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It is shown that the generating functional of dissipative dynamics in a potential force field can be 
reduced to the form of the functional integral of Euclidian supersymmetric field theory. The 
existence of a nonequilibrium (current) steady state is related to spontaneous supersymmetry 
breaking in the corresponding field theory. A variational principle of minimum entropy produc- 
tion is formulated. A supersymmetric diagrammatic technique is developed which is a compact 
invariant formulation of the well-known diagrammatic technique for dynamical problems. The 
nonlinear-dynamics problem for the fluctuating pendulum is considered in detail. The coefficient 
of angular diffusion under essentially nonequilibrium conditions, which determines, in particu- 
lar, the line width of a synchronized self-excited oscillator, is computed. 
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1. INTRODUCTION rium systems in a steady state with detailed balance are for- 
The purpose of the present paper is to study the hidden mally indistinguishable from equilibrium systems (a fact 

symmetry inherent in the well-known equations of stochas- which has been used to advantage in investigations by, for 
tic dissipative dynamcis: example, Haken's group2). Therefore, below we shall call 

6V such states equilibrium states no matter how far the system is &=-r- +t (x, t )  , 
6% from the true state of thermodynamic equilibrium. 

If the integral (5) diverges, then the equilibrium solution 
where 6 (x,t ) is white noise: (4) is physically absurd, and we should seek that steady-state 

<g (x, t )  (x ' ,  1 ' )  ) =2TFB ( x - x ' )  6 ( t - t ' ) ,  (2) solution to (3) which satisfies the normalization condition. It 

V {p, j is a functional of the variables p, , a n d r i s  the kinetic is very important that, regardless of the convergence of the 

coefficient. Eqsation (1) can describe both the relaxation to integral (5), the FPE is reducible to the form of the functional 

thermodynamic equilibrium of a classical statistical system Schrodinger equation with imaginary time with the aid of 
1 

with energy V (9, ) and temperature T and a broad class of the substitution1) 9 (p, ) = exp ( - - V ( px 1) !P ( p, ) : 
relaxation processes that occur in physical and nonphysical 2 T 

systems under conditions very different from thermodyna- --Y T d =J(TZ?- a2Y u{~.}Y), 
mic equilibrium  condition^'.^ (in this case the parameter Tin r d t  69, 
(2) is not temperature). It is well known (see, for example, 
Refs. 1 and 2) that the stochastic equivalent of Eqs. (1) and (2) (6) 

1 6 V  T 6'V 
is the Fokker-Planck equation (FPE) for the distribution 

u { ~ ~ } =  J [T (=) - Tm] . functional 9 {p, j of the quantities p, : ( T I  

Equation (3) has an obvious time-independent solution 

which gives the "equilibrium" (see below) distribution func- 
tion in the case in which the normalization integral 

converges. Equation (3) is the simplest example of the 
Fokker-Planck equations that satisfy the so-called potential 

These conditions, supplemented by the nor- 
malization condition (5), are equivalent3 to the existence of 
detailed balance in the system. More general potential condi- 
tions, which contain the conditions for detailed balance as a 
particular case, are given in Ref. 4. From the standpoint of 
the solution to Eq. (1) or (3) thermodynamically nonequilib- 

The Schrodinger equation (6) has a remarkable property: for 
any potential V (p, satisfying (5), the ground-state wave 
function 'y,Ipx ) has the form A - ' I 2  exp( - V ( p, ) /2T), 
and the ground-state energy E, = 0. This property is a trivial 
consequence of the existence of a time-independent solution 
of the FPE (3), but it indicates a hidden symmetry connected 
with the Schrodinger equation (6). As is well known, the 
functional Schrodinger equation with imaginary time corre- 
sponds to Euclidean quantum field theory. We shall show 
that the field theory corresponding to (6) possesses the prop- 
erty of supersymmetry. Supersymmetric field theories have 
been intensively investigated in recent years.9-15 It is known, 
in particular, that the energy of vacuum is equal to zero in 
any theory with unbroken supersymmetry. 

In the second section of the paper we shall obtain the 
Lagrangian formulation of the supersymmetric field theory 
corresponding to the equation (1) of dissipative dynamics, 
derive a variational principle that generalizes the theorem of 
minimum entropy production, and construct a superconvar- 
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iant diagrammatic technique suitable for application. In the 
third section we construct a Hamiltonian formalism, and 
discuss the connection between the spontaneous breaking of 
the supersymmetry and the appearance of a nonequilibrium 
steady-state solution to the FPE (3). In the third section we 
illustrate the proposed method by using it to solve the non- 
linear-dynamics problem for a pendulum in a heat bath. A 
specific new result is the computation of the coefficient of 
diffusion in the steady-state background in the essentially 
nonlinear region. 

