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The contribution of quasilocalized states to the Hall conductivity produced by thermal excitation 
in a two-dimensional electron-impurity system is calculated in the approximationof sparse impu- 
rity centers. It is proved that a solitary axisymmetric impurity center does not give rise, in all 
perturbation-theory orders, to corrections to the ideal value of the Hall current of occupied 
Landau levels. In the case of an arbitrary scattering potential the corresponding correction is zero 
up to third-order perturbation theory. 

PACS numbers: 72.10.Fk, 72.15.Gd, 7 1.55.Dp 

1. INTRODUCTION 

Experiments on the quantum Hall effect in inversion 
layers on silicon surface have shown'*2 that in a strong mag- 
netic field B, in the region of the minima of the Shubnikov- 
de Haas oscillations, the Hall component uxy of the electric 
conductivity tensor is close to the Hall component of a free 
two-dimensional electron gas u y  = ecN,/BS, where e is the 
electron charge, c is the speed of light, N, is the number of 
electrons in the system, and S is the sample area. It is known 
that no minimum of the Shubnikov-de Haas oscillations oc- 
curs when several Landau levels in the systems are fully oc- 
cupied, i.e., when N, = pNo, wherep is an integer, No = S / 
2n-A is the number of possible electronic states on the Lan- 
dau level, and A = (cfi/eB ) ' I 2  is the magnetic length. There- 
fore the quantity u y  = pe2/2& depends only on a combina- 
tion of fundamental constants. Recent precise 
measurements of the components uxy have shown3 that in 
this situation the correction Soxy = uxy - uy is exceedingly 
small, ISuxy/uFj I < It was proposed in Ref. 3 to use 
this fact to produce a quantum standard for resistance. 

A theoretical analysis of the situation raises two funda- 
mental questions: (a) How can the chemical potential of the 
system be fixed periodically in a manner that satisfies the 
condition N, =pNo? (b) What is the theoretical value (if not 
equal to zero) of the correction Soxy to the ideal value u$? 
These questions are considered from various points of view 
in the current 

The answer to the first question is relatively simple.I0 
The position of the chemical potential can be fixed on the tail 
of any of the broadened Landau levels in the region of the 
localized states produced by a perturbing random potential 
V(r). In Ref. 10 we considered a simple model of a two-di- 
mensional system, wherein the perturbing potential is pro- 
duced by random disposition of charged impurity centers in 
a dielectric near the inversion layer. In a strong magnetic 
field Vo, where 135 is the cyclotron frequency and V, is 
the characteristic value of the impurity-center potential, a 
two-dimensional impurity band is produced on the tail of 
each Landau level, and all the electronic states of the band 
are localized provided that noxA 2<1, where no, is the sur- 
face density of the impurity centers. The two-dimensional 
impurity band contains then only a small fraction of the total 
number of Landau levels, since it follows from the condition 

noxA 2<1 that noxS(No. If the chemical potential of the sys- 
tem is located at a sufficiently low temperature in the two- 
dimensional impurity band of the level numbered N, (N- I), 
all the states of the lower L a ~ d a u  levels with N '  < N are com- 
pletely filled with electrons and are separated by a gap --%OF 
from the unfilled states of the N-th Landau level. In addi- 
tion, the localized states of the two-dimensional impurity 
band of the N-th level are separated from the lower edge of 
the mobility threshold of this level by a gap - V0<4w:. 

By fixing the chemical potential in a two-dimensional 
impurity band we satisfy the fundamental relation N, = pNo 
only approximately, accurate to a small number of electrons 
situated in the impurity band. By assumption, however, all 
the electronic states in a two-dimensional impurity band are 
localized. In this case the impurity-band electrons contri- 
bute only to the temperature-dependent correction to a',,!, 
due to thermal excitation to the mobility threshold of the 
nearest Landau level. We show in the present paper that this 
correction is exponentially small at sufficiently low tempera- 
ture. We are still left with the question of how the impurity 
potential influences the Hall current of the occupied lower 
Landau levels at T = 0. It is clear from physical considera- 
tion that the corresponding correction Suxy cannot be large, 
since the wave function of the occupied Landau level is non- 
degenerate and the perturbing potential is relatively weak: 
Vo<fiw,*. So far it has not been proved that Sax, = 0. On the 
other hand, nor is a rigorous estimate of this quantity been 
given, although this question is of importance for a theoreti- 
cal estimate of the accuracy of the possible resistance stan- 
dard. 

