
Nonlinear effects and nonmonotonic relaxation of magnetization in 3He-B 
V. L. Golo and A. A. Leman 
Moscow State University 

(Submitted 23 April 1982) 
Zh. Eksp. Teor. Fiz. 83, 1546-1556 (October 1982) 

Magnetic relaxation in spatially homogeneous 'He-B is investigated within the framework of 
the Leggett-Takagi theory. The following results were obtained with the external magnetic 
field turned off: the averaged equation of motion of the magnetization, the spatial 
configuration of the magnetization and of the order parameter under conditions 
corresponding to the presence of an attractor in the solutions of the Leggett-Takagi 
equations, and the instability produced near the extinction of the nonlinear-ringing frequency 
by the interaction of the dissipative and nonlinear effects generated by the topological 
structure of the order-parameter space. A weak periodic external magnetic field induces a 
stochastic spin-dynamics regime. 

PACS numbers: 67.50.Fi, 75.50.Mm, 75.60.Ej 

1. INTRODUCTION 

A feature of the spin dynamics in superfluid 3He-B is 
the presence of complicated nonlinear effects whose study is 
of great importance for the understanding of the nature of 
the superfluid state in P-pairing' (see Fomin's paper2 con- 
cerning the asymptotic methods of analyzing the nonlinear 
problems of the spin dynamics of superfluid 3He). One of the 
most outstanding examples in this respect is the wall-pinned 
(WP) m ~ d e , ~ - ~  theoretically explained in Ref. 3, and the 
presence of extinction in the nonlinear-ringing frequency of 
the magneti~ation,~.' which were investigated theoretically 
in Ref. 8. Both phenomena stem from the form of the dipole 
energy of 3He-B, and can be theoretically explained even by 
the nondissipative spin-dynamics t h e ~ r y . ~ . ~  The more com- 
plete Leggett-Takagi (LT) t h e ~ r y , ~  now regarded as an ade- 
quate description of the spin-dynamics processes, makes it 
possible to take into account dissipative effects that are pecu- 
liar to superfluid 3He. 

We investigate in this paper two closely related phe- 
nomena whose existence is based on the interaction of the 
nonlinearities and of the internal dissipation mechanism4 
and which do not exist in the nondissipative regime. 

We consider two spin-dynamics regimes: (1) with the 
external field turned off and (2) in the presence of a periodic 
external magnetic field. In a zero field it is assumed that the 
initial magnetic field was abruptly (i.e., within a time much 
shorter than the relaxation time) turned off and the system 
started to evolve on its own. We assume throughout validity 
of the hypothesis that the order parameter and the spin have 
spatially homogeneous distributions. The temporal evolu- 
tion of the system is analyzed within the framework of the 
LT t h e ~ r y . ~  

We shall show that in a zero field the system tends to go 
near T, into some attracting regime, corresponding to the 
attractor in the solutions of the LT equation. It was shown 
earlier'' that an attractor exists at large values of the magne- 
tization. We study here also the regions of medium and low 
magnetizations. 

In the magnetization region corresponding to the ex- 
tinction of the nonlinear-ringing frequency, we obtain an 

instability that causes the anomaly in the topology of the 
aforementioned attractor and the existence of random spin 
dynamics in the presence of an external field. It is shown 
namely that in a periodic external field with oscillation fre- 
quency and Larmor frequency of the order of the Leggett 
frequency the solutions of the LT equations are random (re- 
calling the solutions for ergodic billiard  ball^".'^). This, in 
accord with modern ideas concerning t~ rbu l ence , ' ~ , ' ~ , ' ~  al- 
lows us to advance the hypothesis that turbulent regimes of 
the spin dynamics of superfluid 3He-B can exist. 

