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A diagram technique is constructed for the calculation of the Green's functions of a macroscopic 
nonequilibrium system with allowance for correlations. The theory is free of secular divergences 
and permits a complete description of the relaxation to the equilibrium state. A system of trans- 
port equations for the long-lived correlators is derived and describes the influence of the fluctu- 
ations on the system relaxation. An equation for the pair correlation function of a rarefied gas is 
obtained and contains in addition to the known terms also others that can play a substantial role in 
the hydrodynamic stage. 
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81. INTRODUCTION 

Problems in physical kinetics can be naturally divided 
into two classes. The first is connected with finding the con- 
strained solutions describing the response to an external 
field that can be directly included in the Hamiltonian of the 
system. Abrikosov, Gor'kov, and Dzyalo~hinskii,~ Frad- 
kin,2 Konstantinov and P ~ e l ' , ~  and Dzyaloshinskii4 have 
developed in their papers a diagram technique that makes it 
possible to calculate in the linear approximation the re- 
sponse in the external field. Keldysh5, Gor'kov and Eliash- 
berg,' and Kadanoff and Baym7 have constructed a diagram 
technique for the description of essentially nonequilibrium 
states that evolve from the equilibrium state as a result of 
adiabatic application of a strong external field. 

The second class of problems is connected with the de- 
termination of the relaxation of an arbitrarily specified (at 
the initial instant of time) nonequilibrium density matrix of 
the system to the equilibrium state in the absence of external 
field. In this case, the initial state of the system is described 
by a set of correlation functions (correlators) of all orders, as 
a result of which Wick's theorem cannot be used and there is 
no conventional diagram technique. Fujita8 and Prigogine9 
have constructed a diagram technique that makes it possible 
to develop a perturbation theory directly for the multiparti- 
cle density matrix of a system satisfying the Liouville equa- 
tion. Unfortunately, this technique differs substantially 
from the Feynman technique and is very complicated, since 
it does not make use of the second-quantization formalism to 
take into account the symmetry of the density matrix with 
respect to permutation of the particle coordinates. 

A diagram technique with allowance for the initial cor- 
relations, which generalizes the Keldysh technique, was for- 
mulated in the papers by Hall.'O.LL This diagram technique, 
however, is not suitable for long times of the order of the 
relaxation time, and consequently does not describe the re- 
laxation of the system to the equilibrium state. 

In the present paper, on the basis of the approach pro- 
posed by Hall, we develop a diagram technique free of secu- 
lar divergences, which makes it possible to describe comple- 
tely the relaxation of a macroscopic system to the 
equilibrium state. A system of kinetic equations is obtained 
for the correlation functions. An equation is derived for the 

pair correlation function. An equation for the pair correla- 
tion function in a rarefied gas was first obtained by Kadomt- 
sev." An analogous approach to the theory of fluctuation 
was developed in the work by Gor'kov, and Dzyaloshinskii 
and Pitaevskii. l 3  Kogan and Shul'man,I4 Gantsevich, Gure- 
vich, and Kat i lyu~, '~  and Klimontovichl' have shown that 
in the nonequilibrium cases it is necessary to take into ac- 
count an additional fluctuation source. The equation ob- 
tained by us for the two-particle correlator contains the ad- 
ditional terms that influence the temporal evolution of the 
fluctuations. 

In $2 we introduce a diagram technique for a nonequi- 
librium system with account taken of the initial correlations. 
It is shown in $3 that this diagram technique contains secu- 
lar divergences at long times; these can be reduced to singu- 
lar diagrams that renormalize the single-particle density and 
the long-lived correlators. In $4 is developed a method for 
renormalizing the diagram technique and a system of trans- 
port equations is derived for long-lived correlators. An equa- 
tion for the pair correlation function of a rarefied gas is ob- 
tained in $5. 

