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The stability of the normal state of a narrow current-carrying superconducting channel with ends 
connected to normal conductors is considered. I t  is shown that at currents lower than some 
critical value (which is in turn smaller than the Ginzburg-Landau critical current) the normal 
state of the channel is absolutely unstable near the SN boundary with respect to formation and 
growth of the superconducting nucleus. The latter expands in such a way that its boundary moves 
into the superconductor, and after a sufficiently long time the entire channel becomes supercon- 
ducting. 

PACS numbers: 74.20.De 

1. INTRODUCTION 

We consider a narrow superconducting channel with 
transverse dimensions smaller than the depth of the penetra- 
tion of the magnetic field and the coherence length < (T ). The 
channel length is assumed to be quite large. The Ginzburg- 
Landau theory predicts that below the superconducting- 
transition temperature such a channel can be either in the 
superconducting or in the normal state, depending on the 
current flowing through the channel. At low currents the 
channel is superconducting, and when the current density 
exceeds the so-called Ginzburg-Landau critical current jGL 
the homogeneous superconducting state vanishes and the 
channel should go over into the normal state. Such a picture 
is known to be a simplification of the real situation in at least 
two respects. First, as shown by e~periment,'-~ the super- 
conducting state does not vanish completely above the Ginz- 
burg-Landau critical current, but goes over into the so- 
called resistive state,lS4-' in which the superconductivity in 
the sample as a whole is preserved, with the exception of 
small regions, called phase-slip centers, where the macro- 
scopic phase coherence is lost and the order parameter oscil- 
lates with time. In such a resistive state the sample is under a 
finite potential difference. For more details on the properties 
of the resistive state see the reviews by Skocpo18 and by Ga- 
laiko and K ~ p n i n . ~  

Second, the Ginzburg-Landau theory does not consider 
the mechanism of the transition from the normal to the su- 
perconducting state when the current drops below jGL. 
Gor'kov" and Kulik" have shown that the normal state of 
such a channel, of infinite length, is stable to infinitely small 
perturbations at an arbitrarily weak field (see also Ref. 6) .  
The explanation is that the Cooper pair produced by fluctu- 
ation against the background of the normal state is acceler- 
ated by the electric field present in the sample unit1 it ac- 
quires a sufficient velocity and disintegrates. This 
conclusion, however, cannot be extended to finite fluctu- 
ations. Since the electric field penetrates a finite depth I, 
into the superconducting region, a critical nucleus of the 
superconducting phase can be produced in the normal 
phase. A feature of such a critical nucleus is that the electric 

field in it is quite suppressed and it cannot counteract the 
Cooper instability of the normal state. Nuclei larger than 
critical increase in the course of time and fill the entire sam- 
ple, which thus goes over from the normal to the supercon- 
ducting state. This transition process was investigated by 
Watts-Tobin et al.," who used a numerical solution of the 
dynamic equations of superconductivity. 

The transition from the normal to the superconducting 
state in a narrow channel of infinite length, in the presence of 
current, is thus in essence a first-order transition. The criti- 
cal-nucleus size depends on the current and increases with 
the latter. At a current above a certain value j, the existence 
of the critical nucleus becomes impossible. Estimates yield 
for the current j, a ~ a l u e ' ~ ~ ~ ~ ~  

The condition (1) determines the limit above which the su- 
perconducting region arising against the background of the 
normal state can no longer grow. Since the electric-field pen- 
etration depth I, is usually much larger than the coherence 
length 6, the current j, exceeds jGL noticeably. The ques- 
tion of the onset and growth of an above-critical nucleus has 
not yet been sufficiently well studied. Nor is it quite clear 
whether the entire region between the currents jGL and j, is 
occupied by the resistive state discussed above. 

The transition accompanying the formation of the criti- 
cal nucleus is connected with surmounting an energy barrier 
that is exceptionally high because of the macroscopic dimen- 
sions of the sample (its width and thickness exceed the atom- 
ic dimensions by hundreds or thousands of times). The prob- 
ability of formation of a critical nucleus should therefore, 
generally speaking, be very small. 

