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A theory of atomic diffusion in a crystal lattice is developed within the framework of the one- 
dimensional model with allowance made consistently for the correlation in the distribution of the 
diffusing particles. Exact solutions to the infinite system of equations determining the probabili- 
ties for specific distributions under equilibrium conditions are presented. The properties of the 
equilibrium system are extended to macroscopically inhomogeneous particle distributions, there- 
by determining the space-time evolution of these distributions. Expressions are found for the 
diffusion coefficients for an arbitrary strength of the interaction between the atoms and arbitrary 
population levels at the lattice sites. It is established that, if the diffusing particles attract each 
other, then the macroscopic mobility of the ensemble decreases faster than the individual particle 
mobilities as the temperature is lowered. 

PACS numbers: 66.30.Dn 

1. INTRODUCTION 

The concept of diffusion is used to describe the trans- 
port of atomic particles in crystals at most (excluding ex- 
tremely low) temperatures.I4 The fruitfulness of this ap- 
proach has been demonstrated by numerous investigations. 
But under certain conditions-correlation of the successive 
hops, strong inhomogeneity, reciprocal influence of the mi- 
grating particles-the applicability of the diffusion descrip- 
tion is not obvious. The ideas of the random-walk 
which are extremely useful for the justification of the theory 
of diffusion, need to be modified before they can be applied 
to such conditions. Extensive work has been done on the 
description of diffusion under conditions when the popula- 
tion levels at the allowed positions (lattice sites, interstices- 
hereinafter "sites") are high and when the interaction 
between the atoms has to be taken into account. Neverthe- 
less, the role of the interaction between the diffusing parti- 
cles is one of the incompletely elucidated points of the theory 
of atomic diffusion. This is primarily due to the fact that, in 
the published papers, the correlation that arises in the distri- 
bution of the diffusing atoms as a result of their interaction is 
either not taken into consideration at all, or is introduced 
approximately. Below, in application to a model structure, 
we construct a theory of atomic migration, that takes ac- 
count of the correlation effects exactly, and can be used in 
the case of arbitrary population levels at the sites. 

The behavior of the system of particles is described by 
the equations 

uniquely determines the probabilities v(N) of the exchanges 
that destroy the configuration M; t denotes the time. 

The system of Eqs. (1) is an infinite set of equations, that 
is similar to Bogolyubov's chain of equation^.'-^ It is of inter- 
est to consider those variants of the Eqs. (1) for which the 
analysis can be carried through. Such is the case of heterodif- 
fusion in a one-dimensional chain in which the atoms at 
neighboring sites interact with each other. Besides its model 
import, the one-dimensional case also corresponds to specif- 
ic conditions that sometimes obtain during the deposition of 
monatomic layers on a crystal surface. Thus, it has been es- 
tablished'' that one-dimensional linear chains of atoms and 
identical interatomic "corridors" form during the condensa- 
tion of potassium on the [I121 face of tungsten. This circum- 
stance allows us to neglect the interaction of the chains," 
and consider the diffusion on the surface to be one-dimen- 
sional. 

2. EXACT SOLUTIONS 

The one-dimensional form of the Eqs. (1) is as follows: 

> ,  

Here M denotes any configuration of the particles on 
some finite set of sites and q, is the probability for this config- In the Eqs. (2) the order of the numbers in a subscript 
uration. The summation in the first terms is over the N'  dif- corresponds to the sequence of occupied and unoccupied 
ferent configurations (for the most part on a broader set of sites; e, is the probability for the corresponding sequence; 
sites) that produce the configuration M as a result of one hop, and an argument indicates the number of the central-for 
and uniquely determine the probability v(N ') per unit time of the chosen configuration-lattice site or interstice. It is as- 
this hop, while the summation in the second term is over a set sumed that the equations have been written in dimensionless 
of N configurations that includes the configuration M, and form, so that v is the ratio of the probability for a hop of a 

@L ( 1 1 )  = v(p110 ( t l  - I) 7 Vql011(1~ 1) 1 qot,, (12  - 1) 
1 -  yolo ( 1 1  1) - vqol l  (n )  - v(pl10 ( I L )  - 2q010 ( r ~ ) ,  

irll ( I L  l j ~ )  = "(~1101 (77 - '12) v(rl011 ( n  - ' 1 2 )  

- (bolo1 (11 - ' 1 2 )  

+ Wlol0 ( 1 2  t 31z) - V W O ~ ~  ( t ~ )  - v ~ l 1 0  (12 + I), 
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particle having neighbors to the probability for a hop of an 
isolated particle; the case v < 1 corresponds to attraction 
between the migrating particles (v = 0 corresponds to un- 
breakable interconnection of the particles); I , >  1, to repul- 
sion. 