92. DIAGRAM TECHNIQUE WITH ALLOWANCE FOR THE 
INITIAL CORRELATIONS 

We consider the evolution of a macroscopic system of 
Bose or Fermi particles, whose initial state is determined by 
an arbitrary nonequilibrium density matrix p(t,). Complete 
information on the system is given by the single-particle and 
multiparticle Green's functions G and K'"', n = 2, 3, ... 
(Refs. 5 and 17), equal in the momentum representation to 

1 
G(1, 1 ' )=  r<T,aH+(l')aH(l)  > 

'l 

Here 1 = (p,, t,, a,); p ,  = (p,, a,) is the aggregate of the mo- 
mentum and spin of the particle, whose Heisenberg annihila- 
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tion operator is 

H is the Hamiltonian of the system; 77 = 1 for bosons and 
- 1 for fermions. The boson (fermion) creation and annihil- 

ation operators a, and a,+ satisfy the usual (anti) commuta- 
tion relations. a, is a temporal index indicating whether the 
point belongs to the upper" (a, = - ) or lower (a, = + ) 
part of the close contour c that goes from to to 

t m = n ~ a x ( t I ,  t,', .... t , , .  t,') 

and back. In the contour c we carry out T, ordering that 
coincides with the chronological ordering T on the lower 
part of the contour and with the antichronological Ton  the 
upper. Any time t+ located on the lower part precedes by 
definition t '- . 

From the Green's functions (2.1) and (2.2) we calculate 
all the mean values, including the distribution functions at 
the current instant of time 

f '"'(p1, .  . - , pn; pn', . . . 7 P I ' ;  t )  
= ( a H +  (p i ' ,  t )  . . . aH+ (p,', t ) a H ( p , .  t )  . . . a~ ( p , .  t )  ) (2.3) 

and the correlators gln)(p,, p; ;...; p, , p:,;t ) connected with 
them by the following relations: 

f ( l ) ( p 1 ,  p1'. t )  = g c i ,  ( P , .  pi' t ) ,  
f'2'(p1. p2; p2'. pi'. o = g ' i ' ( ~ I ,  ? i f ,  t )  

X g'I'(p2, pz', t )  + q g " ' ( p , ,  pz', t ) g ' L ' ( ~ 2 ,  P I ' ,  t )  
+g '2 ' (p1 ,  pi'; p2, pz', t )  +T,g'2)(p, ,  pz'; P2r PI', 1 )  9 (2.4) 

xg(q1) . . . g@l) . . . g(qs) . . . g(q&', 

n "s 

where the summation is over all the breakdowns of n into 
l o , +  ...+ r,(n terms of the form n = r , q , +  ...+ r,q,, 
q,, ...q, > 1, over all n! permutations of P :, coordinates with 
primes, and over all n!/[(ql!)rt.rl!. . . (q,!)r'r,!] nonidentical per- 
mutations P,,,,, pairs of coordinates between different cor- 
relators, with account taken of the parity of the permutation 
[P :, ] in the case of fermions. The correlators (2.4) have the 
following symmetry property with respect to permutation of 
the arguments: g(") = 7 7 [ P ' 1 ~  ig("), from which it follows that 
all the terms in (2.4), that differ only in the order of the 
primed arguments inside the correlators, coincide. This de- 
finition of the correlators turns out to be convenient for the 
construction of the diagram technique. 

We introduce the connective Green's functions G1")(l, 
1'; ...; n, n'), n = 2, 3 ,..., expressed in terms of G = G"' and 
K In)  with the aid of relations similar to (2.4), with the replace- 
ments f ("-G (') f In)-+K ("),g(")-+G ("),p,-l. We note that the 
values of the functions G'"), n > 1, at coinciding instants of 
time t, = ... = t :, = t do not depend, in contrast to G, on the 
temporal indices and on the order of the tendency of the 
times to t (Ref. 18): 

- 1 -- g'"' ( P I ,  pt'; . . . : pn, pn'; t )  
( i l l )  " 

where e is the symbol for the direct product of matrices 
whose number is equal to n ,  and 1 = (1, a ,). 

Assume for the sake of argument that the system is de- 
scribed by the Hamiltonian 

where E, = p2/2m is the kinetic energy of the particles, 

is the pair-interaction potential, and Y is the volume of the 
system. 