2. THE LEGGETT-TAKAGI EQUATIONS 

The system of LT equations in the nondissipative re- 
gime and in the absence of an external regime was integrated 
exactly in Ref. 16. In the general case, i.e., when dissipation 
is taken into account, the LT equations have no analytic 
solution in closed form and can be investigated either by 
numerical methods or approximately, within the framework 
of asymptotic methods. The latest developments for the case 
of strong external magnetic fields were expounded in a set of 
papers by F~min .~ ." . '~ . '~ -* '  Asymptotic solutions of the LT 
equations for large values of the magnetization and in the 
absence of an external field were investigated in Ref. 10. 
These asymptotic solutions led to the existence of the attrac- 
tor regime investigated in the present paper (for a brief expo- 
sition of some of the results see Ref. 9). 

The LT equations have been investigated in a number of 
recent s t~dies '~- '~  by numerical-analysis methods. It must 
be noted that these papers consider relaxation regimes in 
strong magnetic fields. It is shown in Ref. 25 that the results 
of the numerical analysis agree well with the asymptotic re- 
sults obtained by Fomin. 

In the present paper we study the LT system of equa- 
tions (1) by asymptotic methods using the method of averag- 
ing the integrals of the basis system, and (2) by numerical- 
analysis methods. The combination of these two different 
methods yields, in closed form, the behavior of the relaxa- 
tion in the entire range of magnetization. The numerical in- 
tegration was carried out by a fourth-order Runge-Kutta 
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algorithm, with the errors eliminating by using the doubled- 
accuracy regime and a variable-interval difference scheme. 

The calculations were performed in the dimensionless 
variables 

where y and ,y are the gyromagnetic ratio and the suscepti- 
bility. The characteristic times are given in the test in dimen- 
sional units, msec. It should be noted that in dimensionless 
variables (the Leggett angular frequency a , ,  the damping 
constant rll corresponding to the longitudinal NMR line 
width, the dissipation and dipole constants y and g,  , which 
are connected with rll by the relation pg, = T l l ,  and the 
Larmor angular frequency w0 corresponding to the magneti- 
zation scale) enter into the LT equations only via the two 
ratios a = f /0, and 0, /ao. 

In the main calculations we have RL = lo5 rad/sec and 
r = lo4 rad/sec, corresponding a ratio a = r /a, = 0.1, 
shown in Ref. 4 to be the most realistic. From the approxi- 
mate formula 0, = 10' x (1 - T / T ,  ) ' I 2  given in Ref. 4 it 
can be seen that the chosen value of 0, is close to T, . Actu- 
ally, since the LT equations depend only on the ratios T / 
0, and 0, /oo, the results can be extended to a wider range 
of temperatures than would follow directly from the formula 
given above for 0 , .  

It is assumed that the Larmor angular frequency is of 
order not larger than wo = 106 rad/sec, i.e., it can be as- 
sumed that w0r(l, where r 5 lo-' sec is the quasiparticle 
relaxation time. In this frequency range the hydrodynamic 
LT approximation4 is applicable and the LT equations can 
be regarded as a Hamiltonian system with a dissipative func- 
t i ~ n ~ ~  specified by one of the following: (1) Poisson brackets 
between the coordinates of the spins S,, S,, S, and the order 
parameters Aij, j = 1,2,3, 

{Si, S j )  =cijkSk, {St, Aj,) = E , , ~ A ~ , ,  {A,; ,  Ak,, ,)  =O; 

(2) the Leggett Hamiltonian 

Z='/,yZ~-'S2-yHS+U; 

(3) the dissipative function F = 4 p ( U  ; ) ) ' I 2  (Refs. 26 and 27). 
Here 

is the dipole energy for 3He-B. The order parameter for 3He- 
B is of the form A,j = ( A  /\/5)[exp(ip )]Rg, where Rg is the 
three-dimensional rotation operator. We put hereafter 
p = 0. It is convenient to parametrize the matrix Rg with the 
aid of the angle 8 and the rotation-angle unit vector ci, 
i = 1,2,3: 

It should be noted that the order parameter is invariant 
to the transformation 

When account is taken of the dissipative function and of 
the Poisson brackets between S, and Ag , the LT equation 
can be written in the form3 

1 0  d dU + - ctg -i- (y2~-IS-yH), -0= (7'~-'S-yH)c-p -. 
2 d t  a0 

To describe the solutions of the LT equations in the 
absence of an external magnetic field, it is convenient to in- 
troduce the variables 

sII=sc, s,= (S~-S,,~) l J a ,  e 
It is shown in Ref. 10 that they satisfy a three-equation sys- 
tem that is a corollary of the system (2). 

