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The influence of a magnetic field on the correlation function of the displacements in smectic liquid 
crystals is investigated. It is shown that the interaction of the fluctuations leads to logarithmic 
corrections to the correlators. These corrections are summed in the so-called parquet approxima- 
tion. An analogy with the problem of the phase transition in a uniaxial ferroelectric is noted. 

PACS numbers: 61.30.Gd 

1. Smectic liquid crystal are attracting much attention 
not only because of the possible and already existing applica- 
tions of this type of liquid crystal, but also because of the very 
interesting and unique physics of this state. Thus, e.g., the 
transition from a smectic A to a nematic liquid crystal has 
many features that are typical of a superconductor-normal 
metal transition, but is much richer than the latter in the 
sense of the existence of stationary points of various types of 
renormalization-group equations. 

It is known that according to a theorem of Landau and 
Peierls' long-range correlation order along one direction in a 
three-dimensional body is impossible. However, fluctu- 
ations of the displacements increase only logarithmically, 
meaning a power-law decrease of the correlations. The situa- 
tion in this respect seems analogous to that in two-dimen- 
sional systems. The explicit form of the law governing the 
decrease of the correlations in the smectic phase is quite 
complicated. For the simplest particular cases it was first 
established by Caille': 

whereg(z,r) is the correlation function of the displacements u 
of the smectic layers in the z direction (z is normal to the 
layer): 

g(z, r )  =(u (z .  r ) u ( O ,  O ) ) ,  (2)  

,q(T)  is an exponent that describes the falloff of the correla- 
tions. This index has a continuous ljust as in two-dimension- 
al models) temperature dependence. 

There is, however, a very significant difference from 
two-dimensional models. The point is that the free energy of 
a smectic A liquid crystal (or the corresponding Hamilton- 
ian) is of the form3 

where B is the elastic modulus connected with the compress- 
ibility of the layers, and K, is the Frank transverse-flexure 
modulus of the field of the director n. 

In terms of Fourier components we have 

The Hamiltonian H, describes the so-called Lifshitz critical 

point.4 It can be stated that the entire region of existence of 
the smectic A phase is the Lifshitz point corresponding to 
m = 2 and n = 1 (m is the number of components of the soft 
mode, i.e., m shows for how many components ( V , U ) ~  the 
coefficient vanishes, and n is the number of components of 
the order parameter). At the true Lifshitz point, the Gaus- 
sian correlations at which 

are unstable. An interaction proportional to u4 leads in 
three-dimensional state to a change of the exponents of the 
correlation function, i.e., to another stable stationary point. 

In contrast to the true Lifshitz point, in a smectic liquid 
crystal there exists no displacement-fluctuation interaction 
that does not vanish as q+O. In this case, the most "danger- 
ous" interaction is 

As first noted by Grinstein and Pelcovit~,~ this interac- 
tion does not change the critical exponents, but leads to loga- 
rithmic corrections. In contrast to Ref. 5, we reduce the 
problem to four-dimensional and introduce a magnetic field 
in the Hamiltonian H, (4). Thus, the problem reduces to a 
four-dimensional problem of a phase transition with respect 
to the magnetic field, so that we can determine the logarith- 
mic increments immediately and in very simple fashion. In 
addition, we shall discuss in a similar manner the problem of 
a discotic liquid c r y ~ t a l , ~  in which the liquid columns form a 
two-dimensional lattice. The simplified harmonic part of the 
Hamiltonian has in this case the form 

where u is the two-dimensional vector of the displacement of 
the lattice of liquid columns. Thus, the entire region of exis- 
tence of the discotic phase is the Lifshitz point m = 1, n = 2. 

The most dangerous interaction is 

It is easily seen that, generally speaking, this interaction is 
inessential, i.e., it does not change the exponents and does 
not lead to logarithmic corrections. Logarithmic corrections 
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FIG. 1 

can be connected in this case with the interaction ( a u / d ~ ) ~ ,  
which is forbidden by the symmetry of the problem. How- 
ever, near the transition into the nematic phase, when the 
elastic modulus of the two-dimensional lattice Cis small, we 
are already near a second Lifshitz point namely m = 3, 
n = 2. In the vicinity of this point the interaction (7) becomes 
significant and leads to a change of the exponents. 

2. We proceed now directly to calculate the correlations 
in smecticd liquid crystals. As already noted, the interac- 
tion (5) leads in the case of the harmonic Hamiltonian (3) to 
logarithmic corrections. For example, the simplest diagram 
for the self-energy part of the Green's function g(q, ,q, ) (Fig. 
1) yields 

Z(q)%-y2qL6 In a. (8) 

Similarly, the vertex function F (p, ,p,,p,,p,), which describes 
the renormalization of the interaction (Fig. 2), is equal to 

I?=-qL4yo[i-9yo In a ] ,  (9) 

where a is a dimensionless cutoff parameter for the logarith- 
mically diverging integrals. 