A diagram technique for nonequilibrium systems, 
based on the known Keldysh technique5*" and making it 
possible to calculate the Green's functions with allowance 
for the initial correlations, was proposed by Hall in Refs. 10 
and 11. Hall has shown that among the diagrams for the 
functions G and G ("I are included all the connective Keldysh 
diagrams for these quantities, which depend via of the free 
Green's function on the initial density f (p, to), and in which 
the integration with respect to time in the internal vertices is 
carried out from to to t " = max(t,, ..., t :, ). All the remaining 
diagrams contain the correlation functions 

1 G,'" ((I, 1'; . . . .; k, k') = I g c k )  ( p i ,  P I ' ;  . . . ; ph. p ~ ' ;  to) 
( i q )  

(2.8) 
to which corresponds the diagram shown in Fig. 1. These 
diagrams are obtained from the Keldysh diagram in which 
all the possible correlation lines are drawn. Figure 2 shows 
the Keldysh diagram of second order in the interaction for 
the Green's function G and examples of the corresponding 
correlation diagrams, which contain G!', Gf).G!) and Gf). It 
is necessary to discard here the correlationally-related dia- 
gramsI9 which are equal to zero and containing some block 
connected with the remaining part of the diagram only via 
the correlation functions. Examples of such diagrams, corre- 
sponding to the Keldysh diagram shown in Fig. 2(a), are 
given in Fig. 3. 

We shall find it convenient to transform to the retarded 
and advanced Green's functions G 'and G " (Refs. 5 and 17). 

In this representation the matrices are replaced in (2.8) (:::) 

FIG. 1 .  Diagram corresponding to the correlation function Gbk' 
( I ,  1'; ...; k ,  k ') (2.8). 
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FIG. 2. Keldysh diagram (a) and the corresponding correlation 
diagrams (b) containing Gg', Gg' Gg', and Gg'. 

by the matrices O'O , so that the correlation function Ggl 
(0.2) 

has only one nonzero component, with indices "2". The free 
Green's function is 

The relations for the Green's functions with coinciding 
times take the form 

G ( n ) ( l ,  1 ' ; .  . . ; tz, n') I,,=. =,;, =, 

93. SECULAR DIVERGENCES 

The diagram technique introduced in the preceding sec- 
tion, which takes into account the initial correlations, con- 
tains secular divergences at large values of Ito(, and conse- 
quently does not describe the irreversible transition of the 
system to the equilibrium state. To demonstrate this, we con- 
sider the n-particle inset 1'") (1, 1'; ...; n, n') (Fig. 4)-a singly- 
connected part of the diagram, some of the n incoming and n 
outgoing lines of which can enter in the correlation func- 
tions. The insert whose external momenta satisfy the condi- 
tion 

will be called isoenergetic and will be designated IF). We note 
that any single-particle insert is isoenergetic, in view of the 
spatial homogeneity. 

We consider the component with indices "2" of the dia- 
gram shown in Fig. 4 (we write out only the time-dependent 
arguments): 

FIG. 3. Examples of zero correlation diagrams corresponding to 
the diagrams shown in Fig. 2a. (The second diagram of Fig. 2b is 
also correlationally connective and is equal to zero). 

FIG. 4. Inset 1'"' 

1'"' (tl, t,'; . . . ; t,, tnl)z 2 

1"' 

= exp 2 (i~.; trl-iep,t,) {dr) 8 (fr-8.) 
1. 

x@(tm-rm). . . M ( T ~ ,  TI';. . . ; Tn, ~ n ' ) .  1.. ~ X P  xf i~p ,~ , - i~p , ,~ j ' ) ,  

(3.2) 

where t " = max(t ,,. . .,t : ), and the O-functions arise when 
any one of the external lines is G (7; ,t ; ) or G ( t ,  ,T, ). At 
least one such line is always present, for otherwise (3.2) 
would contain the block M, , = 0 (the last equality is 
proved in Ref. 19). It is important that the O functions do not 
limit from below the regions of integration with respect to T. 