We have dealt so far with an infinitely long supercon- 
ducting channel. In analogy with first-order transitions, it is 
natural to look into the role played by the ends of the super- 
conducting channel on going from the normal to the super- 
conducting state in the presence of current. Inasmuch as in a 
real experimental situation any superconducting sample is 
connected to measuring instruments through normal con- 
tacts, we consider a narrow superconducting channel whose 
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FIG. 1 .  Illustrating the formulation of the problem. The ends of the nar- 
row superconducting channel (S ) are connected to normal conductors (N ). 

ends are connected to normal conductors, so that SN boun- 
daries are produced at the connection points (Fig. 1). We 
investigate in the present paper the influence of the SN 
boundary on the stability of the normal state of the current- 
carrying channel. We show that near the SN boundary, at a 
current lower than a certain value j ,  (which is lower than the 
critical Ginzburg-Landau current jGL ), there exists against 
the background of the normal state an instability that leads 
to the onset of an infinitely small superconducting nucleus, 
which then increases with time and broadens in such a way 
that its boundary penetrates into the channel so that after the 
lapse of a sufficiently long time the entire channel is in the 
superconducting state. This process is not connected with 
formation of a critical nucleus and proceeds without activa- 
tion. In other words, at a current j < j ,  the normal state is 
absolutely unstable near the SN boundary. If, however, the 
current flowing in the channel exceeds j , ,  the formation of 
an expanding superconducting region calls for a nucleus that 
exceeds a critical size that increase with increasing deviation 
from j , .  In this case the situation becomes similar to that 
discussed above for an infinitely long sample. 

Thus, the boundary promotes the transition from the 
normal to the superconducting state in the presence of cur- 
rent. A possible explanation is that near the SN boundary 
practically the entire current in the superconductor is trans- 
ported by normal excitations, so that the current of the su- 
perconducting electrons (i.e., the velocity of the Cooper 
pairs) is small near the boundary. The influence of the elec- 
tric field manifests itself then only at a certain distance from 
the boundary. As a result, the conditions near the SNbound- 
ary are favorable for the onset of superconductivity in the 
presence of a current. 

2. BASIC EQUATIONS 

The problem of the behavior of a superconductor in the 
presence of an electric field is essentially nonstationary. Un- 
fortunately, in the general case the system of nonstationary 
equations for superconductors is extremely complicated and 
does not reduce to local differential equations for the super- 
conducting parameters A, Q, and @. Here A is the modulus 
of the order parameter, 

ciently narrow vicinity near T, : 

I-TIT,< ( t , , ,T,)  - I .  

The dynamic equations were obtained under these as- 
sumptions by a number of worker~.'~-'"hey take the form 

n d  A 
- - (4tph2A2+ I)' -- 

ST, d t 

D + - div (A2Q) -0, 
(4tmZA2+ I ) "  c 

Here 

tph-'=7g ( 3 )  nv ( 0 )  g2T3/ (spF) 

On the basis of the electroneutrality condition 

div j=O, (5) 

we can obtain from (3) and (4) 

Equation (6) determines the penetration depth I ,  of the con- 
stant (E = - VO) electric field into the superconductor. 

We shall find it convenient to transform to dimension- 
less variables. To this end, we choose the respective length 
and time scales 

E ( T )  = [ d l 8  ( T , - T ) ]  '" and -c,,=2T/nAG,2, 

we measure the order parameter in units normalized to its 
equilibrium value: 

A ~2=8n" (TO-T)  / 7 f  ( 3 ) ,  

and the current in units of TUA '/4eT(. In these units, the 
critical Ginzburg-Landau current is 

jGL=2/31&0.385, 

Equations (2)-(6) take the form 

d" d2Q -+-= 
dx2 d x d t  

uA2 ($ + I )  - I h  0. 

are the gauge-invariant vector and scalar potentials (A and q, Here r is the depairing factor 
are the usual electromagnetic potentials), and x is the phase r=-- 1 n 
of the order parameter. We consider therefore below tem- ~ ~ , , , A G L  ~ U ' ~ ( T ~ ~ T ~ )  (1-T/T, )  Ih ' 
peratures close to critical, and assume in addition that the and' the numerical parameter = T4,146 (3) = 5,79. The 
characteristic spatial and temporal scales of all the quanti- gauge-invariant potentials take in these units the form 
ties are quite large: a, Dk '<7,, - I ,  where D is the diffusion 
coefficient and T,, is the time of inelastic electron-phonon @=rp+3xldt, Q=A-dxldx. 

relaxation. These conditions are always satisfied in a suffi- We neglect below the magnetic field and assume that 
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Q = - ax/a X. 