2. THE LAGRANGIAN FORMULATION OF THE THEORY 

To derive an explicitly supersymmetric representation, 
it is convenient to use the dynamical-generating-functional 
method.'"19 The dynamical generating functional has the 
form 

The 6-averaged quantity in (7) is computed with the aid of 
Gaussian integration: 

On account of the definition (7), Z {I,,, = 0 J = 1. The p(x,t )- 
field correlation functions are obtained by differentiating 
z [ lx,, 1 9  e-g., 

Rewriting the 6 function and the determinant in (7) by inte- 
grating them over the secondary boson p and fermion $,? 
fields, and performing the averaging in accordance to the 
formula (8), we obtain 

(the integration over 4 in (10) is performed along the imagi- 
nary axis). 

Thus far the potential character of the forces in Eq. (1) 
have not been important: the representation (10) remains 
valid when 6V/6px is replaced by an arbitrary K,. Let us 
now use the potential character in order to represent 
Z [ I  (x,t ) )  in the formpf the functional integral of Euclidian 
field theory. Setting p = F - 4 / 2 ~ ,  we reduce (10) to the 
form 

( s t )  

x Drp,. I e- .  Dcp DF D$ Dlp, (1 1) 
( 0 1 " )  

where the action S has the form 

[in the course of the derivation of (12) we made the substitu- 
tions TF+e T ' I 2  $+$, T 'I2 $-$I. In the expression (1 1) 
[pin ] and Ipf f )  denote the initial and final configurations of 
the p field. Notice that the expression (12) has the form of the 
action of Euclidian field theory, and does not include any 
temporal irreversibility (under the transformation t+it S it 
transform into the action of pseudo-Euclidian unitary field 
theory). The entire irreversibility inherent in dissipative dy- 
namics is now contained in the factor 
exp[ - (V(pf) - V(pi))/2T] outsidetheintegral. Thissepar- 
ating out of the irreversible terms is possible in view of the 
potentiality of the forces in Eq. (1) (this circumstance is also 
noted in Refs. 20-23). 

As can be seen from (1 I), the path integration splits up 
into two successive operations: the evaluation of an Eucli- 
dian-field-theory path integral with prescribed initial [pin. J 
and final (pf J conditions and then the averaging over {pin. ) 
and integration over (pf ) .  The (pf ,  pin, ) functional that 
arises after the first stage is (for [ I,,, f )  = 0) the associated 
distribution functional 9 (pf ,  pin ) : 

1Pf 1 

x J exp (-8) Drp DF D$ DJ1. (13) 
IPtn) 

The expression (13) allows us to formulate for the nonequi- 
librium steady states a variational principle generalizing the 
principle, valid in the linear region, of minimum entropy 
production. 

Let the integral in (13) be evaluated between states 
[pin J and [pf J separated in time t by a very long interval 
(longer than all the characteristic times of the system). Then 
this integral can be represented in the form 
exp( - 7( j, J t ), where y( j, J is a t-independent func- 
tional of the extensive quantities j,, the fluxes determining 
the steady state (the analog of the boundary-conditions-de- 
pendent free energy). The index of the exponential function 
in the factor outside the integral is also proportional to t: 

where R [ j, j is the flux-dependent rate of entropy produc- 
tion (for the problem with a single variable the set { j) re- 
duces to the single flux j = (pf - pin )/t, whose magnitude 
in the steady state is to be determined.*' Since the subsequent 
integration of (13) over Dp, should yield a t-independent 
steady-state distribution function 9 [pf ) , and, because of 
the presence of the very large t factor in the exponents, only 
the neighborhood of the minimum of the functional 

Q{ i )  =F{i) - ' / 2 ~  { j )  , 
makes a contribution to the Dj integral, which is equivalent 
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to the Dp,,, integral, we have two conditions determining 
the production of entropy in the realized (r )  steady state: 

2 6 F / 6 j l = X ,  (6Q/6jx )3xt=0), (14) 

The quantities X, = SR /Sj, are the generalized forces con- 
jugate to the fluxes j,. Thus, the rate R of entropy produc- 
tion in the steady state is determined by the conventional 
extremum of t  he "thermodynamic potential" R in the case 
when the forces X, are prescribed. In the case of linear kinet- 
ics the path integral (13) is Gaussian, and, instead of the 
extremum of 3, we can directly use the extremum of the 
action S; the contribution of the fluctuations can be substan- 
tial in the nonlinear region. It should be noted that, in the 
case of the free energy F of Euclidian field theory, the two 
conditions (14) are, generally speaking, inconsistent; their 
consistency in our theory is due to the presence of supersym- 
metry in it. 