We note that integration with respect to the internal times T 

is carried out up to the largest of the external times of the 
given inset, and not with respect to the diagram whose inter- 
nal part it is, since the integration with respect to times long- 
er than t " yields a zero contribution to (3.2). 

If the insert 1'"' is simple (i.e., contains no singularities) 
and isoenergetic, then in the limit to+ - w the integrand in 
(3.2) depends on 2n - 1 difference times; whereas the inte- 
gration is carried out over 2n time between infinite limits. 
Therefore, as to+ w the integral in (3.2) diverges in propor- 
tion to It,] on account of the "extra" integration over the 
total time. If IF' is not simple and contains diverging parts, 
then the singularity as to+ - w is of higher order: expres- 
sion (3.2) is proportional to Ito/ k,k > 1. On the other hand, if 
the simple inset is not isoenergetic, the integrand in (3.2) 
depends explicitly on the total time and the integral con- 
verges. 

We consider now that component of the simple inset 1'"' 
which has at least one external index "1". Such a component 
does not diverge at to+ - W, since at least one function 
O (T; - t ;) or O (7, - t ,  ) appears in the corresponding in- 
tegral of type (3.2) and restricts from below the limits of 
integration with respect to 7; or 7,. (As to-+ - w all the 
external times are regarded as fixed.) 

We shall show that any simple inset I!), which diverges 
as to-+ - W ,  can be broken up into a sum of regular and 
singular parts in such a way that the singular part is the 
corresponding diagram for the density (n = 1) or for the cor- 
relator (n = 2, 3, ...) at the running instant of time. Writing 
O (7) = 1 - 0 ( - T), we separate from (3.2) the part that is 
regular as to+ - w , in which integration with respect to at 
least one of the internal times is cut off from below. The 
remaining singular part is a diagram for the equal-time n- 
particle inset I("'(t ", t ";...; t ", t "), ,. The latter, being a 
certain diagram for the n-particle Green's function G'"', 
n = 1,2, ..., with coinciding times, is as a result of relations 
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(2.10) and (2.1 1) the corresponding diagram for the density 
or the correlator at the instant of time t ". As a result we 
obtain 

+ ( 2 / i q )  " exp {iZ [ ep ;  (t,'-t'") 

where the first term in the right-hand side is the regularized 
diagram, in which all the components with at least one exter- 
nal index "1" are equal to the components of the initial dia- 
gram, while in the components with the indices "2" the ex- 
ternal functions G :(T;, tk )  are replaced by G ;, (T;, t ;) and 
G I, (t, , T, ) are replaced by G : (t, , T, ). 

We note that by resolving the O functions in (3.2) into 
the corresponding terms we can separate a singular part si- 
milar to (3.3), but with a time tmi, = min(t ,,..., t A ), and gener- 
ally, with an arbitrary "running" time tP, which remains 
finite as to+ - oo . 

For the process considered by us, namely the relaxation 
of the system to the state of equilibrium, the condition 
to+ - 03 means physically that I to - t "1 - T,, where T, is 
the relaxation time. From the statements proved in this sec- 
tion it follows that the initial correlators g'"'(t,), whose mo- 
menta satisfy the condition Iw, I > l/r, over times of the 
order of T,, make no contribution. The "long-lived" correla- 
tors g'"', the characteristic frequency of which is Iw,l 
5: 1 / ~ , ,  together with the single-particle distribution func- 
tion, determine the evolution of the system during the kine- 
tic stage. However, the number of long-lived correlators is 
relatively small and they are determined by the volume of the 
momentum space that satisfies the condition 10, I 5 l/r,. It 
is easy to verify that as a result each long-lived correlator g'"' 
introduces into the diagram a contribution proportional to 
the small factor (l/nl 3 ) m  - I ,  where I- VT, is the characteris- 
tic relaxation length, v is the average particle velocity and n 
is the density. It follows therefore that the correlation dia- 
grams in the kinetic stage of the relaxation process make a 
small contribution in comparison with the corresponding 
Keldysh diagram. We note that this statement is applicable 
only to a stable system. In the case of an unstable system, in 
which the fluctuations can grow to a level greatly exceeding 
the equilibrium level, allowance for diagrams containing 
long-lived correlators is essential. 