In the gapless case A ( r  Eqs. (7)-(10) go over into the 
time-dependent Ginzburg-Landau equations. The depairing 
factor r depends on the temperature. In a very narrow re- 
gion near Tc 1 - T /Tc ((?,, T,)-~, the factor r is large, 
r> 1, and the gapless situation obtains always. At the usual 
experimental temperatures, however, the factor r is as a rule 
considerably less than unity, since the product rp, T, for 
real materials is quite large. Thus, the product r,, Tc for real 
materials is quite large. Thus, the product r,, Tc is of the 
order of (2 - 4) X 10' for lead and indium and lo2 for tin. 
Therefore in situations when A is of the order of its equilibri- 
um value (A = 1 in our units), the inequality A ) r  usually 
holds, corresponding to the presence of a gap in the energy 
spectrum. In this case we find from (19), in particular, that 
the depth of penetration of the electric field, I, - (ur)- 'I2, is 
considerably larger than c (T )  = 1 in our units). 

Equations (7)-(9) can also be written in complex form, 
by introducing the complex order parameter rC, =A expix: 

3. BEHAVIOR OF AN INFINITELY SMALL 
SUPERCONDUCTING NUCLEUS NEAR THE SN BOUNDARY 

We shall consider below a semi-infinite narrow super- 
conducting channel occupying the region x < 0 (see Fig. 1). 
On the boundary with the normal metal (x = 0) we assume 
A = 0, which holds true if the contact is a "good" normal 
metal, i.e., if the order parameter in it decreases over dis- 
tances smaller than 6 (T)  in the superconductor. 

We seek the solution for an infinitely small supercon- 
ducting nucleus, and linearize for this purpose Eqs. (12) and 
(13)at \ $ \ ( r and  11,h1(l.Inthiscasep= -jxand 

We obtain for f (x) the equation 

[l+iu(o+ jx)] f+azf/b'x2=0, 

the solution of which can be expressed in terms of Bessel 
functions of order 1/3: 

f (x) - [l+iu(o+jx)] "'Z~l,(z), 

where Z, ,, is one of the solutions of the Bessel equation, and 

z= (2i/3uj) [l+iu(o+jx)] ". 
The region of variation of z in the complex plane as x changes 
from - w to + a, is shown in Fig. 2. The solution that 
decreases as x--t - w is obtained by choosing Z,, ,  = H 9, , 

FIG. 2. Range ofvariation of the argument ofthe Hankel function H If), (I) 
in the complex plane as x changes from - m to + m . The cut corre- 
sponds to the definition of the principal branch of the function HI;), (I). 

where H f!, is a Hankel function of the second kind. Thus, 

f (z) = [l+iu(o+ jx) 1 ' ~ ~ ~ / 1 2 '  (z). (17) 

Figure 2 shows a cut along the negative real axis z, corre- 
sponding to the determination of the principal branch of the 
function H'2'. The argument z of the Hankel function goes 
out of the definition region of the principal branch of the 
function H'2' as x moves from - w . Analytic continuation 
under the cut yields 

(z) =Hi,') (2') +einf3H;:) (2') 
=2e'n18[11!, (z') cos (x/6) -YI,, (z') sin (n/6) 1, (18) 

wherez = ei"z', while JIl, and YIl3 are respectively a Bessel 
and a Neumann function. As seen from (IS), at x-+ + w the 
function H IT, (z) would increase exponentially, correspond- 
ing to the absence of an infinitely small stationary solution of 
Eqs. (12) and (1 3) in a superconducting channel of infinite 
length. In our case, however, the superconducting channel is 
confined to the region x <O and we must stipulate 
H y3 (z) = 0 at x = 0. The roots of the cylindrical function 

1,. (2 ' )  cos (n/6) - YU (2 ' )  sin (n/6) 

are located on the positive real z' axis (see Ref. 16). We need 
the smallest positive root, which corresponds to" 
z' + s, = 2.383. Equating z = s, exp in at x = 0, we obtain 
the condition for the frequency w: 

where the critical current is determined from 

' uj,=41'/3~,=0.791. (20) 

With allowance for the numerical value of the parameter 
u = 5.79 we have 

jl=0.137=O.356j,,. 