Jf we exclude the dissipation (by puttingp = O), the LT 
equations are transformed into a conservative Hamiltonian 
system that has in the absence of a magnetic field an addi- 
tional scalar integral 

(see Ref. 16) and three integrals that make up the vector 

L = .  0 
t [ S X  c]--SSS~,C 

B (4) 

(see the review by Brinkman and Smith in Ref. 6). The inte- 
grals (4) are interpreted geometrically; in the absence of an 
external magnetic field and dissipation, the vector c rotates 
in a fixed plane whose unit normal has as its coordinates the 
integrals (4). The end point of the vector S rotates in turn in a 
plane parallel to the plane of the vector c. Furthermore 
L.S = - B, where B is the integral (3). 

In the absence of an external field the system has an 
attractor that exists for all values of the magnetization (at 
S, #O), although its form changes significantly as a function 
of its magnitude (see Fig. 1). The attractor is a hypersurface 
in the space of the variabless,, S,, S3, c,, c,, c,, and 8, and the 
solutions of the system (2) tend to this surface at sufficiently 
long system-evolution times. In the region of large values of 

FIG. 1 .  Form of attractor in the space of the variables S I  , S, , and 8. For 
clarity, the scales of the axes are distorted and there is no factorization 
with respect to the transformation ( 1 ) .  It can be seen that the presence of 
the pinching point P leads to divergence of initially close trajectories. 
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the magnetization, corresponding to Larmor frequencies of 
the order of lo6, the attractor is given approximately by the 
equation" 

Sl,2+S,2 COS 0=O. 

A complete description of the attractor, including the 
region of weak fields, is obtained in this paper by a numerical 
analysis for which we have examined a rather large number 
of solutions of Eqs. (2) with various initial data. The attractor 
is a continuous hypersurface that becomes pinched at mag- 
netization of the order of 6y2x -'go (corresponding to ex- 
tinction of the nonlinear-ringing frequency), see Fig. 1. The 
form of the attractor does not change when 0, is varied 
from 10' to lo6 rad/sec and r ll is varied from lo4 to lo3 rad/ 
sec. 

One can distinguish the following characteristic stages 
of the relaxation from the large-magnetization region: (1) 
entry to the attractor, (2) the attractor regime above the 
pinching point, (3) region of extinction of the nonlinear-ring- 
ing frequency (pinching point), and (4) motion in the vicinity 
of the WP mode. 

There can exist, independently, a WP mode corre- 
sponding to the prongs of the separatrix in Fig. 2 (Ref. 10) 
and a Leggett regime for which S, = 0. 

The indicated regimes ( 1  )-(4) differ greatly both in the 
configuration of the dynamic variables and in the character- 
istic times and frequencies. It is therefore best to consider 
them separately. 

3. AVERAGING OF THE EQUATION OF MOTION OF THE 
MAGNETIZATION VECTOR 

To understand better the magnetization relaxation it is 
useful to derive an averaged equation of motion of the vector 
S. It is assumed that the magnetization is large enough to 

FIG. 2. Intersection of the plane Sl! = 0 with the attractor, and projection 
of the separatrix on this plane. Exlts from the attractor in the regions of 
small (curves of typeA )and large (curves of type B ) values of 8 are shown. 
the WP-mode regime corresponds to the prongs of the separatrix S. The 
amplitude 6, corresponds to the abscissa of the attractor intersection 
point; it follows from the geometry of the attractor that 8, > 77/2. It can 
also be seen that 8 has a local minimum as it moves out of the region of 
large values. 

neglect in the zeroth approximation the influence of the dis- 
sipation and of the dipole energy. For the basic solution we 
have then S = const, i.e., the vector S is an integral of the 
motion. In addition, L is an integral of the motion. 

