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We consider a relativistic generalization of the phenomenology describing a superfluid. Thermo- 
dynamic identities are derived for the pressure and energy density. A variational principle is 
constructed from which the nondissipative two-velocity equations of relativistic hydrodynamics 
can be derived. The equations are also expressed in Hamiltonian form. An expression for the 
energy-momentum tensor is found. The dissipative terms in the hydrodynamic equations are 
discussed. The low-velocity and zero-temperature limits are considered in detail. In the latter 
limit the equations for a rotating relativistic superfluid are derived and the normal modes of the 
vortex lattice are discussed. It is shown how to generalize the equations to the presence of a 
gravitational field. An application of the formalism to neutron stars is discussed. 
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INTRODUCTION 

The recent intensive investigation of pulsars has al- 
lowed one to determine the parameters of neutron stars 
(Refs. 1 and 2). In particular, they have sizes of the order 
r- 10 km and an internal liquid core with a densityp - 1014- 
loL5 g/cm3. In this case the ratio of the gravitational radius 
r, to the radius r of the star is of the order unity, so that 
neutron stars produce a large gravitational field and general- 
relativistic effects must be taken into account in their discus- 
sion. 

It is firmly established that a superfluid phase produced 
by Cooper pairing of nucleons exists in the core of neutron 
stars, and that quantized vortices occuring in this phase play 
an important role in physics of neutron stars. Based on an 
estimate according to the BCS t h e ~ r y , ~  the transition tem- 
perature is T, - 1 MeV, and the temperature of the neutron 
star has the same order of magnitude. In such a situation one 
must also take into account the motion of the normal compo- 
nent of the fluid and so we must make use of two-velocity 
hydrodynamics. 

The high density of the core of the neutron star has the 
effect that the Fermi velocity u, of a nucleon becomes of the 
order of the speed of light c. Moreover, the speed of sound 
c, - v ,  also becomes of the order of c. The Landau criterion 
for a superfluid implies that the critical velocity (unrelated to 
vortex formation) is determined in order of magnitude by the 
speed of sound c, i.e., it reaches relativistic magnitude for 
the superfluid phase in a neutron star, which in turn may 
play a role in the dynamics of the star. In addition, near the 
cores of vortices the superfluid speed v, also becomes of or- 
der c. It should be noted that for the description of nonlinear 
hydrodynamical processes the nonlinear terms coming from 
the expansion in v/c,  must be taken into account. However, 
since c, -c  terms of the same order are obtained by expand- 
ing the equations in the relativistic parameter v/c .  All this 
points to the need for including relativistic effects in the 
equations of hydrodynamics for the superfluid phase in neu- 

the literature. The phenomenology developed by Israel4 has 
to be considered inappropriate. First, as is known from the 
theory of ~uperfluidity,~ the superfluid component cannot be 
considered as a completely independent fluid, and second, 
one must consider as physically inadequate a discussion of a 
superfluid velocity which is not the gradient of the phase of 
the Bose condensate. In the present paper we construct, on 
the basis of a generalization of the model developed by Kha- 
latnikov6 for He 11, the equations of hydrodynamics of a 
relativistic superfluid, valid also in the presence of a strong 
gravitational field. 

THE SUPERFLUID VELOCITY 

Compared to the classical case, a superfluid exhibits an 
additional hydrodynamical variables: the superfluid viscos- 
ity v, . This variable is related to the phase of the wave func- 
tion of the Bose-Einstein condensate, so that (in the absence 
of vortices) we have 

We note that in distinction from the normal velocity, the 
superfluid velocity (1) which we have defined is not related to 
the space components of a unit four-vector, and thus can 
e'xceed the speed of light c. The quantity which cannot be 
larger than c  is the mass convection velocity defined by the 
ratio j/p ( p  is the mass density, j is the mass flux density). 
This is equivalent to the condition p2c2 - j2 > 0, which on 
account of its Lorentz invariance can be tested in the refer- 
ence frame where j = 0, where it is trivially true. 