It can be seen from (19) that at a current j <j ,  we have 
Re( - iw) > 0, and an infinitely small solution will increase 
with time. At j > j ,  the infinitely small solution attenuates. 
To ascertain the subsequent fate of the infinitely small nu- 
cleus at j <j,  we consider Eqs. (12) and (13) in the region 
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/ j, - j(q', and take into account in them the principal non- 
linear terms. We have 

0 

'p=-jx-p.. p.= J j .  ax ,  
I 

where 

Expressing as before $ in the form (15), we have at 
/Re( - io)141 

a2f  iu [ l + i u ( o + j x ) ] f  +-+ iucp . f - - (o+ j~)  If12f-lf12f=0. ax2 2 r 2  
(21) 

We put 

f = C f o ( x ) + f t ( x ) ,  

where C is a positive constant, Cgl, and fo(x) is given by 
(17). The small correction f,-C3 also satisfies the condi- 
tions f,(x) = 0 at x = 0 and f,(x)+O as x-+ - m. With the 
aid of the orthogonality condition, the solutions of the ho- 
mogeneous linear Eq. (18) relative to the nonlinear part of 
(21) we obtain for the frequency 

2 il-i - 2 j-j, - iuo= [,, - a t ] - i ( ~ 3 + T - + a " ) ,  (22) 
1'3 i l  

where a' and a "  are defined as 

-uf r . ~ ~ ~ ~ s i n ~ ~ ( e ~ - e )  l a x  
-m 

Here 6 is the phase of the function fo(x), and 6, = 6 (x = 0). 
In the derivation of (23) and (24) we used the relations 

0 

110 ( 0 )  1 ''sin (2%) =uj  J I f .  I 2  cos ( 2 0 )  ax, 
- m 

which is obtained from (16) by multiplying it by dfo/dx and 
integrating with respect to dx from - m to 0 .  

Calculation of the quantities a' and a "  should be car- 
ried out with the aid of the known function fo(x) of the form 
(17). Instead of tabulating the function (17), we used a differ- 

FIG. 3. Results of numerical integration of Eq. (14) at j = j , .  The function 
$is normalized such that maxl$l = 1.  To obtain the true values of A,  q,, 
and j, the result for I $ l  must be multiplied by C, and the results for j, and 
q, by CZ, where Cis defined in (28). 

ent method of calculating the integrals in (23) and (24). The 
function $ was obtained by direct numerical integration 
with a computer. By virtue of (15), the moduli of the func- 
tions $and fo are equal at j = j,, I$/ = I fol, but their phases 
differ by an amount x - 6 = - ot that does not depend on 
x. This difference, however, disappears in the calculation of 
the difference 80 - 6 = X, - X, in (23) and (24). The norma- 
lization of the function was chosen such that maxl fo(x) I = l. 
Figure 3 shows the functions I fo(x) I ,  j, (x) and p, (x) obtained 
by numerical integration of Eq. (14) at j = j,. 

To investigate the stability of the obtained small super- 
conducting nucleus, we must know the value ofa'. The inte- 
grals that determine it, calculated by the method described 
above, are 

:I,= j i f o 1 4  s i . [ z ( eO-e )  ldx=1.04, 
- cs 

0 

- , I ,=  J s ~ f , ~ 2  C O S [ ~ ( ~ . - ~ )  1ax=-o.525, 
- x 

where y = I f (0)1'2/~j = 1.06. We can thus write 

a ' = C 2 ( I I - 1 2 ~ - ~ 3 / ~ I ' 2 ) .  (25) 

The approximate values of I,, I,, and I, are 

i ,=0.981,  12=0,496, 13=0.3T2. 

The stability of a nucleus with small amplitude depends 
on the sign of the expression in the parentheses in (15). We 
consider two cases. 

1. If a' = aC 2,  where 

the growth rate of the solution (15) 

vanishes when the renormalization constant of the function 
f (x) = Cf,(x) satisfies the equation 
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It can be easily seen from (26) that such a solution is stable at 
j < j,. At j > j, the normal state is stable. 

The condition a > 0 cannot be satisfied for Eqs. (2)-(4) 
or (7)-(9), since the parameter u = 5.79. Nor is is satisfied for 
another known case of gapless superconductors, namely al- 
loys with paramagnetic impurities," for which u = 12. This 
condition, however, can be satisfied for the time-dependent 
Ginzburg-Landau equations (r = w ), in which the coeffi- 
cient u is assumed to be a free parameter and satisfies the 
condition u < I,/12. Similar equations were considered ear- 
lier.6 We have here a manifestation of one of the most impor- 
tant differences between the dynamics of real superconduc- 
tors and of systems described by the model time-dependent 
Ginzburg-Landau equations. 

