}$  are determined by Eqs. (6), (7), and (14). In the limiting cases, we find:

a) 
$$\lambda_{di\mu}(F=1) \gg \lambda_t$$
,  
 $\tau_m = {}^3/_4 ({}^1/_9 \tau_{10} + {}^1/_3 \tau_{11} + {}^5/_9 \tau_{12}) + {}^1/_4 \tau_{01} = 1.1 \cdot 10^{-11}$  sec;  
b)  $\lambda_{di\mu}(F=1) \ll \lambda_t$ ,  $\tau_m = \tau_{01} = 0.8 \cdot 10^{-11}$  sec.  
Thus, the lifetime of the molecule  $dt\mu$  is in the range  
 $0.8 \cdot 10^{-11} < \tau_m < 1.1 \cdot 10^{-11}$ , (16)

and the probability of decay of the  $\mu^-$  meson during the time of the cascade in the molecule  $dt\mu$  does not exceed

$$\omega_m = \tau_m / \tau_0 \approx 5 \cdot 10^{-6}. \tag{17}$$

To determine  $\tau_m$  and  $\omega_m$  more accurately, we need to know the rates  $\lambda_{du}(F=1)$  and  $\lambda_{Jv10}(1/2^+)$  more accurately.

### 4. CONCLUSIONS

The muon, released in the reaction (3a) with energy  $\sim 10$  keV, returns after the chain of muon catalysis reactions

$$\mu^{-} \xrightarrow{\tau_{a}} t \mu \xrightarrow{\tau_{d} \mu} dt \mu \xrightarrow{\tau_{m}} \mu^{-}, \qquad (18)$$

$$\mu^{-} \xrightarrow{\mathbf{r}_{a}} d\mu \xrightarrow{\mathbf{r}_{dt}} t\mu \xrightarrow{\mathbf{r}_{dt\mu}} dt\mu \xrightarrow{\mathbf{r}_{m}} \mu^{-}$$
(19)

to the start of the muon catalysis cycle<sup>20</sup> after times  $\tau = \tau_a + \tau_{di\mu} + \tau_m$  and  $\tau = \tau_a + \tau_{di} + \tau_{di\mu} + \tau_m$ .

Our investigation shows that at liquid hydrogen density in the mixture  $D_2 + T_2$  the lifetime  $\tau_m \approx 10^{-11}$  sec of the mesic molecule  $dt\mu$  (like the cascade time  $\tau_a < 2 \times 10^{-11}$  sec in the atoms  $d\mu$  and  $t\mu$ ) is negligibly small compared with the times  $\tau_{dt}$  and  $\tau_{dt\mu}$  of the isotopic exchange  $d\mu \rightarrow t\mu$  and production of the  $dt\mu$  molecules. Therefore, in a study of the kinetics of muon catalysis in the mixture  $D_2 + T_2$  the probability  $\omega_a + \omega_m$  of muon decay during the time of the mesoatomic and mesomolecular cascades can be ignored compared with the probability  $\omega_s = 0.009$  of "poisoning of the catalyst" in the process (3b).<sup>21,22</sup>

In this paper, we have shown that the nuclear reaction (3) in the mesic molecule  $dt\mu$  takes place with overwhelming probability from states with total angular momentum J = 0. This fact was used earlier in Refs. 21 and 22 without justification in the calculation of the sticking probability  $\omega_s$ .

We should like to thank D. D. Bakalov, S. I. Vinitskiĭ, L. I. Men'shikov, L. N. Somov, and M. P. Faĭfman for assistance and fruitful discussions.

<sup>1)</sup>The values of  $a_{FS}$  were calculated with allowance for the relativistic effects  $\sim a^2$  in Ref. 11.

<sup>4</sup>V. M. Bystritskiĭ, V. P. Dzhelepov, Z. B. Ershova, *et al.*, Pis'ma Zh.

- W. Dystritskii, V. F. Dzielepov, Z. B. Etshova, et al., Fis ma Zil.
   Eksp. Teor. 31, 249 (1980) [JETP Lett. 31, 228 (1980)]; Zh. Eksp. Teor.
   Fiz. 80, 1700 (1981) [Sov. Phys. JETP 53, 877 (1981)].
- <sup>5</sup>S. I. Vinitskiï, L. I. Ponomarev, I. V. Puzynina, T. P. Puzynina, L. N. Somov, and M. P. Faĭfman, Zh. Eksp. Teor. Fiz. **74**, 849 (1978) [Sov. Phys. JETP **47**, 444 (1978)].