54. RENORMALIZATION OF THE DIAGRAM TECHNIQUE, AND 
SYSTEM OF TRANSPORT EQUATIONS FOR LONG-LIVED 
CORRELATORS 

We consider first the case when the contribution of the 
diagrams containing long-lived correlations can be neglect- 
ed. In this case it is necessary to take into account the single- 
particle insets that diverge secularly at long times (of the 
order of the relaxation time), and are the diagrams for the 
Green's function G. In final analysis these divergences are 

form, but also in the form of the product ~ t :  

G ( t ,  t', E )  =G (t-t ' ,  E (tSt')ll), t . ) .  

Bogolyub~v'~ has shown that these divergences can be 
eliminated iff @, to) is eliminated and all the quantities are 
expressed in terms of the slowly varying distribution func- 
tion f @, t ) at the running instant of time. Berezinskii21 has 
shown that this procedure can be carried out with the aid of a 
renormalization of the diagrams. However, the renormaliza- 
tion method proposed by Berezinskii does nct permit partial 
summation and makes it impossible to obtain the renormal- 
ized Keldysh equations for the Green's functions. To elimi- 
nate the secular divergences we shall use another method, 
which leads to renormalized Keldysh matrix equations. 

We represent the free Green's function in the form 

RO'=GOa(t, t ' )  ( )  R o " = G O r ~ t , t f )  ( "  I). (4.3) 
1. 0 

We consider a simple single-particle insert (in operator form) 

I"' ( t ,  t') =GoZGo. (4.4) 

where 

is the self-energy mat r i~ .~ ."  Then, using the results obtained 
in $3, we can easily show that the regular part of (4.4) is equal 
to 

S,'ZR,", t x ' ,  
ldl '  (t, t ' )  = 

and the singular part takes the form of a correction to the 
density at the instant of time t " = max (t, t '): 

Diagrams of the type R; BR;; equal to zero, since the integra- 
tion in (4.4) is with respect to t ". It is now easy to regularize 
the sum of the single-particle reducible diagrams for Gin the 
form 

G,=G,+G,2Co+. . . G,, (XGO) ', -, ) .J,  " . . . . (4.7) 
We assume first that t > t '. Then Go(t, t ') = S; in (4.7) can be 
regrouped in the following manner: 

The function S& is connected here with the renormalized 
(accurate to the m-th power of 8) momentum density fm @,t ) 
by the relation 
S,'=S,'+S,'ZS,"+ . . . 

due to the fact that in the nonequilibrium case the Green's + S o ' ~ ( G o ~ )  m-lS,"=-ie",'' - 1 1  
0 

functions contain the small parameter E not only in explicit ( y: f+Zqf,(p, t )  ) (4.9) 
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In the limit as k-+ w , G,-+G, f,+f and (4.8) takes the form 
of the integral equation for the exact Green's function 

G ( t >  t') =S1+GZR,", (4.10) 

where S' is obtained from (4.9) by the substitution 
f,+f @,t ), and the lower limit of integration with respect to 
time can be set equal to - W .  

It is easy to obtain also the corresponding equation for 
the case t < t ': 

G ( t < t l )  =S"-I-R,'ZC, (4.1 1) 

The components of Eqs. (4.10) and (4.11) for the ad- 
vanced and retarded Green's functions coincide with the 
corresponding Keldysh eq~at ions .~~"  The equation for the 
two-time correlation function is of the form 

F ( t ,  t') = - i ( l f 2 q f  ( p ,  t )  )e"r(t'-f)+(GrB+PZ")G,', t>t l ,  

(4.13) 

F ( t ,  t') =-i(1+2qf ( p ,  t'))e("p(t'-"+Go" (QG"+ZrF), K t ' ,  

In which, compared with the Keldysh equation for this func- 
tion, first, the term that depends on the initial density has 
been replaced by an expression of the same form as F,, but 
dependent on the running density (t = t ") and, second, the 
functions G t and G I; are replaced by G I; and G t ,  respec- 
tively. 