It can be shown" that in the basic solution the time 
dependences of S 11, S, , and 8 are given by 

SI=S,, sin- '(0/2),  SI,=SLo [sin-"(eo/2) -sin-*(0/2)] , (5) 
cos (0/2) =cos ((ea/2) s i n  4, met ,  

O0=const, SLo=const, $ o = c o ~ s ~ ,  .mo=const. 

Using (4) we can express the vector c as a function of the 
vectors L and S and of the scalar variables: 

This equation is exact if dissipation is neglected. Substituting 
c from (6) in the first equations of the system (2) we obtain 

where B is the Maki-Ebisawa integral (3). The dissipation 
enters in (7) implicitly via 8. Equation (7) is averaged over the 
period of the basic solution (5). The average off is taken to be 

where tC, is the phase from (5). The averaged equation (7) is of 
the form (the averaging sign is omitted hereafter for simpli- 
city). 

As shown in Ref. 10, at large magnetizations the attrac- 
tor regime corresponds to 8,--a/2. In this case it follows 
from (8) that S is constant, in accord with the initial assump- 
tions. Actually 8, turns out to be larger than a/2 (Ref. 9), 
therefore d S/dt #O. Moreover, on leaving the region with 
8 < a/2 the sign of the coefficient in the right-hand side of (8) 
is reversed, and this leads to a change in the direction of 
rotation of the averaged vector S around the L axis when 
landing on the attractor. It must be remembered that aver- 
aged quantities are referred to throughout. 

Similar reasoning leads to an averaged equation for the 
vector L: 

It can be seen that after landing on the attractor (OO+a/2) 
the mean value of the vector L becomes stable: d L/dt+O. 
This property is the principal asymptotic property of the 
attractor regime. It is very convenient from the veiwpoint of 
numerical analysis (see Sec. 5 below). From the observa- 
tional viewpoint, a small change in the averaged vector L in 
the attractor regime makes it possible to describe the motion 
of the vector S after long time intervals of the order of dozens 
of milliseconds as rotation around a fixed axis, namely the 
average position of the vector L. 
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4. REGIME OF REACHING THE ATTRACTOR determined by the frequency o, of the rotation of the vector 

~h~ main test of the existence of an attractor regime c around the position of the vector L, a position that changes 

prior to the region ofthe extinction ofthe nonlinear-ringing little in one revolution. The spin vector S traces in this case, 

frequency is provided by the integrals L. In the presence of in a plane parallel to that the vector c, a curve with a 

dissipation they are no longer conserved quantities, but their characteristic the 

very change can describe the behavior of the system, as indi- 0.3 (52,/o0) Z/(yZ~-'o,-'S). 

TABLE I. 

zoUI , msec 

H. G 1 6 l i l  1 - S ~ C O S  8 1 
8...1 = I  rad I e... -2 n d  

catd by the averaged equations for S and L and as is made 
especially clear in the numerical analysis of the solution of 
the system (2). 

The numerical criterion of reaching the attractor re- 
gime at large magnetizations was that the deflection angle 
S (L) of the vector L during one period of the angle [see the 
basic solution (5)] not exceed 0.005 rad. When reaching the 
attractor the planar character of the motion of the vector c is 
weakly pronounced and the position of the vector L is con- 
siderably altered upon averaging over one period. The times 
of landing on the attractor, calculated in accord with the 
criterion S (L) < 0.005, are listed in Table I, where the first 
column contains the fields H corresponding to the initial 
magnetization, ando, = lo5 rad/sec and r = lo4 rad/sec 
throughout. 