Notice that the system of Eqs. (2) is not a "chain," i.e., a 
one-dimensional sequence. The equations constitute a se- 
quence of layers corresponding to the chosen number p of 
sites with 2P equations in a layer for each value of n. 

Let us write down then- and t-independent solutions to 
the Eqs. (2), i.e., the solutions specifying the equilibrium of 
the system. Detailed balance is guaranteed in the system if, 
for any pair of configurations that are transformed into each 
other by one hop, the probabilities per unit time for these 
hops are equal. This requirement is satisfied if the probabil- 
ity for an arbitrary configuration a ,  ... a, (m>3) can be ex- 
pressed in terms of the probabilities for its constituent two- 
site configurations as follows: 

under the condition that 

q o l Z = q i o Z = ~ v o a q i i .  

The equalities (3)  are reminscent of the Kirkwood ap- 
proximation, but do not coincide with it, and, what is most 
important, as will be seen below, they turn out to be exact. 
Notice further that the equalities (3) automatically guaran- 
tee the satisfaction of the obvious homologies 

TMO+TM :=TN, 

where M denotes an arbitrary sequence of occupied and un- 
occupied sites. 

The equation determining the evolution of the arrange- 
ment M 101 has the form 

where go(p ) is some set of expressions corresponding to the 
appearance and decompositions of the configuraiton M 101 
by all possible migrations within the limits of the section M, 
i.e. migrations that do not affect the section consisting of the 
three sites 101. 

The corresponding equation for the configuration ob- 
tained by adding one occupied site to M 101 is as follows: 

@Nliili=gl ((F) ~ T ~ - \ I ~ O I O I I ~ ~ F ~ I ~ O I O ~ O  

+vq~lllol-Tq.vloll--~(FJllollo~ 

where g,(e,) is a set of terms similar in meaning to go, i.e., 
corresponding to migrations within the limits of the block 
M. 

Let the substitution of the expressions (3) into the right 
members of the equalities (5) and (6) make &,,,, vanish. 
Then Eq. (6) with 

g 1 ( v )  ' a " L ( ( c )  ( ( F I I / ( F I ) ,  

assumes the form 
( p - 1 1  I ~ ~ ( $ I I / ~ I )  ( ~ ~ ~ ~ l ~ i ~ ~ ~ ~ - ~ ~ o ~ ~ - \ ~ ~ r ~ n ~ ~ l - ~ ~ r ~  1  

- \ q \ r l ~ . ) f \ ' F v  I I I - : F ~ ~  I O . U - \ ~ & V  I . 

which reduces to the form 

Taking into consideration the fact that 

and carrying out obvious transformations of the expression 
(7), we obtain 
q z r l o l l = ~ ( ~ . \ I l , , ~ ' F ' ~ ~ l )  ( ( C l r i * + . ) ~ L l , l O - ~ l ~ ' ~ L ' )  ( ~ l " ' - \ . ( r l l ( F l i , ' ) .  

Thus, = O  when the condition (4) is fulfilled, 
which proves that, if the relations (3) and (4) give the steady- 
state solution of the equation forp, ,,, , then they also deter- 
mine the equilibrium conditions for the arrangement with 
one more occupied site. Using similar constructions, we can 
show that this assertion is valid for all the eight variants 
obtained by varying the populations of the three end sites 
(M000,M001,M010, M 100,M011, M 110, M 101, M 11 l),  
and lengthened by the addition of occupied or empty sites. 
And since the equalities (3) and (4) guarantee the vanishing of 
the time derivatives for the single-site (p,, p,), two-site (p,,, 
POI, a l l ) ,  and three-site (cpmO, PWI, ~POIO,  pllo9 plol9 P I I ~ )  
arrangements, these relations give the exact steady-state so- 
lution of the infinite set of Eqs. (2). 

3. CHARACTERISTICS OF THE EQUILIBRIUM 
DISTRIBUTIONS 

Taking the homologies (8) into account, we write the 
relation (4) in the form 

from which we obtain the following explicit relation between 

For v = 1, i.e., in the absence of interaction, 
c p l l = c p 1 2 ,  (10) 

as it should be. 
For a weak interaction, i.e., for 1 1 - vl( 1, the formula 

(9) yields the relation 
(FII=(F~~+(I-~)(F,~(I-(F~)~. (11) 

The second term in (1  1 ), which characterizes the scale of 
the deviation of the distribution from the equilibrium distri- 
bution (lo), has its maximum value at p, = 4, and its relative 
contribution increases as the mean density decreases. 