By way of a particular result, it was shown in Ref. 11 
that in the so-called SCBA approximation one obtains 
SoXY = 0. The approximations used in the derivation, how- 
ever, do not make it possible to estimate the accuracy of this 
result. An attempt to prove that Suxy = 0 was made for the 
particular case of a perturbing potential in the form V = S(r). 
The calculations in Ref. 4 show only that the main contribu- 
tion to 6uxy is cancelled out and are not convincing. Results 
close to ours were obtained in Ref. 9. There, however, the 
important role of localized states at T # 0 was not investigat- 
ed and only the lowest order of perturbation theory was con- 
sidered. 

In $2 we investigate in detail the contribution of the 
localized states to the Hall mobility on account of thermal 
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excitation to the mobility threshold, and show that for a 
short-range impurity potential this contribution is exponen- 
tially small if the temperature is low enough. In addition, we 
prove rigorously that a solitary axisymmetric impurity 
centers does not necessitate at T = 0, for all orders of pertur- 
bation theory, corrections to the ideal value of the Hall cur- 
rent of occupied lower Landau levels. 

In the case of an arbitrary impurity potential, we prove 
in $3 that for a filled Landau level the correction So, is zero 
in third- and fourth-order perturbation theory in the small 
parameter V , r (  1, and estimate the possible value of the 
correction in fourth order in this parameter. The estimate 
shows that even if the correction 6uxy for an occupied Lan- 
dau level is not zero, it is small enough to account for the 
experimental data.3 

2. CONTRIBUTION OF SOLITARY IMPURITY STATES TO THE 
HALL CONDUCTIVITY 

We consider the case of sparse impurity centers and a 
strong magnetic field, n, A '41, when the influence of the 
surrounding impurity center on the electronic states of a giv- 
en solitary impurity center can be neglected. To calculate the 
contribution of the electronic states of the solitary impurity 
center to the Hall component of the conductivity tensor of 
the system we use the Kubo formula in the formi2 

where k and ?are the operators of the center of the cyclo- 
tron motion of the electron, T = p-  ' is the temperature, and 
/j is the operator of the equilibAium jlensity matrix of the 
system with Hamiltonian H = Ho + V, where & is the Ha- 
miltonian of the free two-dimensional electrons in a magnet- 
ic field. The use of the Kubo formula in the form (1) is par- 
ticularly convenient for our problem, since the first term of 
(1) is equal to the Hall component of a free electron gas, and 
the second term is the correction to be calculated. 

The solitary-impurity-center potential acting on the 
two-dimensional electrons will be assumed to be axisymmet- 
ric, V = V (  p), p = (x2 + y2)'I2. The problem can then be 
solved exactly. We*determine the systematics of the states of 
the Hamiltonian H. In view of the axial symmetry of the 
problem, the angular quantum number m is an exact quan- 
tum number of this Hamiltonian. The second quantum num- 
ber n, describes the radial motion. If the potential V @ )  is 
bounded at infinity, the wave functions of the Hamiltonian 
H can be described in the limit of a strong magnetic field 
fiwr, Vo, in place of the quantum number n,, also by the 
Landau quantum number N. We shall therefore designate 
exact wave functions and energy eigenvalues of the Hamil- 
tonian H by INm) and EN,, respectively. Although INm) 
and EN,, are unknown, in the limit of a strong magnetic field 
they can be calculated by perturbation theory, using as the 
basis the wave functions INm)"' of a free electron in a mag- 
netic field. l 3  

With the aid of the equations of motion 

expression ( I )  can be rewritten in the basis jNm) in the form 

where > is the principal-value symbol and f,, are the occu- 
pation numbers of the state INm). In the derivation of (3 )  we 
have left out a term containing 6(EN.,. - E,, ), since it does 
not contribute to ox,, in the considered case of a solitary 
impurity center. It canpe next verified that the matrix ele- 
ments of the operators X and Yon the basis functions INm) 
are nonsingular. Therefore, using (2), we can simplify Eq. (3):  

Reasoning formally, the second term in (4)  can be written in 
the form 

Using next the value ofthe commutator [k, ?] = iA and the 
normalization condition 

we can formally "prove" that the second term of (4)  always 
cancels the first and ox, = 0. The foregoing arguments can 
be justified, however, only for a potential that is not bounded 
at infinity [ V ( ~ ) - + W  as p - - + ~ ] ,  when the occupation 
numbers f,, 4 as m-t w . In this case the result, ox, = 0, is 
obvious beforehand, since the potential that is unbounded at 
infinity localizes all the electronic states, and their contribu- 
tion to the Hall current is zero. For potentials of the type 
V ( p+ W )  = 0 the values off,, tend to a nonzero constant as 
m+ w . We shall show below that the transformation is not 
valid in this case. 