As shown in Ref. 10, at large magnetizations the attrac- 
tor regime can be characterized by the proximity of the am- 
plitude of the angle 6 to  IT/^ and by satisfaction of the condi- 
tion S + Sfcos6zO. Estimates, in accord with these 
criteria, of the time to reach the attractor agree with those 
given above (see Table I). The features of the landing on the 
attractor at medium and low magnetizations are illustrated 
in Fig. 2. 

5. THE AlTRACTOR REGIME UP TO THE PINCHING POINT 

In this regime there are two scales of both the time and 
the spin. The first scale corresponds to rapid variables: it is 

0.002 
P 
u 
n 
u 
Y) 

- 
10 
12,5 
15 
17.5 
20 
22.5 

4.4 
5.0 
5.4 
5.4 
5.7 
5 9 

The angle 6 varies in the range OO(6<a, where 6, is close to 
n-/2 (see Table I and Fig. 3). During one period of the vector 
c, the vector L is deflected as a result of dissipation by an 
angle not more than 0.005 rad (at w, = lo5 and Til = lo4 
rad/sec). 

The second time scale corresponds to the spin lifetime 
on the attractor, of the order of the modulus of S, i.e., much 
larger than the size of the triangle in Fig. 3. The behavior of 
the spin vector in this scale is illustrated in Fig. 4. The life- 
time on the attractor up to the pinching point is a linear 
function of the square of the initial magnetization, with a 
Larmor angular frequency of the order of 100 rad/sec and 
with w, = lo5 and rll = lo4 rad/sec. The regime described 
continues up to magnetizations with characteristic Larmor 
angular frequencies on the order of 19 x lo4 rad/sec, corre- 
sponding for a gyromagnetic ratio y = 2 x lo4 rad/sec.G to 
fields of the order of 10 G. 

Particular notice should be taken of the peculiarities of 
the landing of the system on the attractor. If this landing is 
from the region with initial data 6 < n-/2, the direction of 
rotation of S is reversed on landing and the curvature of the 
trajectory is very large. The vector S is at standstill for a long 
time in the landing region, especially if the system had ini- 
tially 6 < 17/2. For example, on starting from a position with 
6 = 0.2 and a, = lo5 and rII = lo4 rad/sec, one of the cal- 
culated trajectories stayed 80 msec in the landing region, and 
in this case 6 and the modulus of S remained in the ranges 
from 1.571 to 1.573 rad and from 1.99 to 1.92, respectively, 
the direction of the vector S changed by 0.03 rad, and that of 
the vector L by 0.05 rad. These are typical data and S is in 
dimensionless units. 

0.005 
w 
)) 

n 
n 
w 

6.1 
6.8 
7.3 
7.7 
8.0 
8.3 

FIG. 4. Averaged motion of the spin vector in the space S,, S,, S,, corre- 
FIG. 3.  Motion of spin vector in the coordinates S, and S, in the large- sponding to an exit from the region 0 < 7r/2. The mean value of the vector 
magnetization region. L practically coincides with the OS, axis. 
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The properties indicated allow us to conclude that the 
relaxation has a quasistationary behavior in the region of 
landing on the attractor. 

Motion in a large scale relative to the attractor involves 
the question, discussed in the l i t e r a t ~ r e , ~ ~ . ~ ~ ~ ~ ~  of the non- 
monotonic and nonexponential character of the magnetiza- 
tion relaxation. It can be seen from Fig. 4 that, at any rate in 
the absence of a magnetic field, there is no monotonic relaxa- 
tion whatever. In particular, the reversal of the rotation of 
the vector S after the system reaches the attractor should 
lead to observable effects similar to the magnetization-relax- 
ation reversal obtained28 for 3He-A. 