The definition ( I )  allows one to derive an auxiliary rela- 
tion which will be useful in the sequel. Let L (V,q,q) denote 
the microscopic Lagrangian density of the system, assumed 
to be invariant under an internal symmetry group with gen- 
erator G.  According to Noether's theorem this leads to  the 
existence of a conserved quantity with the 4-density 

tron stars. The energy-momentum transfer 
The ~roblem of construction of a relativistic hydrodyn- 

amics of a two-velocity fluid has already been discussed in Tv"= (aL/d V,q) V,q-LG,' 
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will also be invariant with respect to G. We now perform the 
local (point-dependent) transformation 

Gq=Ga(x) Gy. (4) 

Taking into account the fact that the Lagrangian for spinor 
fields is linear in the gradients of the q, it follows from Eq. (5) 
that 

For the energy density E = To0 and for the momentum den- 
sity giO, the relation (5) yields 

In these equations we have introduced the three-dimension- 
al notations J = ( p,j). 

Now let G be the generator of the (constant) gauge 
transformations. Then the local gauge transformation (4) 
leads to a point-dependent change of the phase of the Bose- 
Einstein condensate, so that, with appropriate normaliza- 
tion, a change is induced in the superfluid velocity: 

The invariance of the Lagrangian with respect to the group 
of (global) gauge transformations leads to the conservation 
of the number of particles, and in the adopted normaliza- 
tions p and j agree apart from the mass factor m with the 
particle-number density and the particle-flux density. Tak- 
ing into account Eq. (7) the relation (6) can be rewritten in the 
form 

Here the energy, momentum, mass and mass-flux densities 
have been replaced by their second-quantized counterparts, 
which are denoted with a caret above the appropriate letter. 

THERMODYNAMIC IDENTITIES 

For the derivation of thermodynamic identities we shall 
start from a local Gibbs (grand canonical) ensemble, deter- 
mined by the distribution function 

1 
erp { d3r -  ( - ~ - B + v , g ^ + ~ ~ )  }. 

T 

This expression contains the following local functions: P (x) 
is the pressure, T(x) is the local temperature, v, (x) is the 
normal (nonsuperfluid) velocity, and&) is the local chemi- 
cal potential. For constant P, T, v, , andp the distribution (9) 
becomes the usual Gibbs distribution,' and for a weakly in- 
homogeneous medium it yields a good approximation of the 
distribution function. The entropy defined as the negative of 
the logarithm of the distribution function will have, accord- 
ing to Eq. (9) the following density: 

Here E ( x )  is the energy density, g(x) is the momentum den- 
sity, andp(x) is the mass density, all understood as expecta- 
tion values with respect to the density matrix (9) of the corre- 
sponding second-quantized operators. 

The operator part of the integrand of (9) can be writtei 
as the zero-component of the following four-vector expres- 
sion: 

-!3"Pv+ (p'~)?". 

h 

Here TVC" is the second-quantized energy-momentum tensor 
and /3 C" = ( T  - I ,  T - 'v, ) is the "inverse temperature four- 
vector."* 

The distribution function must be invariant, implying 
the invariance of p / T  and the four-vector character of fl C". 
The part of the argument of the exponential in Eq. (9) involv- 
ing the pressure can be written in the form 

where dS+ denotes the integration element of a timelike hy- 
persurface; this demonstrates the invariant of the pressure P. 

The thermdynamic identity for the pressure P can be 
obtained by varying the normalization condition for the dis- 
tribution (9) with respect to the local T, v, and p as well as 
with respect to the superfluid velocity v,, according to Eq. 
(8). Taking into account the equation (10) we obtain 

dP=pd~+sdT+gdv,-  (j-PV,) dv,. ( 1  1) 

This expression involves the mass flux density j which in the 
relativistic case is not equal to the momentum density g, and 
this is the only difference between (1 1) and the nonrelativis- 
tic case. One can rewrite the identity (1 1) in a covariant form. 
For this purpose we introduce the quantity w via the defini- 
tion 