In the case of strong repulsion (v) 1) 

1 s.'/v (1-2CP,), 
I =  1 11217, ( F ~ = ' / ~ ;  (12a) 

2cpl-l+(l-(pl)z/v(2(Fl-1), ( F ~ > ~ / Z ;  
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In the limit as v-t  w either of the quantities p, , and p,,, 
(12), goes to zero, depending on which is greater, the number 
of sites or the doubled number of particles. The case p, = 4 
then corresponds to the ordered disposition of the particles 
("crystallization" of the diffusing component). 

In the case of strong attraction 

It follows from the formulas (1 3) that here the migrating 
particles or the empty sites have a tendency to form long 
chains (complexes), a fact which corresponds to the small- 
ness of the quantities pol and plo and, consequently, the 
quantities polo and qlo,,  which determine the probablity for 
the isolation of an atom or an empty site. 

The formulas (3) and (4) allow us to find the characteris- 
tic lengths of the particle and unoccupied-site chains. Thus, 
the probability for the formation of a chain of N atoms is 

The mean chain lengthw, the most probable length N *, 
and the variance D are given by the formulas 

The quantities q ,  and p, , in these relations are connect- 
ed by the relation (9). 

The formulas (14) give 

4. SPATIALLY-HOMOGENEOUS NONSTATIONARY 
PROCESSES 

The exact solutions given above for the equilibrium 
state can be used as a basis for the search for various approxi- 
mate relations for the nonequilibrium regimes. Such, in par- 
ticular, is the process of redistribution of the atoms in the 
structure at a fixed mean concentration p,. This process cor- 
responds to those reconstructions of the structure of an en- 
semble of atoms which lead to the appearance of local-equi- 
librium distributions corresponding to the local level p,, and 
can be regarded as the first stage of the general process of 
migration of interacting atoms. 

It is clear from (2) that 6, is zero for any spatially-homo- 
geneous, symmetric-with respect to a change in direc- 
tion-three-site functions. The situation is somewhat differ- 
ent with respect to the multisite probabilities. Their 
determination in the nonstationary regime requires uncou- 
pling approximations. The advantage of the representation 
(3)  in application to the nonstationary problem lies in the fact 
that this form corresponds exactly to both equilibrium dis- 
tributions and the particularly nonequilibrium, uncorrelat- 
ed distributions that play the role of the initial state. For 
example, 

c p l l o l = c p 1 l 9 l o c p o i ~ u p l . c p o = ( ( P 1 2 )  ((pi(~0) ( ( p o ( p I ) / q l ( p l l = ~ i 3 ( l - c p l ) .  

Using (3), we obtain for the function pl  , the equation 

If = p: at the instant t = 0, then (15) describes the 
interaction-induced variation of q,, provided the diffusing- 
particle distribution was independent at zero time. This var- 
iant corresponds, for example, to diffusion of atoms in a sam- 
ple that has been subjected to heating followed by rapid 
cooling. The relative probabilities Y are proportional to 

exp {- ( U,-LTo) / k T ) ,  

where U, is the potential barrier for the jumps of an atom 
having a neighbor at the nearest site and U, is the corre- 
sponding barrier for an isolated atom. Thus, regardless of 
the values of U, and U,, as T- W ,  the coefficient Y tends to 
unity, at which value we have, according to (9) and (lo), 
q1  = p: . But if we rapidly cool the sample, then the devi- 
ation of v from unity increases sharply, and this leads to the 
redistribution of the atoms in accordance with Eq. (15). In all 
the cases the quantity p l l  tends asymptotically to the vlaue 
given by the formula (9). In particular, if U ,  > Uo, then, for 
sufficiently low temperatures, v 4  and p, , + p,. In the lim- 
it v-0, Eq. (15) gives 

2 t -'!. 
c p l l ( 1 )  =pi- [TI--cpl21 C1+4(yI-(~l ) I . 

From this it follows that the duration of the process of form- 
ing a local-equilibrium distribution is of the order of 

Let us note that the increase of p,, at a fixed value of the 
mean density p, corresponds to a situation in which the uni- 
form distribution of the atoms is unstble, and can be inter- 
preted as upward diffusion, leading to the increase in time of 
the local particle-density inhomogeneity. 