It is obvious that logarithmic integrations accumulate 
also in all the three arrangements of the momentum pairs 
that enter in the vertex function r (p,,p2,p3,p4). The problem 
of summing all the diagrams of this type at yolna - 1 is well 
known (the so-called parquet approximation). In principle, 
all the calculations can be carried out directly in the lan- 
guage of the Green's functions g(q,,q,) and of the vertices 
r(pl,p2,p3,p4), However, as already mentioned above, it is 
more convenient to reformulate the problem first by intro- 
ducing, a magnetic field, and second by taking into account 
some small terms in the harmonic Hamiltonian H0(3). These 
terms, which are proportional to 

are usually disregarded, since they are significant only for 
layer displacements that depend on z and are therefore small 
compared with the "rigid-body" terms ( a ~ / a z ) ~ .  However, 
these small additions are inevitably generated, e.g., when the 
Hamiltonian is renormalized, and in addition, are needed to 
restore the symmetry of the system. 

Thus, the complete Hamiltonian of the smectic A phase 
is 

xn1Iaqzlaqsls'leu(qi) u(q2) u(s3) u(q4), (10) 

wherex, is the anisotropic part of the magnetic susceptibil- 
ity. 

It is convenient to introduce in place of the scalar field 
u(q) a two-component vector field 

Ea=q~au (Q). (11) 

With the aid of this vector field the Hamiltonian (10) takes 
the form 

It is possible to change in obvious fashion the scale q, and 
change to spherical coordinates. As a result, the unrenorma- 
lized Green's function takes the form 

go (Q) =T-'(p (q) ta (-q) > = [Bxz /  (1  -x2) +Bq2+xOh2] -'. 
(13) 

In the essential region x(l  (x= cos 0, where 0 is the polar 
angle) the problem has become equivalent to the four-dimen- 
sional phase-transition problem. The role of the "mass" (or 
of the proximity to the transition point) is played by the mag- 
netic field X, h '. 

With parquet accuracy, the equation for the vertex 
function r with all the entering momenta of the same order 
coincides practically literally, e.g., with the corresponding 
equation for the problem, solved by Larkin and Khmel'nits- 
kG,7 of a phase transition in a uniaxial ferroelectric. There- 
fore, roughly speaking, it can be stated that a smectic liquid 
crystal is similar not to a two-dimensional crystal, but to a 
"four-dimensional" one such as a uniaxial ferroelectric. 

With obvious change of symbols7 we have 
L 

r (y)  = ~ ~ - i o  J +r2(q), (14) 
v 

where we have introduced the logarithmic variable y (or p), 
and L r l n  (A /x,h '), whence 

r (Y) = Y ~ [ ~ + I O ( L - ~ ) ]  -I.  (15) 

To calculate the correlators we need a vertex function 
with entering momenta of different order. In place of calcu- 
lating this function, it is more convenient to find the so- 
called triangular vertex function 7b) (Fig. 3), which in fact 
defines directly in terms of Ward's identities the correlation 
function (or the Green's function) 

L 

~ ( y ) = i - 4 1  d q r ( q ) b ( ~ ) .  (16) 
v 

From this we have with the aid of (15) 

FIG. 2 
FIG. 3 
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Now, using the Ward identity 

ag-'la (xGhZ) =F ( O !  , 
we easily obtain the logarithmic increments to the correla- 
tors. Returning to the correlation functions of the displace- 
ments, we can deduce from (1 7) and (1 8) 

g-' (q l r  qr=O) -qL4[ l - t yO  ln ( N X ~ ~ ~ ) ] ' " .  (19) 

The function g-'(q,q, = 0) is not calculated directly in 
this manner, since at q, = 0 the connection between the 
Green's functions g and g is not defined. In this case x - 1 
and the expansion (13) is not suitable. However, simple rea- 
soning enables us to calculate also g-'(q,q, = 0). The point 
is that in all the integrals (including also at x - 1) we have 
q: -q:. This relation should be satisfied also for the renor- 
malized Green's functions. From this requirement, with 
allowance for (9) and (19), we obtain at y,ln ( A  /x,h 2, 2 1 

g-' ( q l ,  q ~ = 0 )  - g z 2 [ 1 1  (A/x.h2)]  -'/I. (20) 

We note that our Eqs. (19) and (20) agree with the expres- 
sions of Ref. 5, in which, however, h = 0, so that cutoff is 
effected at the characteristic wave vectors of the problem. 

It is also easy now to calculate the generalized magnetic 
susceptibility 

xert-g ( 0 )  -h-2[l+ya ln (A/xah2)]  ' I5 .  