We now construct the quantities 

In terms of these quantities Eq. (1 1) can be rewritten in the 
form 

Here jC" = (p,j)  is the density of the mass 4-flux and 
s" = (s,sv, ) is the density of the entropy 4-current. In view of 
the four-vector character of these quantities and the invar- 
iance of the pressure P, the quantities introduced in (13) are 
also four-vectors. On account of the collinearity of the four- 
vectors d' andflC" and of the identity /3@w, = 1, the identity 
(14) can be reduced to the form 

Here Ts = w,P is an invariant, so that covariance of the 
identity (15) is ensured. 

Extracting the energy density E from the relation (10) 
we obtain, in terms of vo = p + v;v, and wo = T + w-v, and 
taking Eq. (12) into account, 

The identity (16) is a Legendre transformation from the var- 
iables v0 and wo to the variables p and s. Thus the energy 
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density is a function E ( p, s, v, , w) whose differential can be 
obtained from Eqs. (14) and (16) in the following form: 

We note that the identities (14) and (15) remain valid 
also in the presence of a gravitational field8; in this case the 
quantities u, and w, have to be considered as covectors (co- 
efficients of 1-forms) whereas the other four-vectors are con- 
travariant. 

A VARIATIONAL PRINCIPLE 

The nondissipative hydrodynamic equations of a rela- 
tivistic superfluid can be derived from a least-action princi- 
ple for the macroscopic degrees of freedom of the system. As 
can be seen from the structures of the energy-momentum 
tensor (2), the pressure P must coincide with the Lagrangian 
density L on account of the equations of motion. To obtain L 
from the function P(u,, w,) we must substitute in the latter 

The meaning of the variables a ,  <, q,, y in L can be under- 
stood from the spatial components of Eqs. (18) and (19). For 
u, these components coincide with Eqs. (I), i.e., a is the 
phase of the wave function describing the Bose-Einstein con- 
densate. For the covector w, the spatial component is 

Thus, the variables 6, q,, and y correspond to the three inde- 
pendent degrees of freedom of w. This situation is similar to 
the case of He 11,6 where for the description of the three 
degrees of freedom of the normal momentum density it was 
also necessary to introduce Clebsch variables of the type of q, 
and y. 

Variation with respect to a ,  g,p, and y yields the follow- 
ing equations 

v, (cps") =o, s"v,y=o. (23) 

The equations (21) and (22) are respectively the conservation 
laws of mass (i.e., particle number), and entropy. On account 
of Eq. (22) the equation for q, can be written in the form 

sPV,cp=O. (24) 

Thus, the equations for the Clebsch variables q, and yare of 
the same type and represent transport equations with the 
normal velocity. Taking into account Eqs. (23) and (24), the 
following equations can be derived from the representations 
(18) and (19): 

Combined with the equation for the supertluid velocity v,, 
the relation (25) contains the condition curlv, = 0; the rela- 

tion (26) is in fact an equation for the quantity w, since only 
three of its four components are independent [by multiply- 
ing (26) withsv one obtains an identity]. Equation (25) for the 
superfluid four-velocity has in fact been considered by 
Rotheny and by I ~ r a e l , ~  who in place of v, have used the 
notationp,~, , where u, is a normalized four-vector, andp, 
is the invariant chemical potential. 

The relations (1 8), (1 9), and (2 1)-(26) remain valid also 
in the presence of a gravitational field. In this case the de- 
rivatives V, should be interpreted as covariant derivatives. 
Christoffel symbols make their appearances only in Eqs. (21) 
and (22) and are absent from the other equations since a ,  5, 
p, and y are scalars and the other quantities are differential 
forms (i.e., antisymmetric covariant tensors). 