In order to demonstrate the manifest supersymmetry of 
the action (12), let us introduce the anticommuting (Grass- 
man) coordinates 0 and 8 and the superfield 

0 =cp+B$i-$0+00F. (15) 

Using the rules governing integration over the Grassman 
i.e., the relations 

we can easily verify that the action (12) can be written in the 
form 

where D, and i) are covariant superderivatives: 

The operators D and fi generate a simple superalgebra: 

{D,  D) =a/at 

and are the generators of a supersymmetry group consisting 
of simultaneous translations in time and in one of the Grass- 
man coordinates: 

e": 8+8+8,  t - t t f  1/2B0; 
(18) 

eciJ: 0+0+e ,  t + t + 1 / z 8 ~ .  

The q, I/, and F fields behave under infinitesimal transfor- 
mations in the following manner: 

e": Sq=e$, 6$=0, 6l$=e((p /2+F) ,  6 F = - ~ $ / 2 ;  (19) 

By substituting (19) into (16) or (12), we can easily verify the 
invariance of the action under the operations of the super- 
symmetry group [this, by the way, follows already from the 
fact that we can represent (12) in the covariant form (16)l. 
Thus, our problem reduces to the investigation of Euclidian 
supersymmetric field theory. The central question is then 
the question whether spontaneous supersymmetry breaking 

is possible in the theory in question. As will be shown below 
with the aid of a Hamiltonian formalism, the supersymmetry 
is spontaneously broken in those and only in those cases in 
which the normalization integral (5) diverges; in other 
words, spontaneous supersymmetry breaking in the theory 
with the action (16) is unambiguously tied with the existence 
of a nonequilibrium steady-state solution of the FPE (3). 

In those cases in which the supersymmetry is not 
broken, and an equilibrium distribution function 
9, = A  - ' exp( - V (q, J /T)  exists, the problem consists in 
the computation of the correlation functions and, in particu- 
lar, the spectrum of the characteristic times of the relaxation 
of the system to the equilibrium distribution yo, which, in 
the language of supersymmetric field theory, implies the 
computation of the spectrum of the excitations above the 
ground state. In problems that can be investigated with the 
aid of perturbation theory, the representation of the superth- 
eory allows us to construct in terms of the superfields Qi a 
diagrammatic technique that is a convenient compact for- 
mulation of the well-known diagrammatic technique for 
dynamical  problem^."^'^ 

To construct the diagrammatic technique, let us sepa- 
rate the interaction terms V,,, from the potential V (Qi ) enter- 
ing into (16): 

and fine the bare correlator 

(z denotes the set x, t ,  and 0 )  corresponding to the "unper- 
turbed" Lagrangian 

(21) 

We shall now consider the case of the flux-free state, i.e., the 
state in which spontaneous supersymmetry breaking does 
not occur, and the "supersymmetric mean value" of Qi is 
equal to zero: 

(O) . .=  j ( @ ) d B  d0=(F)=O.  (22) 

At the level of the bare Lagrangian (21), this implies that m2/ 
%' #O. The formal expression for the bare.correlator has the 
form 

[the factor exp( - Vf - )/2T] outside the integral is unim- 
portant when the perturbation theory is constructed with 
( 0  ), = 0 ) .  The correlator (23) is given by the solution to the 
linear equation (with a source on the right-hand side) for the 
extremum of 2,: 
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The supersymmetric delta function S" (z - z') is given by the The expansion of V,,, (@ ) in a series in powers of @ gives 
relation the interaction vertices. The resulting diagrammatic tech- 

nique differs from the usual technique only in that it contains 
5 6 * ( x - x f ,  t-t', 0-8' )  8 (2' .  t', 0')dS' dt' dB1=@ ( x ,  t, 0 ) .  integrations over the supercoordinates 8 and 8. This leads, in 