- <sup>6</sup>S. I. Vinitskiĭ, L. I. Ponomarev, and M. P. Faĭfman, Preprint R4-81-572 [in Russian], JINR, Dubna (1981).
- <sup>7</sup>L. N. Bogdanova, V. E. Markushin, V. S. Melezhik, and L. I. Pono-
- marev, Yad. Fiz. **34**, 1191 (1981) [Sov. J. Nucl. Phys. **34**, 662 (1981)]. <sup>8</sup>L. N. Bogdanova, V. E. Markushin, and V. S. Melezhik, Zh. Eksp. Teor. Fiz. **81**, 829 (1981) [Sov. Phys. JETP **54**, 442 (1981)].
- <sup>9</sup>S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev, L. N. Somov, and M. P. Faifman, Zh. Eksp. Teor. Fiz. **78**, 1099 (1980) [Sov. Phys. JETP **51**, 554 (1980)].
- <sup>10</sup>S. I. Vinitskiĭ, V. S. Melezhi‰, L. I. Ponomarev, I. V. Puzynin, T. P. Puzynina, L. I. Somov, and N. F. Truskova, Zh. Eksp. Teor. Fiz. **79**, 698 (1980) [Sov. Phys. JETP **52**, 353 (1980)].
- <sup>11</sup>D. Bakalov, S. I. Vinitskiĭ, and V. S. Melezhik, Zh. Eksp. Teor. Fiz. **79**, 1629 (1980) [Sov. Phys. JETP **52**, 820 (1980)].
- <sup>12</sup>D. Bakalov, Phys. Lett. **93B**, 265 (1980).
- <sup>13</sup>A. V. Matveenko and L. I. Ponomarev, Zh. Eksp. Teor. Fiz. 59, 1593 (1970) [Sov. Phys. JETP 32, 871 (1971)].
- <sup>14</sup>M. Kaoua, M. Allab, C. Gerardin, and R. Seltz, Nuovo Cimento 54A, 321 (1979).
- <sup>15</sup>F. Ajzenberg-Selove, Nucl. Phys. A320, 1 (1979).
- <sup>16</sup>S. Deser, M. L. Goldberger, K. Baumann, and W. Thirring, Phys. Rev. **96**, 774 (1974).
- <sup>17</sup>S. I. Vinitskiï, V. S. Melezhik, and L. I. Ponomarev, Preprint R4-80-755 [in Russian], JINR, Dubna (1980).
- <sup>18</sup>L. I. Men'shikov, Preprint No. 4237 [in Russian], Institute of Atomic Energy (1981).
- <sup>19</sup>W. A. Chupka, M. E. Russel, and K. Refaev, J. Chem. Phys. 48, 1518 (1968).
- <sup>20</sup>L. I. Ponomarev, Talk at the Tenth European Conf. on Controlled Fusion and Plasma Physics, Moscow, September 14–19 (1981); Preprint R4-81-800 [in Russian], JINR, Dubna (1981).
- <sup>21</sup>S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev, N. P. Popov, L. P. Presnyakov, and L. N. Somov, Zh. Eksp. Teor. Fiz. 80, 1690 (1981) [Sov. Phys. JETP 53, 872 (1981)].
- <sup>22</sup>L. Bracci and G. Fiorentini, Nucl. Phys. A364, 383 (1981).

Translated by Julian B. Barbour

<sup>&</sup>lt;sup>1</sup>M. Leon and H. Bethe, Phys. Rev. **127**, 636 (1962); G. Ya. Korenman, Yad. Fiz. **32**, 916 (1980) [Sov. J. Nucl. Phys. **32**, 472 (1980)].

<sup>&</sup>lt;sup>2</sup>V. E. Markushin, Zh. Eksp. Teor. Fiz. **80**, 35 (1981) [Sov. Phys. JETP **53**, 16 (1981)].

<sup>&</sup>lt;sup>3</sup>L. I. Ponomarev, Proceedings of Sixth Int. Conf. on Atomic Physics, 17– 22, August, Riga (1978); Zinatne and Plenum Press (1979), p. 182.