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An explanation is proposed of the experiments of Tsui et al. [Sol. St. Commun. 35,875 (1980)l and 
Hopfel et al. [Surf. Sci. 113, 11 8 (1982)], in which electromagnetic radiation was observed corre- 
sponding to radiative decay of two-dimensional plasmon in metal-insulator-semiconductor (MIS) 
structures based on silicon or in GaAs-GaA1As heterojunctions. Bremsstrahlung of plasma 
waves by electrons scattered by charged and neutral impurities, as well as by deformation and 
piezoacoustic phonons, is suggested as the physical mechanism of the effect. 

PACS numbers: 71.45.Gm, 73.40.Lq, 73.40.Q~ 

1. INTRODUCTION 

Electromagnetic radiation corresponding to radiative 
decay of two-dimensional plasmon in metal-insulator-semi- 
conductor (MIS) structures based on silicon and in GaAs- 
GaAlAs heterojunction was observed in recent experi- 
ments.'.* The radiation appears when a constant electric 
field is applied and causes the electrons to drift at a velocity 
v, of the order of (1-4) X lo5 cm/sec. This radiation is char- 
acterized by a strong anisotropy: the maximum of the radi- 
ation corresponding to drift directed along the axis of the 
periodic electrode system that sets the momentum k of the 
two-dimensional plasmon and ensures a coupling between 
the plasma and electromagnetic oscillations. The radiation 
frequency does not depend on the applied field and is deter- 
mined, in accordance with the plasmon dispersion law, by 
the momentum k and by the surface charge density N,. The 
effect can therefore not be attributed to the onset of transi- 
tion radiation when the charge moves near the lattice of me- 
tallic electrodes. On the other hand, the attained drift veloc- 
ities are much lower than the phase velocity of the eenerated 
plasmons (w- lOI3 sec-I, k- lo4 cm-I), so that Cerenkov 
emission of plasma waves is likewise impossible. The ques- 
tion of the physical nature of the effect and of its quantitative 
description thus remains open. 

In this article we propose for the observed effect a the- 
ory that corresponds, in our opinion, to the experiment at 
least when it comes to the dependences of the radiation in- 
tensity on the direction and magnitude of the drawing field. 

We assume that the physical mechanism of the effect is 
bremsstrahlung of plasma waves by electrons. Plasmon 
emission and absorption are allowed, irrespective of the elec- 
tron velocity, if they are accompanied by electron scattering 
from impurities, phonons, etc. These bremsstrahlung effects 
produce a plasmon gas described in the thermodynamic 
equilibrium state by a Planck distribution function no(w). 
The radiative decay of the equilibrium plasmons contributes 
to the background ("black") radiation. The electron drift 
upsets the equilibrium of the plasmon subsystem. If the non- 
equilibrium distribution function of the plasmons is such 
that n, >no in the mode "followed" by the experiment," an 
excess of electromagnetic radiation is observed at the fre- 
quency w(k). Its intensity is obviously proportional to 

Sn, = n, - no. The ,problem is thus reduced to calculation 
of the nonequilibrium distribution function of the plasmons. 

2. BASIC EQUATIONS 

The plasma oscillations of electrons located in thez = 0 
plane are described by the equations 

~ ~ = - 4 n e f l ,  (p) 6 (2 )  , R.=-N. div R (p) , (1) 

where R(p) is the particle-displacement vector and q, is the 
electrostatic potential. We expand all quantities in Fourier 
series and introduce in standard fashion the normal coordi- 
nates Q, : 

The Fourier component of the potential in thez = 0 plane is 
then 

rp,=-2niN,e (kQr)/k, 

and the Hamiltonian of the free plasmon field is 

1 P k P - k  
tc = - {- + ma2 ( k )  N . Q ~ Q - ~ } .  

2 mN.  
k 

where wZ = 2re2N,k /m, m is the electron mass, and P, is 
the momentum operator. The interaction of the electrons 
with the plasmons is described by the operator 

As already mentioned, first-order processes are forbidden by 
the energy-momentum conservation laws, so that it is neces- 
sary to take into account in the transport equation fot the 
function n, plasmon creation and annihilation processes de- 
scribed by k,,, , with simultaneous scattering of the electrons 
by impurities or by phonons. We denote by W (  p, p', k) the 
probability ofa process in which the transition ofan electron 
from a state p into p' is accompanied by creation of a plas- 
mon having a momentum k. 