5. MACROSCOPIC MIGRATION 

The formation of local-equilibrium states is the first 
stage of the process of particle migration. The second stage is 
the smoothing out of the macroscopic inhomogeneities. This 
stage is characterized by the following relation between the 
characteristic linear dimensions: the correlation length is 
large compared to the lattice spacing and small compared to 
the characteristic variation length for the mean density p,. 
The assumption that p, varies slowly in space makes the 
continuous formulation of the kinetic equation for p,, (2), 
expedient. We obtain in this case the equation 

where 

p, , being given in terms of pl  by (9). 
The quantity /1 is always positive, on account of which 

the stage in question has the character of macroscopic-den- 
sity equalization. The quantity 1-1 as v-1, p , 4  and 
2-Y as ql-+l. The last case clearly describes vacancy mi- 
gration in the diffusing component. These asymptotic prop- 
erties of the solution to Eq. (17) agree with the predictions of 
the theories that use the "method of mean energies" or other 
simplifying arguments. On the other hand, the formula (18) 
has some characteristics that qualitatively distinguish it 
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from the corresponding relations obtained on the basis of 
averaging or approximation procedures. 

As can be verified, the function A (p,) for fixed v has an 
extremal point in the region 0.5 <pi < 1, with the case v > 1 
corresponding to a maximum and the case v < 1, to a mini- 
mum. In other words, when Y > 1, we have Amax > v and 
Amin = 1, while when v < 1 we have Amax = 1 and Amin < Y 

The presence of a sufficiently high peak in the2 (p,) curve at 
v> 1 will, for high population levels, lead to the decrease of 
the macroscopic-concentration gradients in the vicinity of 
this value of p , .  Thus, the density range adjoining the indi- 
cated value turns out to be preferable. 

If p , ( l ,  v)l, then the coefficient A is given by 

i.e., does not depend on v. This circumstance should be relat- 
ed to the fact that, under conditions of relatively strong re- 
pulsion and low mean population level, the diffusing atoms 
are not, as a rule, in close proximity, which leads to the effec- 
tive annihilation of their short-range interaction. The 
growth of p, at v) 1 entails the growth of A and the relation 
A z 2 v  for p, = 4. The position of the maximum of A ap- 
proaches the point p, = 4 as v increases. But if p,+l, then 

In the parameter range where the diffusing particles ex- 
hibit a strongly pronounced tendency to stick together, i.e., 
for v( 1, we have 

It follows from the formula (21) that, in the entire range 
of variation of p,,  with the exception of narrow regions 
around p, = 0 and p, = 1, 

h<V. 

Since R is the ratio of the diffusion coefficient at the density 
in question to the value of the coefficient for a negligibly 
small density, attraction between the atoms leads to the de- 
crease in almost the entire density (p,) range of the diffusion 
coefficient down to significantly lower values than even in 
the case when the allowed positions are practically fully pop- 
ulated. In other words, the macroscopic deceleration pro- 
ceeds significantly faster at low temperatures that the de- 
crease of the microscopic mobility. Thus, the correlation in 
the distribution of the diffusing atoms leads to the effective 
macroscopic freezing of the entire ensemble of particles sub- 
ject to migrations when their individual mobilities are con- 
served. 

It can be seen that the dynamics of the variation of the 
macro-distributions in the case v( 1 is such that the smooth- 
ing out in the region of low densities proceeds faster than the 
disintegration of denser condensations. If, on the other 
hand, v) 1, then the opposite tendencies obtain, so that the 
substantial macrocondensations disappear relatively rapid- 
ly, after which a slower process of "almost linear" diffusion 
develops. 

It is advisable to note that, in all the above-presented 
particular cases, e.g., (19)-(21), etc., the v dependence o f 1  is 
a power dependence, i.e., the logarithm of the diffusion coef- 
ficient is proportional to T - I .  But the coefficient of propor- 
tionality has different values in different region of p,, as a 
result of which substantial deviations from the Arrhenius 
law should be expected in the case when the interaction 
between the atoms is not negligible, and, furthermore, the 
relative scale of these deviations should increase with de- 
creasing temperature. The fact that deviations from the Arr- 
henius law are often not observed in experiment should be 
accounted for in part by the fact that the cases usually stu- 
died are the ones in which the diffusion coefficients are fairly 
large, a situation which corresponds to the case of high tem- 
peratures. As T increases, the probability v-1, which re- 
sults in the loss of the effects determined by the correlation. 

Equation (17) determines together with the expression 
(18) the time scale for the development of the diffusion pro- 
cess. A comparison of this quantity with the characteristic 
local-equilibrium-establishment time, e.g., (16), yields the 
conditions for the admissibility of the division of the migra- 
tion process into two stages. For the case v(1, to which 
corresponds the formula (16), we obtain 

where L is the characteristic macroscopic-inhomogeneity 
length, expressed as a number of lattice spacings. It can be 
seen that the condition (22) practically does not impose limi- 
tations, and can be violated only at extremely low p, values, 
when the approach to the local-equilibrium states is a ma- 
croscopically long process. 
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