Using the axial symmetry of the problem and the equa- 
tions of motio: (2) ,  wf can show that the matrix elements of 
the operators X and Y differ from zero only for transitions 
m' = m 1 and are, in addition connected by the relations 

(NmIPIN', m+l>=-i(NmlX1 N', m+l>. (6)  

We examine now the behavior of the matrix elements (6) 
at m> 1. In the state INm) with m> 1 the electron is located 
at large distances from the center, where the potential V ( p )  
can be neglected. Therefore at m > l  the wave fun~tions 
INm) z INm)"'. The matrix elements of the operator X with 
respect to the unperturbed wave functions (Nm)"' are equal 
to 
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I (Nm I (O'X IN', m+1) I =2-'"As, . < A  (N+m+I) 12. (7) 

Using (7) we can verify by perturbatio? theory that the sums 
at N  # N  ' the matrix elements (Nm IX 1 N, m  + 1 ) decrease 
rapidly as m+ co, SO that the sums over m  in (4)  converge 
well at N  # N '. The contributions to the sum (4)  that are diag- 
onal in N can converge, obviously, only if the difference 
fNm - f , ,  + -0 decreases rapidly enough as m + ~ .  Tak- 
ing ( 6 )  into account and separating in (4 )  the diagonal and off- 
diagonal (N # N ') parts of the sum, we obtain ultimately 

where A ,,,, is the Kronecker delta. 
Using (8) ,  we consider now several particular cases. Let 

the system contain only one electron, N,  = 1. Clearly, if the 
impurity center is attracting, the electron is localized at suf- 
ficiently low temperature on the impurity center and does 
not contribute to the Hall current. Indeed, let the state 10,O) 
be the ground state of the Hamiltonian H. Assuming at 
T = 0 an occupation f,, = AN,,Am,,, we get from (8)  
F = i/2 and u.,, = 0. It can be easily seen that there is like- 
wise to contribution to the Hall current from an electron 
localized in an arbitrary metastable state INo,m,), when 
fNm = AN,NoAm,m,, . At finite temperatures Tgfiw? we obtain 
from (8)  in the lowest order of perturbation theory 

0 

it suffices here to calculate the energies E,,, in (9) in first 
order perturbation theory, putting, E,,, = h , * / 2  - V, , 
where V,  = I (0,m 1") k 10,m)'O'l. For potentials that decrease 
rapidly at infinity, the sum in (9) converges well. It diverges, 
however, say for an unscreened Coulomb potential 
V (  p) = e2/p. The approximation of a solitary impurity cen- 
ter cannot be used in this case, and it is apparently necessary 
to take into account the screening by the surrounding impu- 
rity centers. 

Let us consider in greater detail the case of a short- 
range potential of the 6-function type, when V,  = V , m , o .  
We determine the chemical potential from the condition 

where M is the average number of the Landau-level states 
per impurity center, with MS1 in the approximation in 
which the centers are sparse and the magnetic field is strong. 
From (9)  we get 

F=ihz [l-lj%exP {-Vo/2T)] =iAZ, T<Vo/ln M ,  

F=iAZ/M<ihz, T> ->Trolln M. 
(10) 

In the limit of low temperatures the contribution of an elec- 
tron localized on an impurity center is thus exponentially 
small." In the opposite limit of high temperatures, the elec- 
tron is in fact ionized and the impurity center affects its mo- 
tion little. 

If the Landau level is not fully occupied, 1 ( N ,  <No,  it 
is necessary to take into account at low temperatures the 
restructuring of the ground state of the system under the 
influence of the Coulomb interaction between the electrons, 
i.e., the formation of a Winger lattice15 or of a charge-density 
wave.163L7 Calculation of the electric-conductivity tensor 
components under these conditions calls for a separate anal- 
ysis. If, however, the Landau level is completely filled, 
N, = No, the wave function of the ground state is nondegen- 
erate and the Coulomb interaction between electrons in a 
strong magnetic field e2/x/2(fiw,* can be regarded as a per- 
turbation. Let, for example, the lower Landau level be fully 
occupied at T = 0 ,  so that fNm = A , ,  . It can be easily seen 
that the diagonal contribution F, = 0 .  We shall show that 
the nondiagonal component Fnd is also zero. Indeed, the par- 
tial sum of the first 1 terms of the series for Fnd is 

Fna(l) =2i(LlzhY-- I(O, 1-1 1x1 O,1) 1'). (11) 
Taking the relation (7) into account, it can be shown that 
Fnd ( 1  )+0 as I-+ w . Thus, the presence of a solitary impurity 
center in the system does not influence the Hall current of 
the occupied lower Landau level at T = 0. This result can be 
easily generalized to the case of occupation of several Lan- 
dau levels. 