We write down the transport equation for n,: 
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Heref, is the electron-momentum distribution function. 
In the experiments of Refs. 1 and 2 the crystal lattice 

was at helium temperature, and the electron gas heated up 
substantially. It is known from Ref. 3 that at the drawing 
fields used in Refs. 1 and 2 (10-30 V/cm) the temperature of 
the two-dimensional electrons in the Si-SiO, system is of the 
order of 10-20 K at a Fermi energy of the order of EF- 100 
K. It is perfectly evident, however, that heating effects alone 
cannot explain the observed radiation, for in this case its 
intensity would not depend on the angle between the elec- 
tron drift velocity and the plasmon momentum. Therefore, 
without determining here the true form of the electron distri- 
bution function, we substitute in (4) a function f ,  that de- 
scribed a drift with specified velocity v,. We then obtain n, 
from the stationarity conditions. The simplest procedure is 
to put f, = f,(pp,), where f, is the equilibrium distribution 
function with a temperature T that is generally speaking dif- 
ferent from the lattice temperature. 

We note that in principle the plasma oscillations can be 
excited by another mechanism connected with instability de- 
velopment. The instability sets in if the coefficient of n, in 
the right-hand side of Eq. (4) becomes positive. We shall 
show below that this possibility is realized at drift velocities 
much higher than in the experiments of Refs. 1 and 2, and 
can therefore have no bearing on the effect observed. 

3. IMPURITY SCATTERING 

We begin with calculation of W( p, p', k) in the lowest 
Born approximation in the electron-impurity interaction. 
Within the framework of standard perturbation theory, ac- 
count must be taken of two processes, in which the plasmon 
emission either precedes or follows the scattering by the im- 
purity. We obtain for the probability W averaged over the 
impurity locations 

where U (p) is the Fourier component of the impurity poten- 
tial and Ni is the impurity density. We simplify (5) by neg- 
lecting k in the argument of U (p - p'), as well as thq terms 
kp/m compared with w(k ). The validity of these simplifica- 
tions follows from the condition for the existence of weakly 
damped plasma waves. We have 

It follows from the energy conservation law that at 
T = 0 the plasmon frequency cannot exceed 2v0kF, where k, 
is the Fermi wave number. Estimates show that 
w/2k,vo- 3 - 4, in the experiments of Refs. 1 and 2, i.e., the 
radiation is due only to thermal smearing of the Fermi distri- 
bution. We consider first the region k,v,<w, T. The distri- 
bution function fo(p - p,) should be expanded in this case in 
powers of p,. Obviously, when Eq. (6) is used for the transi- 
tion probability, all the odd terms of this expansion vanish. 
A contribution linear in p, would appear if corrections of 

order kp/mo were retained in Eq. (5). The corresponding 
increment to n, is obviously proportional to (kwp,) and can- 
not contribute to the observed radiation, since the total num- 
ber of plasmons with specified frequency w(k) does not 
change. 

We obtain the stationary solution of Eq. (4) by substitut- 
ing W( p, p', k) from (5), and& andf,. in the form of expan- 
sions up to terms of orderp: inclusive. It is easy to verify that 
for any isotropic impurity potential (i.e., U(  p - p') depends 
only on the angle between p and p') the plasmon stationary 
distribution function is of the form 

nr=no (o) +const . p o 2  (COS' a+ (7)  

where a is the angle between the vector k and the drift veloc- 
ity. The actual value of the constant in (7) depends on the 
form of the potential and on the relations between T, w, and 
EF. In the Boltzmann case, when it is natural to assume also 
that w<T, scattering by short-range impurities and two-di- 
mensional Rutherford scattering lead to the same result 

It can be shown that for scattering by short-range impurities 
Eq. (8) is valid in a larger region, namely Pt (mT '/a. For 
degenerate electrons scattered by charged impurities we 
have 

For short-range impurity centers the results differ from (9a) 
and (9b) by a coefficient 3/2. 

We consider now a region in which k,v,/T is arbitrary, 
but in accord with the experimental conditions we have 
k,u,(w, T<o(E,, to calculate the integrals in (4) it is con- 
venient to transform to the variables q = p - p,, q' = p' 
- p,. In the (q2. q'2) plane the effective integration region is 

then a strip of width 4 p ~ ,  and length 23'2mw (see Fig. 1). 
The following approximations are valid in this region: 

f o  (9) -fo (q') =-I, 

FIG. 1. 
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The calculations lead to the following results: 
for short-range impurities 
e-"lT { I O ~ ( Y ) + I ~ ~ ( Y )  +COS 2 a r J o ( ~ )  J ? ( Y ) + J ~ ~ ( Y ) ] ) ,  (108) 

for Coulomb centers 
IZt=e-m/T { [oz (y )+cos  2 a l i " ~ ) ) ,  ( lob) 

where y = uopF/T and I,,,,, are Bessel functions of imagi- 
nary argument. 