6. VICINITY OF THE POINT OF ATTRACTOR PINCHING AND 
OF THE WP MODE 

In what follows we shall find useful the following geo- 
metrical interpretation of the order parameter, which corre- 
sponds to homeomorphism of the group of rotations of 
three-dimensional space, SO (3), on the three-dimensional 
projective space R P  (3). We introduce the vector 8c which is 
collinear with c, the angle 8 varying in the range O<$<n-. 
The end points of all such vectors fill a three-dimensional 
sphere of radius n-. The diametrically opposite (or antipodal) 
points of the surface of this sphere are identified in accord 
with the transformation (I), as a result of which the values of 
the order parameter are in a one-to-one correspondence with 
the points of the thus obtained three-dimensional projective 
space RP(3). The boundary surface with radius with the 
identified antipodal points is the projective plane imbedded 
as a submanifold in the manifold of the order parameter 
R P (3). 

The time variation of the order parameter corresponds 
now to a curve in R P  (3). 

It is necessary in this connection to consider the relief of 
the surfaces of the dipole-energy levels U in the order-pa- 
rpmeter space. It follows from the foregoing description that 
U has: 

1) two maxima, namely the center and the surface of the 
sphere of radius n-, with identifiable antipodal points, i.e., a 
projective plane R P  (2): 

2) only one minimum-a sphere of radius 
arccos( - 1/4). 

It is useful to bear in mind also the following circum- 
stance. In the absence of dissipation the integrals L are con- 
served, the vector c rotates in a fixed plane, and the vector Bc 
moves on a circle with identifiable antipodal points of the 
boundary. The dipole energy has maxima at the center of the 
circle and on its periphery. It has a minimum on a circle of 
radius arccos( - 1/4). The relief of its level surfaces resem- 
bles a crater or the surface of water on which a small drop 
has fallen. 

The vicinity of the attractor pinching point corresponds 
to states with energy close to the maximum of the dipole 
energy at 8 = n-. In terms of the vector 8c these are trajector- 
ies that either cross the projective plane R P  (2) specified by 
the condition 8 = n-, or come very close to it (see Fig. 5). The 
latter trajectories have an energy lower than U (8 = n-), by 
virtue ofwhich they are reflected so to speak from the projec- 

FIG. 5. Mapping of two close trajectories in the projective plane corre- 
sponding to the condition L = const (this condition is satisfied with good 
accuracy at low dissipation). The solid line is the trajectory reflected from 
RP(2). The dashed trajectory pierces RP(2) at the point A .  The trajectories 
cease to be close starting with this instant. 

tive plane RP(2)  and remain all the time inside the open 
three-dimensional sphere corresponding to the condition 
8 < n-. Trajectories with energy higher than U (8 = n-) pierce 
through R P  (2) in accord with the foregoing interpretation of 
RP(2)  as a sphere of radius n- with identifiable antipodal 
points. When such a trajectory enters through a point on the 
sphere, it emerges from the antipodal point (see Fig. 5). 

The described behavior of the trajectories is based only 
on the topology of the order parameter and on the form of 
the dipole energy for 3He-B. The manifold of the maxima 
R P  (2), in analogy with the semitransparent mirror of a Mi- 
chelson interferometer (Ref. 29, p. 33 l of translation), splits 
the beams of close trajectories of the system in the order- 
parameter space; these beams are partially reflected and par- 
tially transmitted through this space. As a result of dissipa- 
tion each of the trajectories should be reflected from R P  (2) in 
the course of time and land in the interior of the sphere of 
radius n-. The resultant confinement leads to scattering of 
trajectories that made up initially an almost homogeneous 
beam. 

In the vicinity of the attractor pinching point, the de- 
scribed mechanism induces effectively an instability of the 
solutions of the system (2), as is clearly seen from the numeri- 
cal data. 

After passing through the attractor pinching point, the 
system, enters a regime wherein the trajectories are wound 
around the prongs of the separatrix (see Fig. 1). In the order- 
parameter space this corresponds to motion near the dipole- 
energy minimum-a sphere of radius arccos( - 1/4). The 
linear time dependence of the square of the WP-mode peri- 
od4 is well confirmed numerically. 