We can treat analogously the case when several lower 
Landau levels in the system are occupied at T = 0,  while the 
next level has a small number of electrons in localized states 
on sparsely disposed impurity centers. The chemical poten- 
tial of the system is in this case on the tail of the partly occu- 
pied Landau level. It can be verified with the aid of (8) that 
the localized electrons of the partly occupied Landau level 
do not contribute to the Hall current of the system. The 
presence of solitary impurity centers does not influence in 
this case the Hall current of the occupied lower Landau lev- 
el, which is equal to its ideal value. Clearly, in this situation 
the temperature correction to this ideal current are deter- 
mined primarily by the contribution, considered above, of 
the localized electrons of the partly occupied Landau level. 

03. ARBITRARY RANDOM POTENTIAL 
We have considered in $2 the case of sparse impurity 

centers, which admits of a rigorous analysis but is most un- 
likely in a real e~periment .~ We examine therefore in the 
present section the case of an arbitrary weak (V,(fiw,*) ran- 
dom potential. By virtue of the statements made in $2, it 
suffices to calculate the possible correction to the ideal value 
of the Hall current of the occupied lower Landau levels at 
T =  0. 

To estimate the correction Su,, in this case we must use 
Eq. (3), where INm) and EN, must be replaced by the exact 
wave functions INa) and eigenvalues EN, of the Hamilton- 
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ian I?,, + k. In a strong magnetic field, V04fiwr, the Landau 
quantum number N remains a good quantum number. The 
quantum number a numbers the states of the specified Lan- 
dau level. For the case of an arbitrary perturbing potential it 
is necessary to retain in the right-hand side of (3) also the 
term with S (EN.,. -EN,). When account is taken of the 
electron-phonon interaction, a term of this type introduces 
in dz a temperature correction due to the hopping conduc- 
tion over the localized states of the two-dimensional impuri- 
ty band. In the limit as T-+O this term can be left out. In the 
general case it is difficult to justify the transition from (3) to 
(4) in view of the possible singularity of the matrix elements 
( ~ a  (k IN 'a'). To estimate the correction Sax, in the case of 
an arbitrary random potential it is convenient to start in- 
stead directly from Eq. (3), which takes at T = 0, for the case 
of occupation of the lower Landau level, the form 

x z  z (O,al~V/ayINp><NpIa~~dxIO,a)-C.C. 
x z i  U,R 

(E3-0-Ea,n) 

(12) 
The right-hand side of this equation can be expanded in pow- 
ers of the small parameter V&:( 1. It is convenient to 
carry out the calculation under the assumption that the first- 
approximation wave functions INa)"' = INa) and the ener- 
gy eigenvalues E are known as a result of formal diagona- 
lization of the degenerate Landau level. The wave functions 
\Nu) are thus determined by linear combinations of the un- 
perturbed states INX,) of the N-th Landau level: 

where Xo is the quantum number of the center of the cyclo- 
tron motion. The use of (13b) in the calculations for an occu- 
pied Landau level obviates the need for the complicated pro- 
cedure of determining the unknown quantities cNxo (a) and 
E $L. It is easily seen that the expansion of (12) begins with 
terms oforder (Vdfior)2. In this case it is necessary to substi- 
tute the unperturbed energies EEL = h:(N + 1/2), in the 
denominator of (12), and the first-approximation wave func- 
tions (l3a) in the numerator. Using (l3b), we obtain 

JT7(r,) ?Ir(r :)  
= J d r ,  ~ I . ~ A ,  ( r l .  r ? ) ~ ,  ( r l ,  r ? )  -- 

a y ,  9 , ~ -  
. (14) 

The quantities A,(r,, r,) can be calculated in explicit form, 
and it can be verified that products of the type 
A z(r , ,  r,)A,. (r,, r2) are real. The second-order contribution 
to S a ,  vanishes even before the averaging over the random 
potential V(r). To calculate the third-order correction we 
must use the second-approximation wave function and the 
first-approximation eigenvalues E !& [Eq. (13a)l. The use of 
relations such as (14) makes it unnecessary to calculate 
~ , , , ~ ~ , ( a )  and E $; explicitly. Rigorous but unwieldy calcula- 
tions show that the third-order contribution to Sax, is also 
zero. 

We estimate the contribution of fourth order to Sax, for 
the case when the potential of an individual impurity is of the 
form V(r) = Vo exp ( - r2/d * )  . It can be shown that in the 
limit A(d, in the lowest order in the small parameter 
noxA 2 <  1, a typical value of the correction is of the order of 

Thus, if the correction Sax, is not zero, it is small enough to 
account for the experimental data of Ref. 3. 
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