Equations (4.10) and (4.1 1) must be supplemented by an 
equation for the density f @, t ) at the running instant of time. 
This equation is obtained as the consistency equation for the 
renormalized integral equations (4.10) and (4.11). If the first 
approximation is chosen to be 

G ( t ,  t') =@(t - t ' )  S f ( t .  t') +8 (t'-t)S" ( t ,  t ')  (4.14) 

and account is taken of the diagram shown in Fig. 2(a), we 
obtain the Boltzmann transport equation for a gas of weakly 
interacting particles. 

The regularization method used by us leads in the gen- 
eral case to a transport equation of non-Markov type. The 
retardation is the result of separation of the secular inset in 
the form of a correction to the density at the instant of time 
t "that is maximal for this inset. However, as indicated in $3, 
the choice of this instant is arbitrary. In particular, it would 
be possible to separate the singular part in the form of a 
correction to the density at some fixed (different for each 
diagram) instant oftime t. The equation for f @, t )would then 
contain the values of the density at the same instant of time, 
and the Boltzmann equation would have a Markov charac- 
ter. It is precisely this result which was obtained by Bere- 
zinskii.'' However, as already noted, such an approach does 
not permit partial summation of the diagrams, and conse- 
quently does not yield the renormalized Keldysh equations 
for the Green's functions. From the results obtained above it 
follows also that the Markov or non-Markov character of 
the transport equation is determined simply by where we 
include the time dependence-in the distribution function 

f @, t ) or in the kernel of the operator contained in the colli- 
sion integral. 

We now take into account the long-lived correlations. 
Generalizing the described renormalization method, we can 
sum all the diverging diagrams and construct a diagram 
technique that takes into account the long-lived correlations 
and is free of secular divergences. 

We turn to Eq. (3.3). We see that the matrix structure of 
the singular inserts coincides with the structure of the free 
Green's functions Go and Gg'. Therefore summation of all 
the singular inserts leads to a renormalization of the density 
and of the long-lived correlators. In this case the first deriva- 
tives of the simple insets with respect to time are finite and 
their summation yields in fact the transport equations for the 
density and for the long-lived correlators. The following sta- 
tements hold: 

1) The exact Green's functions are determined by the 
sum of all the simple diagrams in which the initial density 
and the long-lived correlators are replaced by the density 
correlators at the running instant of time. 

2) The density f @, t ) and the long-lived correlators 
g("'@,, p ;  ;...;t ) at the running instant of time are determined 
by the sum of all the simple singular insets and satisfy the 
system of equations 

G$' is the sum of all the diagrams calculated in accordance 
with the statement (1). 

The kinetic equation (4.15) for the density (n = 1) and 
the long-lived correlators (n = 2, 3, ...) are the consistency 
conditions for the renormalized diagram technique. The dia- 
grams contained in G$' can be divided into three classes: l )  
Keldysh diagrams, which depend functionally on the mo- 
mentum density f @, t )at the running instant oftime (Fig. 5 4 ,  
2) diagrams containing renormalized long-lived correlators 

g'"'(pl, pi+ki; . . . ; Pnl pn+kn; t ) ,  k t + .  . . +kn=O, 

in which there is no summation over any of the momenta k 
[Fig. 5(b), and 31 diagrams containing long-lived correlators 

FIG. 5. Examples of simple diagrams Gg'which enter in the kine- 
tic equation for gI2': a) source S1"[ f ], b) linearized collision inte- 
gral I,g"', c) cross term R I*' {f, g"') . 
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of any order, summed over at least one of the momenta k 
(Fig. 5c). The first class of diagrams, which does not contain 
correlators, gives the collision integral S"' (f J in the equa- 
tion for the single-particle density and the source S '"'( f 1 in 
the equation for the correlatorg'"), n > 1. The diagrams of the 
second class give the linearized collision integral in the equa- 
tion of the type ( I ,  + ... + I,,)g("' (Ref. 17). The third class of 
diagrams depends functionally on the density and on all the 
long-lived correlator. The term R ("'(f, g ]  corresponding to it 
in Eq. (4.15) describes the influence of the correlators on one 
another and on the single-particle density. For stable sys- 
tems it is proportional, generally speaking, to the small pa- 
rameter l / d 3  As a result, the system (4.15) takes the form 