(25) particular, to the vanishing of all the single-tail diagrams, 
since, as can be seen from (28), the integral over the "point of 

Substituting @ in the form (15) into (25), we obtain attachment of the tail" vanishes: 

b S ( x ,  t ,  0 )  =6 ( 2 )  6 ( t )  00  (26) J G k ,  0 ,  0') a8 do-o 
and, using the identity 

(on account of the supercovariance of the theory, the exact 
(DB-DD) 2=aylat2, correlator G (w,k,8,8 ') possesses the same structure with re- 

which follows from the definitions (17), we have spect to the supercoordinates 8 and 8 ' as the bare Go from 
(28). 

To conclude this section, let us prove the fluctuation- 
dissipation theorem in our technique. As can be seen from 
the ripresentation (10) of the generating functional, the func- 

(27) tion O (v, { p  = V { p  ) - I O x p x  dx) characterizing 

In the Fourier representation we have the response to the field is given by the expression 
1 

I 
gral(11) with the action (12). Integrating F (x,t ) over the field, 

3 ( x ,  t ;  x', t ' )  = 9 ) 1 , , .  (29)  we obtain the p-, $-, and $-field path integral with the La- 
6 8  (x', t ' )  8-0 grangian 

The correlation function is 

K ( x ,  t ;  x', t') = (9 ( x ,  t )  cp (x', t ')  >. 

By definition [see the transition to the expression (1 I)] 

and therefore 

1 d 
$ ? ( x , t ; x ' , t ' ) = - -  K(x, t ;  x', t ' )  -<cp( t ,  t ) F ( x r ,  t ' )  >. 

2T dl '  
(31) 

Going over to the frequency representation, and taking into 
account the realness of the correlator ( p F  ) in Euclidian field 
theory, we obtain 

2T 
K, ( x ,  5' )  = - Im 9, (x, 5 ' ) .  

0 
(32) 

Let us emphasize that the fluctuation-dissipation theorem 
(32) is not valid for nonequilibrium steady states. The point is 
that the physical correlation functions K,(x,xf) and 
9, (x j ' )  are obtained in this case through the analytic con- 
tinuation of the formulas of Euclidian field theory (see the 
example in Sec. 4), as a result of which the correlator ( p F  ), 
acquires an imaginary part and, instead of (32), we have 

2T 
K ,  ( x ,  x') = - [ I m  9, ( 2 ,  x ' )  + I m ( q  ( x )  F (x') >,I.  (33) 

0 

The Hamiltonian operator corresponding to 2' can be writ- 
ten in the usual manner with the aid of the momentum 
operator S /6px and the Fermi creation and annihilation 
operators a: and a, : 

In going over to (35), we dropped the factor T, which deter: 
mines the general time scale. It should be noted that the 
writing down of the last term in (35) in precisely the commu- 
tator form is dictated by the theory's supersymmetry, which 
does not allow the energy reference level to be shifted arbi- 
trarily. 

The total fermion number N = I,,, a: a, is an integral 
of the motion, so that the Schrodinger equation with the 
Hamiltonian H splits up into independent equations for the 
various Nnumbers. Of special interest are the equations cor- 
responding to the cases of zero and maximum fermion num- 
ber, i.e., to the cases in which N = 0 and N = N,,, . The first 
case a, I Y-) = 0 for all x, and therefore the Hamiltonian 
reduces to 

3. THE HAMILTONIAN FORMALISM and the corresponding Schrodinger equation coincides with 
To derive the equations of the theory in the Hamilton- Eq. (6) ,  which was derived from the Fokker-Planck equation 

ian formalism, it is convenient to proceed from the path inte- (3). In the case of highest fermion population the wave func- 
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tion satisfies the condition a: I Y,) = 0, and the Hamilton- 
ian reduces to 

I l l  

(37) 

The Schrodinger equation with the Hamiltonian H+ is ob- 
tained from the backward FPE (it is now the Kolmogorov 
equation), just as (6) is obtained from (3). If, instead of the 
field p,, we have only one variable p,  then the states I Y,) 
and I Y-) constitute the entire basis, and we do not obtain 
any new equations; such a theory (supersymmetric quantum 
mechanics) is investigated in Refs. 13 and 14 (without any 
ties to the FPE). In the remaining cases there are a number of 
states with intermediate fermion numbers (0 < N < N,,, ). 
The equations for the wave functions of these states appar- 
ently do not have simple analogs in the FPE theory. 