THE HAMILTONIAN FORMALISM 

One can also reformulate the nondissipative equations 
we have found for a relativistic superfluid in Hamiltonian 
language. We write out this formulation directly in the pres- 
ence of a gravitational field, where, in accordance with what 
was said above,the hydrodynamic action functional has the 
form 

J dx ( -g ) lh~ (v , a ,  V,E, V.Y,P). (27) 

Hereg = c - ~  detg,,, since the Lorentz metric in the norma- 
lization we have adopted has the form 

Thus, for the system under consideration the generalized 
coordinates are a, 6, and y, and the corresponding canonical 
momenta, taking into account Eqs. (14), (18), (19), and (27), 
are 

- 
pa= (dlda) 1-gL=-1-gp,  

As usual, the Hamiltonian density is 

However, H must be expressed in terms of the canonical 
variables p and q. This is realized if one takes into account 
the zero-components of the substitutions (18) and (19). As a 
result we obtain the Hamiltonian function 

Here p and must be expressed in terms of the pa and pc of 
Eq.(28), v, is expressed in terms of Eq. (I),  and for w one must 
use the expression (20), substituting into it q, =p,/pt in ac- 
cord with Eq. (28). 

The Hamiltonian equations for pairs of canonically 
conjugate variables ( pa ,a), ( pS. , l  ), and ( p,,y) account being 
taken of Eq. (14), have the form: 

(a,/&) y =6%/6pT=-Qy, (31) 
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In transforming the right-hand sides of Eqs. (32) and (33), use 
has been made of the expressions (1 3) and (20). The equations 
(31) and (34) are equivalent to the equations (23), the equa- 
tions (3 l )  and (32) are equivalent to the zero-components of 
the substitutions (18) and (l9), and the equations (35) and (36) 
are equivalent to Eqs. (21) and (22) (with covariant deriva- 
tives). Taking account of Eq. (36), the equation (34) yields for 
q, an equation equivalent to (24): 

These Hamiltonian equations allow us to write down 
the equations of motion for v, and w. Taking into account 
Eq.(l) we obtain from (32) for v, the equation 

This equation is equivalent to the zero component of (25). 
Taking (20) into account we obtain from Eqs. (3 I), (33), (37), 
for w 

This equation is equivalent to the spatial part of the Eq. (26). 
The system (35), (36), (38), and (39) is a complete set of equa- 
tions for the relativistic superfluid, since the macroscopic 
state of such a fluid at a given time is uniquely characterized 
by prescribing the spatial distributions ofp, s, v,, and w. The 
right-hand sides of these equations can be expressed in terms 
of the derivatives of the functions E ( p, s, v,, w) according to 
the identity (17). Thus, prescribing this function is sufficient 
for the expression of the time-derivatives of the quantitiesp, 
s, v,, and w in terms of these same quantities. 

We note that the Hamiltonian formalism described here 
is analogous to the Hamiltonian formalism developed by 
Polrovskii and Khalatnikov" for the description of super- 
fluid 4He. 

THE ENERGY-MOMENTUM TENSOR 

The equations we have found lead to the energy and 
momentum conservation equations 

The energy-momentum tensor TVp for the hydrodynamical 
degrees of freedom can be constructed according to Eq. (3). 
Taking acocunt of the identity (14) and of the relations (18) 
and (19), we obtain 

Equation (40) now follows from Eqs. (21), (22), (25), and (26) 
if the identity (14) is taken into account. From Eq. (41) we 
obtain for the energy density E = T$ an expression identical 

to (16), and for the momentum density gi - Ti0 an expres- 
sion identical to (12). The components Q '  = Toi and 
ni = - Ti of the tensor (41) represent the energy of flux 
density (Poynting vector) and the stress tensor. 

Multiplying (41) by /3 "and recognizing that /3 "w, = 1, 
we obtain the expression for the entropy 4-flux density 

Note that expression (10) is the zero-component of Eq. (42). 
Differentiating (42), account being taken of the identity (1 5), 
of the expression (41), and of collinearity of 0'" and 9, we 
find 

The relations (42) and (43) are direct generalizations to the 
case of a superfluid of expressions for a classical fluid" [in 
the case of a classical fluid the last term is absent in Eq. (43)]. 