At y(l Eqs. 10(a) and 10(b) go over into the earlier 
results for low drift velocities. If, however, y>l ,  then 

A = 2 in the case [lQ(a)] and A = 1 for [10(b)]. Thus, with 
increasing drift velocity the anisotropy of the effect become 
stronger (the factor cos2a in place of cos2a + 1/2). We note 
in this connection that in the experiment of Ref. 1 the effect 
has a large anisotropy and the parameter y, insofar as can be 
estimated from the author's data, is of theorder of unity. We 
present the value of the anisotropy parameter 11, defined as 
the ratio of the radiation intensity at kllv, to the analogous 
quantity at klv,, for scattering by Coulomb centers 

The temperature dependence of n,, as expected, is activa- 
tion-governed in the region o) T, with an activation energy 
equal to the excess of the energy of the emitted plasmons 
above the threshold value 2k,u0. 

If both types of scattering are simultaneously present, it 
is obvious as a result of the random distribution of the impur- 
ities that the total probability Wis made up additively of the 
quantities W, and W,, , which describe respectively the con- 
tributions of the Coulomb and neutral centers. In the ab- 
sence of degeneracy and at drift velocities much lower than 
thermal, we again obtain Eq. (8) for Sn, this being obvious 
beforehand, since both types of impurity give the same result 
in this case. The situation is more complicated for degener- 
ate electrons. We denote by R the ratio of the integrated 
probabilities of plasmon emission in scattering by two types 
of impurity: 

At low drift velocity (in the sense of y(1) we have then 
1+3/2fi 

rtr-ne = ---- 6n. 
1+R 

where Sn is taken from (9a) or (9b), depending on the ratio of 
w and T. If, however, y )  1, then 

c o s k  1+2R 
nk=- , exp ((2kavo-a) /T) 

ny 1 I+R 

[see (1 I)]. Thus, in both limiting cases the dependences of n, 
on a and v, remain the same as before, and all that depends 
on R is the total radiation intensity. At arbitrary y the for- 
mula obtained is more cumbersome, but the minimum of the 
effect corresponds as before to a = a/2, while the maximum 
is reached at a = 0 and a = a .  

4. SCATTERING BY PHONONS 

Under the experimental conditions (lattice tempera- 
tures 4 K, electron temperature not higher than 10-20 K) we 
can neglect electron scatxering by optical phonons. It suf- 
fices to consider interaction with acoustic phonons via the 
deformation potential, and in the case of GaAs also via the 
piezoeffect. It can be easily seen that owing to the low sound 
speed s(vFgo/k, the electrons lose energy mainly on plas- 
mons and momentum on ghonons, i.e., Ip - p'l -o/uF -9, 
where q is the phonon momentum, sq-sw/v,(w. We can 
therefore neglect the plasmon momentum k a i d  the phonon 
energy sq in the 6-functions that express the energy and mo- 
mentum conservation laura In the transport equation for n k  
we must now take into amount contributions of four pro- 
cesses, creation and annihilationof a plasmon accompanied 
by emission or absorption of a phonon. Taking the foregoing 
into account, we obtain for the total probability s f  the pro- 
cess p+~' ,  k: 

Hereg(q) is the electron-phonon interaction constant and N, 
is the distribution function of the phononts and can be re- 
garded as close to equilibrium, at least if the electron drift is 
slower than the longitudinal sound (8 X lo5 cm/sec in Si and 
5 X lo5 cm/sec in GaAs). In the essential region of q, the 
phonon energy can be easily estimated to be much lower 
than the lattice temperature TL, i.e., we can put 
N, =: TL /sq) I .  Substituting in (12) the corresponding ex- 
pressions forg(q) we find that W- [ k x  (p - p")I2 for interac- 
tion via the deformation potential and 
W-[kx (p - P')]~(P - P ' ) - ~  for the piezoelectric coupling. 
The former case reduces to scattering by short-range impuri- 
ties, and the latter to two-dimensional Rutherford scatter- 
ing. Therefore the interaction with the phonons does not call 
for a separate treatment. 

5. EXACT ALLOWANCE FOR COULOMB SCATTERING 

The wave function that describes scattering by a Cou- 
lomb center in the takes in the two-dimensional case the 
form (see Ref. 4). 