7. STOCHASTIC REGIME 

The instability in the vicinity of the attractor pinching 
point is an indication that multiple passage of the trajectories 
through this region under the action of a periodic external 
field leads to actual randomization of the process. To obtain 
this effect, a periodic external field 

II,=0, f i z=O,  H,=n [ l+sin ( b t )  1 ,  

of constant direction and amplitude was used for activation, 
i.e., the external interference with the spin dynamics was 
minimal. However, as shown by calculations, the process 
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FIG. 6. Distribution of the distances between initially close lattice points 
after a time T = 10 msec. The abscissa is the distance r, and the ordinate 
the number of pairs of points diverging to the given distance. The histo- 
gram for distances between arbitrary pairs of points is similar. 

becomes stochastic at amplitudes and frequencies in the 
ranges defined by the inequalities 0.05<a<0.13 and 
0.05<b<0.15 (in dimensional units the field H varies 
between 2.5 and 6.5 G and the frequency between 7.9 and 
23.8 kHz). 

To cast light on the character of the process, we investi- 
gated first the instability in the indicated fields. The numeri- 
cal criterion of instability was taken to be the degree of scat- 
ter of initially close points within a fixed time interval. A 
square of 121 points was considered in a plane described by 
the equations 

with its center at the point with coordinates 

S,=-0.1; S2=-0.1; S3=0.15 

and with a uniform lattice with mesh 5 X lop5 (in dimension- 
less units). The average distance between initially neighbor- 
ing points became equal to 0.125 within 10 msec. The exter- 
nal field chosen (in dimensionless units) was 

Hi=H2=0, Hs=O.ll [l+sin(O.l05t) 1. 
The stochastic character of the process is well illustrated by 
the histogram in Fig. 6. For comparison, the scatter without 
the field was 0.0005. 

8. CONCLUSIONS 

It follows from our results that within the framework of 
the Leggett-Takagi theory it is possible to predict the exis- 
tence of a new nonlinear magnetization-relaxation regime 
whose salient features (a tendency of the spin vector to as- 
sume a certain position in space, quite long characteristic 
times, and weak magnetic fields) make it experimentally ob- 
servable. The investigated attractor regime of relaxation is in 
essence a dissipative process, i.e., it is not realized in a non- 
dissipative approximation and is a direct consequence of the 
internal Leggett-Takagi relaxation mechanism. Its observa- 
tion in experiment would therefore be one more confirma- 
tion of this theory. On the other hand, should its observation 
be difficult, this would mean that it is necessary to take into 
account in the Leggett-Takagi theory some additional fac- 
tor, such as spatial inhomogeneity of the real system, as al- 
ready pointed out earlier by F~min ." , '~  

In this respect, the effective instability deduced by us 
for the vicinity of the extinction of the nonlinear-ringing fre- 
quency can initiate growth of the small inhomogeneities 
which are always present in a real system, and lead to the 

onset of quite large order-parameter gradients. These can 
ensure those texture effects to which the frequency extinc- 
tion was previously attributed. 

The ensuing situation is comparable with hydrodynam- 
ic instability and can be interpreted as the onset of turbu- 
lence. Similar phenomena are well known in the theory of 
liquid  crystal^.^' A significant indication of the possibility of 
turbulent regimes in the spin dynamics of 3He-B is the sto- 
chastic regime obtained in the present paper. 

The quasistationary state corresponding to the start of 
relaxation in the attractor regime can be of special interest. It 
may have analogs in other magnetic system, as indicated by 
the analogies with 3He-B in the theory of magnets, developed 
by Andreev and Mar~henko.~ '  

In conclusion, the authors take pleasure in thanking L. 
P. Pitaevskii, I. S. Shapiro, A. F. Andreev, Yu. M. Bruk, and 
I. A. Fomin for helpful discussions. 
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