On account of the invariant nature of P it must be a 
function of invariants: 

Here the invariants Ii have the following form: 

Calculating the derivatives of (14) according to Eq. (14), we 
obtain: 

The spatial components of Eqs. (46) and (47) yield expres- 
sions for j and sv, in terms of v, and w. Taking into account 
also the relation (12) for g we find the expressions for all the 
vector quantities of the problem in terms of the two indepen- 
dent vectors v, and w. 

Substituting (47) into (41) and omitting the superscript 
,u, we obtain 

d Y  
T,, = - 8 Y  d Y  

81, V ~ V v  + - ( U V ~ V + V ~ W ~ , )  812 f - 8 I ,  w,w.-Yg.,,. (48) 

Thus, the energy-momentum tensor constructed here is 
symmetric. We note that if one takes into account L = P and 
the structure of the expressions (1 8) and (19), it becomes clear 
that the energy-momentum tensor (48) constructed by 
means of the canonical procedure (3) coincides with the 
"gravitational" energy-momentum tensor8 

T,,=2dL/dgV-Lg,,. 

All equations in this section are valid in the presence of 
a gravitational field, with V, in Eq. (40) to be interpreted as a 
covariant derivative. To close the system of equations in the 
presence of a gravitational field one must add to the equa- 
tions considered the Einstein equation with the energy-mo- 
mentum tensor (48). 

THE DISSIPATIVE TERMS 

We shall consider a weakly non-equilibrium state of a 
superfluid close to the state determined by a nonhomogen- 

926 Sov. Phys. JETP 56 (5), November 1982 V. V. Lebedev and I. M. Khalatnikov 926 



eous Gibbs (grand canonical) distribution, so that we shall 
again characterize the hydrodynamic state of the system by 
the four-vector p describing the (inverse) local temperature 
and normal velocity, as well as the quantities v, related to 
the gradient of the phase a by the relations (18). The hydro- 
dynamic equations including dissipation have again the 
form of conservation laws of energy-momentum (40) and 
mass (2 I), which yields five equations for the quantities P ", a 
(a second-order equation for the latter). However, the ener- 
gy-momentum tensor and the mass 4-flux vector density 
contain in addition to the nondissipative terms (labeled by 
the subscript r) the dissipative additions (denoted by the sub- 
script d ): 

The nondissipative quantities are expressed in terms of fl 
and V,a according to Eq. (41), the identity (15), and the 
expression (18). The dissipative terms are expressed in terms 
of the derivatives of p and V,a. 

We note that one may impose four arbitrary conditions 
on the dissipative additions TdVp and jDp,  due to the possibil- 
ity of redefining the local inverse four-temperature 0 *. This 
is where the situation differs from the case of a classical flu- 
id," where there are five such conditions. The difference is 
due to the fact that the chemical potential p is fixed by Eq. 
(32) and cannot be redefined. 

Let us calculate the quantity V,srP according to the 
identity (43) with (18) taken into account. Considering that 
the conservation laws are valid for the total quantities (49), 
we obtain 

The second and third terms in the left-hand side of Eq. (50) 
yield the density of the entropy Cflux, and the right-hand 
side of Eq. (50) is an expression for the entropy production, 
i.e., must be positive-definite. 

In the linear approximation we have 

Here ( is the matrix of kinetic coefficients. On account of the 
Onsager reciprocity relations the matrix ( is symmetric. i.e., 

@A h !J 
ph=%h", SY. =% X, <::=S;:, 

and the following relations must hold on account of the sym- 
metry of the energy-momentum tensor: 

In addition, we must require positive-definiteness of the qua- 
dratic form defined by the matrix (. The number of invar- 
iants of the matrix ( can be counted if one takes into account 
its symmetry and the fact that there exist two distinguished 
directions related to the four-vectors f lp  and V,a. As a re- 
sult we obtain 28 invariants (4 for ( ,", 10 for g~~ and 14 for 

(GI. 
We note that all equations obtained in the present sec- 

tion remain in force in the presence of a gravitational field if 

the derivatives V, and in Eqs. (50) and (5 1) are interpreted as 
covariant derivatives. 