(8/at+io,-I,- . . . -I,)g("'=S(") { f ) + R ( " ' ( f ,  g ) .  (4.17) 

Equations (4.16) and (4.17) make it possible to describe 
completely the influence of the fluctuations on the kinetics of 
the system. To prevent misunderstandings, we note that they 
differ from the known Bogolyubov chain of equationsZ0 in 
the following aspects: 1) Eqs. (4.16) and (4.17) hold only for 
long-lived correlations; 2) these equations are suitable only 
for long times, comparable with the relaxation time of the 
system to the equilibrium states; 3) these equations consti- 
tute a closed system, and the integral operators I,  S, and R it 
contains can be calculated with any degree of accuracy with 
the aid of the diagram technique. 

55. EQUATION FOR TWO-PARTICLE CORRELATOR 

We present the explicit form of the equation for the two- 
particle correlat~rg'~'@,p - k;p',pl + k, t ) in a gas of weak- 
ly interacting particles in the limit of small occupation 
numbersf, ( 1. We confine ourselves to diagrams of first and 
second order in the interaction, which are shown in Fig. 5. 
We turn to the G ' representation, which is preferable for 
actual calculations, since the vertex matrix in it differs from 
zero and is equal to unity only when the time indices of all 
the lines that enter the vertex coincide. The renormalized 
Green's functions (4.14) corresponding to the solid lines in 
Fig. 5 are equal, when account is taken off, (1, to 

G,+(t ,  t') =-iqf (p, to') e"p("-f'. 

Gp- ( t ,  t l )  = - i e i s p ( l ' - t )  

and the renormalized correlation function corresponding to 
the diagram on Fig. 1 with k = 2 is given by 
GI2' (I, 1'; 2,2 ' )  =-gcZr(p,  p-k; p', pJ+k; tn) exp{iep-,(t,'--tn') 

(5.2) 
We calculate now the contribution made to the equa- 

tion forg','by the components of the diagrams shown in Fig. 
5, with indices a, = a, = + , a; = a; = - , putting (after 
applying the operators G ;  ') t ,  = t ; = tz - 0 = t ; - 0 = t. 
As a result of relations (2.5), the integral expression does not 
depend on this choice. The result of the action of the opera- 
tor G & '(1) + G o  '(2) on the diagrams shown in Figs. 5a and 
5c at f,(l is proportional to GC,, (t + 0, 

FIG. 6 .  Diagrams for the source SI2' (f 1 .  

t ) + G (t, t + 0) = - i. Therefore the contribution of these 
diagrams to the equation for g'2' is determined by the dia- 
grams shown in Fig. 6 and 7a. The diagrams shown in Figs. 
7b and 7c are proportional respectively to f 2g'z' and fg'2', and 
are small atf, ( 1. As a result, we obtain the following equa- 
tions for the two-particle correlator [where o(p, p', k) = E, 

+Ept - & , t + k  - E p - k l '  

( + i ( p  p ,  k )  - I -  g"' ( p .  p-k; p r .  pf+k; t )  1 
=S'" V )  +R'" {f, g"') ; (5.3) 

9  

f ~ ' + ~ + k / ~ - ~ - k - f ~ ' + k f ~ - k  + ! p r + q + k f p - k - q - f p / p '  

x[' w (pl+k.  p-k, q )  +ib -W ( p ,  p', k+q) +ib 

x [ Ig" '  ( p ,  p-q-k; p', p' f q+k: 

-Pgi" (p+q, p-k; p'-q, p'+k) I ,  (5.6) 

1 + 
- 

X (  o (p-k,  pl+k, q)+i6 -w (p .  p', Q) +i6 
Yg'" (p-q-Q, p-k; pl+Q+q, p'+k) 