The magnetic part of the heat capacity is determined in the 
usual manner by the diagram shown in Fig. 4: 

Simple calculation with this formula yields with logarithmic 
accuracy 

Ofcourse, measurement ofx,, and C, is by far not a simple 
experimental task. It is possibly easier to measure directly 
the displacement correlator by means of light scattering. 
The scattering intensity, as is well known, is determined by 
the correlator of the dielectric-constant fluctuations : 

where p and p' are the polarization vectors of the incident 
and scattered light. In smecticd liquid crystals the fluctuat- 
ing parameters that cause light scattering are the displace- 
ment u and the density changeap. From symmetry consider- 
ations we have 

6 ~ , = 6 ~ , , = a ~ 6 p f  bLdu/dz, 
6e,,=a,,6p+bildu/az, (23) 

~ E ~ , = - E . ~ U / ~ X ,  ~ E ~ ~ = - E ~ ~ U / ~ Y .  

Thus, at sufficiently small wave vectors (A 5000 A), 
when scattering by the density fluctuations can be neglected, 
the scattering cross section for polarizations in a plane per- 
pendicular to the director is given by 

FIG. 4 

FIG. 5 

On the other hand, the scattering cross section in crossed 
polarizations is 

At q, = 0 we therefore have 

and at q, = 0 

z,z - 4L2 
Kg,' 1n'/ ' (;1/~,h~) +x.h2 ' 

The dependences ofI; ' and I; ' on h are shown schemati- 
cally in Fig. 5 (the dashed straight line shows the depen- 
dences obtained without allowance for the interaction of the 
fluctuations). 

One more measurable quantity in which, in principal, 
anharmonic interaction of fluctuations can manifest itself, is 
the structure factor 

S(r ,  z )  = ( p ( r ) p  (0) ). (24) 

Separating in (24) the homogeneous part of the density from 
that modulated by the smectic order, we obtain in the har- 
monic approximation 

1c2 
So (r ,  z )  =p.'+ p? exp ( iur)  exp [ - go (r ,  z )  1. 

x9=0 

where x is the reciprocal-lattice vector. The explicit expres- 
sions forg,(r,z), which follow from the inverse Fourier trans- 
form of (13), depend on the ratio of the parameters, with 
dimension of length, which enter in the problem: 

= ( K / )  z=  (K/x , )  "h-', 
Z2=max {hz, r2) ,  d=max {a,, aL21h), 

where a is the characteristic molecular dimension. 
Thus, at Ad41 ' 4 4  we have 

and at Ad<{ 2<1 

Expression (25) corresponds to weak magnetic fields. The 
structure factor behaves in this case in power-law fashion, 
just as in the absence of the field. However, the interaction of 
the fluctuations is "cutoff' at the magnetic coherence 

793 Sov. Phys. JETP 56 (4), October 1982 E. I. Kats 793 



length. A simple calculation with the aid of (25) and (19) 
yields a formula of type (1) with the substitution 

q (T) +q (T) [ln (Nx.hZ)I  "I. 

The second region (26) corresponds to an ordered phase, and 
the logarithmic corrections in it are small. 

3. We discuss briefly, in conclusion, the already noted 
case of discotic liquid crystals near the transition into the 
nematic phase. We introduce in (6) and (7) a new field 4 in 
analogy with the procedure used for smectic liquid crystals: 
4 = au/az; 

or in spherical coordinates 

&'d'=T-l(lp (q)$ (-q) > = [ C ( i - x 2 )  / X ~ + K ~ ~ ~ Z ~ ] - ' .  

The form of the interaction (7) shows that the significant 
values are x - 1. In this region we have a phase-transition 
problem in which the role of the temperature is played by the 
quantity C (the critical temperature corresponds to C = 0). 
All the exponents are determined in the usual manner by 
expansion in E = 4 - d (d is the dimensionality of space). It 
must only be borne in mind that our vector field has two 
components (n = 2). 

In particular, the susceptibility exponent, which shows 
in our case the dependence of the correlation function on C 
(and consequently on the proximity to the point of transition 
into the nematic phase),' is equal to 

In contrast to the case of smectics, the interaction of the 
fluctuations does not yield simply logarithmic corrections, 
but makes the exponents different from their classical values 
(obtained in the self-consistent-field approximation). 

As usual, the exponent 17 differs from zero only in sec- 
ond order E:  

This means, e.g., that at q, = 0 the correlator is 

We note that such a correction is within the limits of the 
accuracy of modern precision x-ray and neutron methods of 
measure of scattering line shapes. In addition, the deviation 
from the classical law should increase as the point of transi- 
tion to the nematic phase is approached. 

In conclusion, the author is sincerely grateful to I. E. 
~z~alosh insk6 ,  V. L. ~okrovsk;, and D. E. ~hmel'nitskg 
for helpful discussions of the results. 
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