NONRELATlVlSTlC VELOCITIES 

In the present section we consider the motion of the 
fluid with nonrelativistic velocities v, and v,. We note that 
even in this limit the equations of motion of the superfluid 
phase of a neutron star do not go over into the equations for 
an ordinary superfluid,' since on account of the high density 
the microscopic velocities of the motion of nucleons relativ- 
istic. This means, in particular, that the equality p?cZ does 
not hold, and only the order-of-magnitude estimate p=c2 
remains valid. 

We consider the pressure as a function of the invariants 

P=@ ( P O ,  To, Zo), (53) 

where 

Here p, is the invariant chemical potential, To is the invar- 
iant temperature, and I, plays the role of the invariant 
square of the relative velocity. If the conditions v,, v,(c 
hold, and in the absence of a gravitational field,'' we have 

(55) 

In view o fp  -c2 we find, in accord with Eq. (1 I), and taking 
into account Eqs. (53) and (55) to first order in (v/c)': 

We now note that the mass flux density j and the momentum 
flux density g do not coincide even at nonrelativistic veloc- 
ities v, and v, . 

We now discuss the energy density E given by Eq. (16). 
Making use of Eqs. (56)-(58), we obtain 

 ere^, is the normal-momentum density introduced in Eq. 
(57), and 

In agreement with Eqs. (60) and (55)-(57) the differential of e 
is 

d&=podp+Tds+ [v,- ( c 2 / p )  v.] dg,. ' (61) 

We note that the expression (59) is in agreement with the fact 
that under Galilei transformations with generator v: 

The relations (62) follow from the Lorentz transformations 
for the four-vectors v, and /3 for small v, and v, . The ex- 
pressions (58)-(61) generalize the relations for the nonrelati- 
vistic superfluid and go over into the latter in the limitp zc2 .  
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If the motion of the superfluid takes place on a uniform 
background we can separate the chemical potential into two 
contributions: p = ,ii + p', where the constant ,ii is of the 
order of c2 andp' - v2 (J = c2 for He 11). In this case one may 
exclude from consideration the rest energy by means of the 
following transformation of the energy density E and the 
energy flux density Q: 

As a result, the large quantities of the order of c2 disappear 
from the equations and the ratio c2p-' zc2ji- ' becomes a 
constant of the order of units. We note that as a result of the 
transformation (63) the condition Q = gc2, which follows 
from the symmetry of the energy-momentum tensor, will be 
violated. 

As regards the dissipative terms, in the case of small v, 
and v, there remains in 4-space only one distinguished direc- 
tion up = (1,O). Accordingly the number of independent in- 
variants of the matrix [ reduces to ten, to wit: two for [,", 
three for c %", and five for [ $:. Since we can redefine P ,, we 
require that the dissipative additions to the energy and mo- 
mentum densities should vanish, i.e., u, T$, = 0. This con- 
dition removes five more constants, and as a result we find 

Here we have introduced the notation g ';" = g ," - C - ~ U ~ U "  
and similar a notation for the Kronecker deltas. Substituting 
Eq. (64) into (5 1) we obtain 

We note that the dissipative addition to j is small in the pa- 
rameter v2/c2 and in the approximation adopted here we 
should have neglected it (so that the equality should remain 
valid even when dissipation is taken into account). However, 
we have retained j, since under the transformation (63) Q ' 
acquires on account of j, a dissipative addition which is not 
small. 

In distinction from the formalism considered here, in 
the traditional model the mass density p is considered as the 
independent variable, rather than a, which is used here. This 
means that for a transition to the traditional treatment it is 
necessary to redefine ab initio the chemical potential in such 
a way that p, = 0, leading to the appearance of dissipative 
additions in the right-hand side of Eq. (32). As a result there 
appear equations with a heat-transport coefficient and four 
coefficients of first and second visco~ity,~ which is equiva- 
lent to the description in terms of the five coefficients of 6 in 
Eq. (65). 