-0 (P-q,  p'+q, Q )  +is 

- Pg'" (p ,  p-k-Q-q; P' ,  pf+k+Q+q) 
w (p-k-Q, pl+k+Q, q )  +i6 I ,  

(5.7) 

b c 

FIG. 7. Diagrams for R '2' ( f ,g"'] .  
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I ,g '2J  ( p ,  p - k ;  . . . I  

=I { V (y) [ f p r v 6 ( 2 ~  ( p - q ,  p - k - q :  - . . 1 
P 

q*P" 

- fp , , -qg '"  ( p ,  p - k ;  . . .) 

f P 
) ( -0 ( p ,  p"-k-q, l i + q )  +is 

+ f p - k  

o ( p - k ,  p"-q, q )  + i6  

Equation (5.3) becomes much simpler if the transfer 
momentum k is small compared with the average particle 
momentum. Introducing the function 

which is the Fourier transform with respect to the difference 
of the coordinates R - R' of the pair correlation function g 
(p, R; p', R') in the Wigner representation, we obtain in this 
case 

=s,") {f) f s12) { f )  +R:') { f ,  g ) + ~ ; ' )  { f *  g) 9 (5.9) 

v = p/rn is the particle velocity and S (a - b ) = Yi'3S0,, . 
If, however, we do not neglect& compared with unity, 

we obtain (in the case of fermions with r ]  = - 1) an equation 
of the same form as (5.9), but with the quantity in square 
brackets replaced in (5.10) by 

( i - fP- fP' )  [ f P - - 9 f P ' + 4  ( I - f p )  ( t - f p , )  - f P f P '  (I-!p--q) ( i - f p - + q )  1, 
and in formula (5.11) by 

( I - f p - J p r )  [ ( I - ! , )  ( l - f P . ) g ( p - Q ,  pf+Q* q )  
- g ( p ,  p l ,  q )  ( 1 - f p - Q )  ( 1 - ~ P ' + Q )  1. 

The theory of fluctuations in a nonequilibrium rarefied 
gas, developed in Refs. 12-16 is based on equations, contain- 
ing a derivative with respect to the time difference, for the 
two-time correlation function of the fluctuations of the occu- 
pation numbers. These equations are derived directly with 
the aid of the diagram technique developed by us, and, since 
they coincide fully with those obtained in Refs. 14 and 16, 
they will not be cited here. The pair correlator g (p, p', k, t ) 
which depends on the running time plays the role of the 
initial condition for the equation for the two-time correla- 
tion function. Equations (5.3) and (5.9), which determine its 
variation in the course of relaxation of the system to the 
equilibrium state, differ from the corresponding equation 
obtained in Refs. 14-16 by containing additional terms S y', 
R ':I, and R f ) .  The term S':' differs from zero only at k#O 
and is a source of both equilibrium and nonequilibrium long- 
wave fluctuations due to the particle interaction. The terms 
R If '  and R f '  describe the change of the pair correlation func- 
tion as a result of the dynamic interaction of the particles. It 
is easy to verify that the operator R f )  has five additive invar- 
iants (1, p + p', ep + cP,) .  Therefore R f )  must be taken into 
account, particularly for an unambiguous determination of 
the equilibrium value of the pair correlation functions of an 
ideal gas contained in a finite volume: 

In addition, it is important to take into account the operator 
R f '  during the hydrodynamic stage, since it determines the 
relaxation of the projections of the pair correlator on the 
subspace of the zeros of the linearized Boltzmann collision 
integral I, + I,. The term R Y'can also contribute during the 
kinetic stage of relaxation of the system, in the limit of low 
density, inasmuch as in contrast to the operator I ,  + I 2  it 
does not contain the momentum distribution function of the 
particles. In this case the relaxation time of the correlation 
function may turn out to be small compared with the relaxa- 
tion time of the distribution functionf, and Eq. (5.9) can be 
solved for a fixed nonequilibrium distribution function of 
the particles. This steady-state solution for g is determined 
completely by the source S"' and "follows quasistatically" 
the variation of the functionf. 

The authors are grateful to L. V. Keldysh for constant 
in~erest in the work, for numerous discussions, and for valu- 
able remarks. 
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