As is well known (see, for example, Refs. 10, 1 1, and 13), 
the Hamiltonian of any supersymmetric theory can be repre- 
sented in the form of the square of the Hermitian super- 
charge operator (or in the form of a sum of the squares of 
such operators if there are several of them). In the present 
case, as can easily be verified through a direct calculation, 
the Hamiltonian H from (35) can be represented in the form 
H = Q 2,  where 

Therefore, we can use the equation 

Qy=E1"y  (39) 

to compute the spectrum and wave functions of the theory. 
Equation (39) is especially convenient for the elucidation of 
the question of spontaneous supersymmetry breaking in the 
theory in q ~ e s t i o n . ' ~ " ~  In the supertheory in which sponta- 
neous supersymmetry breaking does not occur, the energy of 
vacuum E, = 0. Equation (39) with E = 0 possesses two ob- 
vious formal solutions: 

\y---e-V""?T I -), (40) 

where 1 - ) is the fermion vacuum (a, 1 - ) = O), and 

YrT=eV")'2T I +> (a,+ +> = O ) .  (41) 

If any of the solutions (40) and (41) is normalizable, then it is 
the true wave function of the ground state. If, on the other 
hand, the potential V p J is such that both solutions, (40) and 
(41), cannot be normalized [e.g., if V (p ) = cos p + 8p] ,  then 
the equation QY = 0 does not possess suitable solutions, 
and, consequently, E, > 0; in this case we have spontaneous 
supersymmetry breaking to deal with, and: to determine the 
ground state, we must solve the equation QY = (E,)"~Y. 

The normalizability condition for the wave function 
Y- coincides with the condition (5) for the existence of an 
equilibrium distribution function 9 E exp( - V ( p  j /T) 
that is a solution of Eq. (3). Therefore, the phenomenon of 
spontaneous supersymmetry breaking in the theory with the 
action (16) is unequivocally tied with the existence of non- 
equilibrium (current) steady-state solutions of the Fokker- 
Planck equation (3).3' This circumstance allows us to use the 

methods of field theory to compute the fluxes and fluctu- 
ations in such steady states. In the next section we shall, as an 
example, carry out such a calculation for the problem with 
one degree of freedom. 

4. NONLINEAR DYNAMICS OF A FLUCTUATING PENDULUM 

Let us consider the equation for the highly dissipative 
motion of a pendulum in a heat bath under the action of the 
moment of gravity and a torque: 

@=-r(msin  cp-8) +'5(1) ( ( t ( t ) g ( t l )  )=21'T6(t-tl)).  

(42) 
This equation occurs in many physical problems; in particu- 
lar, it describes the phase drift of a synchronized self-excited 
oscillator' or a laser2 and the current through a Josephson 
junction under conditions of strong dissipation.25s26 The 
Fokker-Planck equation that is equivalent to (42) has the 
form 

(we have denoted r t  by T). The corresponding potential has 
the form 

V(cp) =-m cos cp-&(cp-n) (44) 

(the term g.rr has been added for computational convenience 
in what follows). For 69 #O the equilibrium distribution 
function exp[ - V (p )/TI is normalizable, and a steady state 
with a nonzero flux j = (4) is realized. The computation of 
the flux and the steady-state distribution function is simple, 
and was carried out long The investigation of the 
fluctuations in the background of such a steady state is sig- 
nificantly less trivial, since it requires the solution of the 
complete (nonstationary) Eq. (43) without the use of the fluc- 
tuation-dissipation theorems (which are valid only for the 
equilibrium solution with 69 = 0). In particular, it is of inter- 
est to compute the phase-diffusion coefficient D determining 
the asymptotic behavior of the fluctuations at large t: 

<(q(t)-q1(0)-jt)~>=2DItl (45) 

(this quantity determines, in particular, the line width of the 
synchronized self-excited oscillator'). We shall compute the 
quantity D for 8 < m and sufficiently low temperatures T, 
when the flux is produced by relatively infrequent (the pre- 
cise criterion will be given below) fluctuation-induced tur- 
novers of the pendulum (8 can then be of the order of m and 
much higher than T, so that we are investigating the fluctu- 
ations in the essentially nonlinear region). For this purpose, 
it is convenient to express the associated distribution func- 
tion 9 (p,p,,t ) in terms of the eigenfunctions of the Schro- 
dinger equation corresponding to (43) [see Eq. (6)]: 