ZERO TEMPERATURE 

At zero temperature the entropy vanishes, since the sec- 
ond term in the right-hand side of Eq. (15) disappears. Thus 

the pressure P will now depend only on up, or more precisely, 
on the invariant chemical potentialp,, introduced according 
to Eq. (54) 

Calculating j according to Eq. (1 5) we obtain 

j" ((a@lap0) ( C ~ / P ~ )  uP. (67) 

The only (second-order) equation for the quantity a which 
can be obtained from a variation of the action (27) has the 
form of the mass conservation law (21) with the mass 4-flux 
density (67) (into which one should substitute 
d = - g ,"V,a). 

In the reference frame where v, = 0 (in the absence of a 
gravitational field) we have, according to (67) and the defini- 
tions (18) and (54), 

p=dO/dpo. 

Taking Eq. (66) into account, we find that for the equation of 
state P apY (which is obtained for various models of the state 
of matter in neutron stars) the function @ has the following 
behavior: 

We note that the relation (68) is no longer dependent on the 
reference frame and is valid even in the presence of a gravita- 
tional field. 

In connection with the rapid rotation of neutron stars 
an important role will be played by quantized vortices in the 
superfluid phase. In the core of the vortex the potential char- 
acter (25) of the superfluid four-velocity v, will be violated. 
The circulation of this vector in one cycle around a vortex 
line will be 

where m is the mass of the paired particles. If one averages 
over distances much larger than the spacing between the 
vortices, the v, become independent variables. The vorticity 
V,vv - Vvv, is directly related to the vortex density, and it 
follows from Eq. (69) that the number of vortices which pen- 
etrate through a given surface will be determined by the inte- 
gral over this surface: 

m N = - S  ~Y(v .u . - v .u , ) .  
2nh (70) 

The presence of continuously distributed vortices thus leads 
to a dependence of the pressure P on the vorticity 
v,vv - vvv,. 

The four equations for the v, will now be the conserva- 
tion laws of energy-momentum (40), and in the presence of 
vortices the energy-momentum tensor has the form: 

The expression (71) is a generalization of Eq. (41) [at T = 0 
the second term in Eq. (41) vanishes]. Now Eq. (40) is equiva- 
lent to the mass conservation law (2 1) together with the equa- 
tion for the supertluid velocity 
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[Equation (72) contains only three independent components, 
since upon multiplication by j "it becomes an identity.] The 
mass 4-flux density j p  which occurs in Eqs. (21) and (72) 
equals 

The equation (72) is a generalization of the equation for the 
superfluid velocity used by RothenI2 for the description of 
the geometry of vortex lines in the gravitational field of a 
neutron star.' 

As a matter of fact, the pressure P will depend on the 
four-vector wp which is the generalization of curlv, to the 
relativistic case (a factor ( - g)'I2 appears on account of the 
gravitational field) 

- 
a*= (cZT'-g) - ' E ~ ~ ~ v , V ~ V ~ .  (74) 

We note the following identity, which follows from this de- 
finition: 

v,o'=O. 

Thus P will be a function of only two invariants 

Here p, is given by the expression (54) and 

Substituting the function (75) into the equations (7 I), (73), we 
obtain the following expressions: 

Thus, the presence of vortices leads to the appearance of 
terms containing w in the mass 4-flux density and in the 
energy-momentum tensor. We note that (in the covariant 
representation) the energy-momentum tensor T,, given in 
Eq. (77) is manifestly symmetric. 

We now consider the derived equations in a locally-flat 
coordinate system us (c. In this case, to first order in vs/c, we 
obtain from Eq. (74) 

a c~ a m o  
p=-, j=--v,--rot 

8Po Po  PO cZ 

In the same limit 

vo=po+ (cZ/2po) usZ, o= (po /cZ)  rot v.. (79) 

Thus, taking into account Eq. (62) we see that the connection 
ofw with the local angular velocity o, is given by the expres- 
sion 

o = 2  (po2/c6) 0 0 .  