2. In real situations, at the parameter value u = 5.79 
(and in the more general case at u>I,/12) we have 
a' = - bC2, where 

In this case the growth rate 

is always positive at j <j ,  and an infinitely small solution 
will increase exponentially with time. If, however, j > j, the 
curve described by the formula 

determines the stability limit of the normal state with respect 
to formation, near the SN boundary, of a superconducting 
nucleus with amplitude C (Fig. 4). In particular, at T(1 we 
obtain for the stability limit 

Thus, in superconductors described by Eqs. (2)-(4) the 
normal state near the SN boundary is absolutely unstable 
with respect to formation a superconducting nucleus that 
increase with time at currents j < j,, where 

FIG. 4. Schematic dependence of theamplitude of the critical nucleus C ( j) 
on the current. The arrows show the direction of the change of the ampli- 
tude Cof the nucleus in the different regions. In the region j <j ,  and above 
the C (  j) curve the amplitude of the nucleus increases. At j> j ,  under the 
curve, the amplitude of the nucleus decreases, i.e., iri this region the nor- 
mal state is stable to infinitely small perturbations, but unstable to pertur- 
bation of finite magnitude. 

At currents j <j , ,  the normal state near the SN boundary is 
stable to infinitely small perturbations but unstable to for- 
mation of a nucleus with amplitude exceeding C (j) from (28). 

4. BEHAVIOR OF SUPERCONDUCTING NUCLEUS OF FINITE 
AMPLITUDE 

Thus, at currents j <j ,  an infinitely small nucleus is 
produced near the SN boundary and grows subsequently 
with time. The results of the preceding section pertain to 
small-amplitude nuclei, C ( r  and C<1. To ascertain the 
subsequent behavior of a the nucleus after it has acquired a 
finite amplitude, we must turn directly to Eqs. (7)-(9) or (12) 
and (13). Equations (12) and (13) were therefore solved nu- 
merically. The length of the superconducting channel was 
2L = 40. On the ends of the channel was imposed the condi- 
tion 

and at the midpoint of the channel, the symmetry condition 

The problem was solved for one half of the channel, O<x<L; 
an explicit scheme was used to integrate (12) and (13). We 
investigated the values of the parameters u = 5.79; r = W ,  

r = 1/3, r = 1/10. The initial perturbation was chosen to 
be the function 

I I$ 1 =A(L-x)  exp (x-L)  

with small amplitude A .  The results were the following. 
At currents j > j, the small perturbation attenuate with 

time. There exists, however, a critical amplitude A ,  (j) such 
that an initial perturbation with large amplitude A  > A ,  (j) 
increases also in the case j > j,. This behavior agrees with the 
results obtained in the preceding section. This situation calls 
for a more detailed investigation. 

At currents j <j ,  the small perturbations grow, and the 
first to grow is the nucleus amplitude, until it reaches a value 
close to unity; the nucleus then begins to broaden, and its 
boundary moves into the interior of the superconductor. 
This behavior of the boundary is analogous to the expansion 
of a superconducting domain, investigated in Refs. 19 and 20 
within the framework of the time-dependent Ginzburg-Lan- 
dau equations. Figure 5 shows the results of the numerical 
calculations for the parameter values r = W ,  r = 1/3, and 
r = 1/10 at a currentj = 0.1. It can be seen from the results 
of the numerical calculations that at j <j ,  the growth of the 
small perturbation does not stop at finite amplitudes and 
continues until the nucleus spreads over the entire sample. 
The velocity of the nucleus boundary and its slope decrease 
with decreasing r at a given current. With decreasing cur- 
rent the velocity increases and the slope decreases. 

It can be assumed from the character of the boundary 
motion, shown in Fig. 5, that at sufficiently long times, when 
the nucleus size exceeds I ,  substantially, the motion of the 
boundary is described by a self-similar solution of the type 
A (x,t ) = A (x + ut )(theboundary movesto theleft). Weshall 
investigate the motion of the boundary at T( 1. In this case 
Eqs. (7)-(9) near the boundary can be written in the form 

888 Sov. Phys. JETP 56 (4), October 1982 lvlev et al. 888 



FIG. 5. Numerical-calculation results that describe the growth 
and spreading of a superconducting nucleus at a current j = 0.1 
and at the parameter values r = co (dash-dot), r = 1/3 (solid 
curves) and r = 1/10 (dashed curves). The curves numbered 1, 
2, 3, ..., n correspond to successive instants of time t, = 0, 
t2  = 30, tz = 60, etc.: t ,  = 30(n - 1). 

where we have put j, = - A 'Q and used the assumption, Letting x' = x - xo go to + co (into the interior of the nu- 
corroborated below, that the velocity v&l at r &  1 .  cleus), where dA /ax  = 0 and A = 1, we obtain, taking j, & 1 