The potential energy U (p ) in (46) is periodic in p; therefore, 
the wave functions Y and the energy levels E are character- 
ized by a quasimomentum P and the band number a. The 
distribution function Y(p,p,,t ) can be represented in terms 
of Yp,, (p ) as follows: 
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equations for p(e, ): 

P ( . F P + ~ % )  =p ( v ) ,  
zn+v 

YP,, (cp) ( T O ) .  (47) -n8/T+?niP=Qo I p (a )  da.  
'P 

Below we shall be interested in the asymptotic behavior of 
the fluctuations at large values of the time T ;  therefore, we 
shall need only the states in the lowest band (we shall omit 
the band number a = 0). Let us write down the expression 
for the mean (exp iq(e, - p,)) with allowance for the forego- 
ing: 

The parameter of our quasiclassical approximation is the 
ratio Q,/T, since Eqs. (52) and (53) with Q, = 0 possess the 
obvious solutions 

S ( p ) = 1 / 2 V ( ~ ) ,  ~ i [ ~ ) a e x p ( V ( ~ ) / T ) .  

For Q,/T< 1, we can seek the solution to (53) approximately 
in the regions with p( 1 and p, 1. In the first case, neglect- 
ing the term Qg2, we have 

where p, = arcsin(g/m) is the minimum point of the poten- 
tial V(e, )and C, is a constant. A similar expression is valid for where 

Fore, close to n- - e,, [the maximum of V (q, )I, p(e, )) 1, and 
therefore we should drop the Q, term in (53) and solve the 
linear equation for l/p. As a result, we have Knowing (exp[iq(p - q,,)]), we can, by differentiating it 

with respect to q at q = 0, determine the quantity D of inter- 
est to us (as well as higher-order correlators). We shall find 
the spectrum and the wave functions for real values of P in 
the quasiclassical approximation and then continue them 
analytically to Pzi%'/2T. We shall construct the quasiclas- 
sical approximation for Eq. (46) in a manner that will not 
destroy the hidden supersymmetry of the problem. For this 
purpose, it is convenient to proceed from a fir_st-order equa- 
tion of the type (39). Let us write the operator Q in the matrix 
representation: 

Matching the solutions (56), (58) and (58), (57) approximate- 
ly, and taking the boundary conditions (54) and (55) (with q, 
replaced by q, ,) into account, we obtain a system of equations 
for Q, and C, ,  C,, C,: 

cl-J+=C,-1, (C,+Jo) -'=Cs+J-, 

where we have introduced the notation 

We shall seek the wave function in the form 

The upper component of the column in (5 1) gives that solu- 
tion to Eq. (46) which corresponds to the fermion vacuum 
and is necessafy to us here. In terms of the functionssand p, 
the equation QY = E '"Y has the form (Q, = E ' I 2 )  

'v, 

It is not difficult to show that J + eg"'T + J -  e - I P f f i T  = Jw 
After this, the system (59) is easy to solve, and we obtain for 
the spectrum E ( p) the expression 

where 
2n+wx 

I ( $ ) =  J e v v l  T dq, q 1 = a r c s i n ( 8 / m ) .  (61) 
PI 

The solution of (59) also yields the relation 

where V (p ) is defined in (44). 
The equation for P(p) should be solved with the bound- 

ary condition 

Yp(cp+2n) =e'"'PY p(cp), 
-= Q" I-' ( 8 )  ( e x p { -  BniT+SniP) -1) 

which leads, when (51) and (52) are taken into account, to TCZ 
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which is useful for what follows. Let us emphasize that the 
small parameter of our quasiclassical approximation is pre- 
cisely the ratio Qo/T, and not, for example, T/m, as would 
have been the case in the usual quasiclassical approach. The 
corrections to the expressions (60) and (61) are exponentially 
small together with Qo/T-I -l(f$')e"g/2T; therefore, the 
use of the complete (and not the saddle-point) expression (61) 
for I (R)  is entirely legitimate. Let us also note that the appli- 
cability of (60) and (61) is not limited by the specific potential 
V (q, ) given in (44). 