Equation (72) for the superfluid velocity takes the form 

a~ , /d t= -Vv ,+p-~  [ j  x rot v,]. (80) 

We now consider small oscillations around the state 
corresponding to uniform rotation of the fluid with angular 
velocity 0,. Linearizing Eq. (80) with allowance for (78) and 
keeping in mind the condition divv, = 0, we find for the fre- 
quency f2 of the oscillations of the vortex lattice an expres- 
sion which generalizes the expression for rotating He I1 
(Ref. 13): 

Here k, is the wave vector along the direction of o,. The 
coefficient of k :  can be obtained from energy consider- 
ations. The energy per unit length of a vortex, account being 
taken of relation (59) and the condition (69), is 

Here R is the distance between the vortices, and a is the 
radius of the core of the vortex. In agreement with (70) the 
number of vortices per unit area equals 

(mlfi) I rot v, I = (mc21fipo) a-1/R2. 

Thus, the contribution of vortices to the energy density 
equals 

(nApc4/4yoZm) o In (R /a )  . 
Consequently, the coefficient in front of k I in Eq. (8 1) equals 

- PO a @  nfi c2 R 
I-= .- In -. pcZ d o  4m po a 

For neutrons, 

APPENDIX 

In the present Appendix we shall show how to construct 
a variational principle for the relativistic equations of a clas- 
sical fluid. As is well known, in a classical fluid the mass 
density p and the entropy density are transported with the 
same speed v (which, in particular, guarantees the existence 
of an isentropic solution s/p = const). Thus the system is 
characterized only by two invariants 

Accordingly, the pressure P is a function of the invariants 

satisfying the following identity 

One must choose as a Lagrangian density the function 

L=P(uWV,a, u v V W ~ )  4- A(upu,,-c2). (A41 

Here the variables a and { play the same role as in the super- 
fluid, up is to be interpreted as the four-velocity, the La- 
grange multiplier A ensures the normalization condition 

u~u,=cZ. ('45) 
Variation with respect to a, 6, and up together with the iden- 
tity (A3) leads to the equations 
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The equations (A6) represent the mass and entropy conser- 
vation laws and (A7) yields an expression for the four-veloc- 
ity. The multiplier A is easiest to determine by multiplying 
Eq. (A7) by up as a result of which, taking into account (A5) 
and the conditions 

we obtain the expression: 

h=-c2 (pope+Toso). 

Thus, Eq. (A7) can be rewritten in the form 

We note than in the case of isentropic flow Eq. (A9) implies 
the potential character of the flow14 

v,iu+ (so/p0) t] =-C-~[PO+ (~01~0) To1 

The expression (A4) allows one to construct the energy-mo- 
mentum tensor according to Eq. (3). Taking Eqs. (A3), (AS), 
and (A8) into account, we obtain the known expression14 

The right-hand side of (A9) formally contains only two 
arbitrarily functions of a and 6, whereas the four-velocity up 
has three arbitrary components. This difficulty can be re- 
moved by redefining To in the following manner: 

The equations for the Clebsch variables f l  and f ,  are ob- 
tained by variations with respect to these variables, and have 
the form of transport equations: 

The inclusion of f ,  and f ,  does not change the form of the 
final equations (A6) and the expression (AlO), but in the 
right-hand side of (A9) it leads tc  the redefinition 
Vpf-+V, f + f ,  V p  f ,  increasing the number of independent 
functions describing the components up.  

*(Translator's note). The relativistic ensemble (9) and the "inverse tem- 
perature four-vector" were discussed in detail in the Ph.D. Thesis of M. 
Kovacich (U. C. Irvine, 1976); cf. also M. Kovacich and M. E. Mayer, 
Ann. Israel Phys. Soc. 2,928 (1978). 

"In the presence of a gravitaional field one must take into account the 
explicit dependence of the invariants (54) on the metric. The flat metric 
has been defined above. 

''In fact, the second term in Eq. (73) is missing In Rothen's paper. 
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