We consider first the case of small currents r "'q'(1. into account, 
In this case A -- 1 in the interior of the nucleus (far from its 1 
boundaries). From (30) and (3 1 )  we obtain at A = 1 (37) 

We have used here the fact that in the principal region of 
Near the boundary of the nucleus this expression gives only integration we have and the solution takes the form 
the order of magnitude, namely @ - (uT)-"?. (34). Substituting (34) in (37) we obtain 

We consider first the region x-+ - , A & r .  Retaining 
the principal terms in (29), we obtain U V ~ I ~ = I .  (38) 

We see that the characteristic scales of the lengths over 
which A varies in this region are much smaller than unity. 
The potential @ hardly varies over such lengths: 

@ = Q o - ( ~ r )  - Ih] .  

From (30) we obtain 

dj,/dx=uA2Qo. (33) 

Simultaneous solution of (32) and (33) yields 

where A ' = 2/uQo( 1. 
We consider now the region A ( r .  Equation (29) takes 

here the form (we recall that j, ( 1 )  

Comparing this expression with (35) we conclude that D 
should be much less than unity. 

To determine the velocity we must know the slope 0 of 
the boundary (36) in the region r ( A  & 1. For this purpose we 
must find an exact solution of Eqs. (29)-(3 1) in this region. 
Since this is a complicated problem, we confine ourselves to 
estimates of p and of the velocity v of the boundary, so that 
the results that follow are only of the correct order of magni- 
tude. To estimate p in  (38), we consider Eq. (36) in the region 
T < A ( l ,  were A-Dx'. The first term in this equation is of 
the order of uv B 3 ~ ' 2 / r - p  'x", the second of the order 0 ', 
and the third of the order D 'xI2. TO estimate the last term we 
use the relation 

aj,/a~-urAO- (ur)"Aj, 

form which we obtain 

Its solution is 
It will be seen from the following that f l  must lie in the 

A=th [fi (5-20) 1 (34) interval 1. In the region r / f l&x ' ( l  the principal 

iunder the condition terms in (36) are the second and fourth, while at 1/p%x1) 1 
the principal terms are the first, third, and fourth. At x'- 1 

- 2 ~ P - u v p l ~ + i = ~ .  05) all the terms in (36) should be of the same order, whence 
We now multiply Eq. (29) by aA /ax  and integrate it with p- ( ~ r ) ' ~ * j .  
respect to d x  from - a, to x:  Substituting this result in (38) we obtain 
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5. CONCLUSION 

This estimate is valid at r ' I 2  <j 5 jG, . The boundary veloc- 
ity, given in the customary units, is quite high 

where is the time of collision with the impurities. 
It should be noted that once the superconducting nu- 

cleus is produced, it will expand also at currents exceeding 
jGL, and in this case the channel will go over not into a 
homogeneous superconducting state, but into the resistive 
state. The order of magnitude of the upper current limit, 
above which the nucleus stops expanding, should be deter- 
mined by condition (I), which yields in our units j, - r - '. 
An attempt can be made to estimate the boundary velocity at 
currents j 5j2 in analogy with the procedure used above. 
The difference is that now we cannot neglect at A - 1 the 
term with j, in (29), so that we do not have the exact solution 
(34). Equation (36) can be used as before, but (38) is accurate 
only in order of magnitude. Let us estimate the terms of (36) 
at x'- 1, The estimates for the first, second, and third terms 
do not change, while for the last we have 

For the potential @ at large currents j$l we can obtain 
@-( j / r ) ' I 2  (see, e.g., Ref. 7), so that thelast term in (36) is of 
the order of rjxI2. Assuming that at x' - 1 all the terms in 
(36) are of the same order, we find that the slope of the 
boundary is /3-(Q)'I2, and for the boundary velocity we 
have from (38) ~-(r/j)'/~. At j-j2 the velocity is of the 
order of v - r .  At j = j2 the velocity u of the boundary 
should, generally speaking vanish because the supercritical 
nucleus stops growing. This effect, of course, cannot be 
traced in such a rough estimate. 

We have thus shown that at currents j < j ,  the normal 
state of a superconducting channel described by Eqs. (2)-(4) 
is absolutely unstable near the SN boundary with respect to 
formation and growth of a superconducting nucleus that ex- 
pands in the course of its evolution in such a way that its 
boundary moves into the interior of the superconductors. 
For a growing nucleus to be produced at currents j  > j ,  the 
amplitude of the nucleus must exceed a cert?.in critical value 
that increases with increasing deviation from j,. 
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