Let us now consider the "form factors" S, and S2 de- 
fined in (49). The dominant contribution to S,(q) is made by 
the region p z p , ,  where p ( p )  is exponentially small. The 
wave function in this region has the form 

where A is a normalization constant, given by the equation 
2% 

cP. (64) 

Taking (63) and (64) into account, we find that S,(q) = A.  The 
dominant contribution to the integral S2(q) is made by the 
region q , z ~  - q,,. The wave function in this region has the 
form 

V ( T )  Q q  
YJ (rp) =A-' exp (-- -) crp[$j  p ( p ' )  drp'] . (65) 2 T 

0 

The integral of the function p(p ) is evaluated with the aid of 
the formula (58), after which, taking (62) into consideration, 
we obtain 

The integral S2(q) is computed by parts, and, as a result, we 
have 

Now the expression (48) for (exp[iq(p - p,)]) is completely 
determined. Substituting the spectrum (60) and the form fac- 
tors (67) into (48), and differentiating with respect to q at 
q = 0, we obtain 

where I ( $ )  is defined in (61). The corrections to (68) and (69) 
are of the order of I -'($) ch(rrg/T), and are small if 

The formula (68) for the current is equivalent [in the region 
(70) of applicability] to the exact formula obtained from the 
solution to the steady-state FPE.',25,26 The expression (69) 
for the diffusion coefficient D is a new result; estimative con- 
siderations' gave only the first term in (69). Notice that, al- 
though the linear approximation is limited by the condition 
8 (T, the fluctuation-dissipation relation 

is valid in the much broader (at low T )  region $(m; the 
second term in (69) is of the same order of magnitude as the 
first term when F? -m. By computing I ( R )  by the method of 
steepest descent, we can represent the expression (69) in a 
simpler, approximate form: 

5. CONCLUSION 

In this paper we have shown that the investigation of 
the equations (1) of stochastic dissipative dynamics can be 
reduced to the study of the supersymmetric Euclidean field 
theory with the Lagrangian (16) [or the Hamiltonian (35)], 
the existence of a nonequilibrium ((4) #O) steady state being 
unequivocally tied with the spontaneous breaking of the su- 
persymmetry in the corresponding field theory. In doing 
this, we made essential use of the potential condition for the 
forces in Eq. (1). The potential condition is, generally speak- 
ing, more general than the condition for detailed balance, 
and coincides with it only when the additional normalizabi- 
lity condition (5) is fulfilled. We have in the paper considered 
a specific example of a potential system without detailed ba- 
lance: a pendulum under the action of a torque. Another 
example of this sort is given in Miguel and Chaturverdi's 
recent paper4 (we give the formulas in our notation): 

6 V  
$ ( x )  =- (r+iQ)- + E ( x ,  t ) ,  

6% 
<EE>=<E*g'>-O, <E(x, t) E*(x', t') )=6(x- ,z f)6(t- t1)2T 

and can also be investigated with the aid of our method (in 
this case we obtain a theory with a complex superfield). 

In the paper we have constructed for the superfield cor- 
relation functions (@ (x,t,8 )@ (xl,t ',$ ')) a supersymmetric 
diagrammatic technique that is a convenient invariant for- 
mulation of the diagrammatic technique constructed earl- 
ierl&19 for the correlators and response functions of dissipa- 
tive dynamics. A simple proof is given for the fluctua- 
tion-dissipation theorem for systems with detailed balance. 

It should be noted that the specific mechanism underly- 
ing the dissipative equations (1) or (3) is quite unimportant 
for the construction of the theory, as a result of which any 
system for which the condition for detailed balance is ful- 
filled and the distribution function has the form (4) is formal- 
ly indistinguishable from a system in a thermodynamic- 
equilibrium state with the free-energy functional V {q, ]. In 
those cases in which the equilibrium-in this respect-dis- 
tribution (4) is not normalizable, there is realized a current 
steady state whose distribution function has to be deter- 
mined. We may find it useful to employ for this purpose the 
above-formulated variational principle [the formula (14)], 
which generalizes the principle, valid in the linear region, of 
least entropy production, entropy here being used (as in Ref. 
21) in the generalized sense connected with the formal free 
enrgy v l q, 1. 
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As an illustration of the direct computation of the flux 
and the fluctuations in the steady state, we have considered 
the problem of the nonlinear dynamics of a pendulum in a 
heat bath. We have obtained for the coefficient D of angular 
diffusion a formula which is valid in the essentially nonlinear 
region as well. The quantity D determines, in particular, the 
line width of the synchronized self-excited oscillator (e.g., 
the single-mode laser) under conditions of a finite frequency 
detuning. 
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