(13) 

where @ is a confluent hypergeometric function. The Born 
approximation considered above corresponds to the limit 
me2/p(l, @z 1. The matrix element M(p, p', k) that de- 
scribes plasmon emission can be calculated in the dipole ap- 
proximation (k.p(l), as in nonrelativistic bremsstrahlung 
theory, since the electron velocity is much lower than the 
plasmon phase velocity. We shall not present here the rather 
long calcuIations, which are perfectly analogous to the 
aforementioned problem of bremsstrahlung of an electron in 
a nucleus (see Ref. 5, 4 90). The result is 
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IM(p, p', k )  l Z = l ( p ' ,  k I k p l p ) l z  
e s p { - 2 n m e 2 / p }  

( p - p ' )  ' ( p 2 - p ' 2 )  'ch ( n m e 2 / p )  ch ( n m e 2 / p ' )  

Here F ( Z  )=F (ime2/p, ime2/p'; 1/2; Z ) is a complete hyper- 
geometric function and Z = 2 (pp' - ppl)@ - PI)-'. 

We consider only the case w<p$/m, for which a simple 
result can be obtained. We note that -0.1 - 0.2. in 
the experiments of Refs. 1 and 2. Putting p z p '  
zp,, p -p f zmo/pF  in (14) and using the asymptotic ex- 
pansion of F (Z )> 1, we obtain for the probability W 

W (p, p', k )  = WnC - (3 

where Wo is the Born probability of the process and 
C(me2/pF) stands for all the factors in (14) that do not de- 
pend on the directions of the vectors p, p', and k. Thus, in the 
approximation considered the exact probability differs only 
by a logarithmic factor from the perturbation-theory result. 
At a low drift velocity (y(l), as already stated, any probabil- 
ity of the form WJ(cos<)pp') leads to a relation 
Sn, -pi(cos2a + 1/2). At y s l  (and as before w>T), the ra- 
tio n,/no is exponentially large. The main contribution to n, 
is made by the region of direction over the directions of p and 
p', a region in which cos<kp--, 1, cos<kpl--, - 1. We can 
therefore put in (15) cosQpp' = - 1, after which we obtain 
again Eq. 10(b). 

6. POSSIBILITY OF INSTABILITY DEVELOPMENT 

We have so far taken into account in the transport equa- 
tion (4) only the electronic plasmon-relaxation mechanism. 
In a real situation there are also other mechanisms, one of 
which is the observable radiative decay. If all the "non-elec- 
tronic" relaxation processes are described by a phenomeno- 
logical time T, it is necessary to add to the right-hand side of 
(4) a term (no - n)/r. We then easily obtain for Sn, 

R is positive in all the cases considered above. If the electron 
gas is degenerate, R does not depend on either the magnitude 

or the velocity of the drift in the region kFvo<w, that is most 
important for the experiment. All the derived relations re- 
main therefore in force, and only the absolute value of Sn, 
decreases. 

Instability sets in at R < - 1 / ~ .  It turns out that for the 
model considered by us, in which we assume f, = fo(p - p,), 
the onset of instability depends significantly on the electron- 
scattering mechanism. This is easiest to verify with a nonde- 
generate electron gas as the example. We calculate the first 
term in the right-hand side of (4) without assumingp, to be 
small. It turns out that for short-range impurities we have 
R > 0 at all drift velocities, i.e., no instability sets in. 

In scattering by charged impurities we have 

It is easy to verify that in the region w/Tg 1, P (o/T)"'gl 
reversal of the sign of R takes place whenP is the root of the 
equation 

cos 2a ( eR ' -P2-1 )  =p2. (18) 

Thus, instability is possible in the sectors O<a<rr/4 and 3a/ 
4<a<.ir, i f P > P  ,,,. A t a = O  we haveP,,,z1.26, which 
does not contradict the condition 0 (w/T)'"g 1. 

In the case of degenerate electrons, the calculations be- 
come much more cumbersome, but it can be stated that there 
is no instability up to drift velocities of the order of the elec- 
tron Fermi velocity. For short-range centers and at T = 0 it 
is possible to calculate R for any ratio of p, pF and mw, by 
assuming only that the conditions pogpF and mo<p$ are 
satisfied. It turns out that R > 0 in the entire indicated re- 
gion, i.e., no instability can develop. 

"The periodic system of the electrodes serves as a resonator that separates 
momenta k = f 2/1, where 1 is the period of the structure. 
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