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A theory of stimulated Mandel'shtam-Brillouin scattering is formuiated with account of the 
nonlinearity of the excited sound wave. It is shown that in a rarefield plasma with density far 
below the critical value, the generation of the higher harmonics of the sound leads to a significant 
suppression of the scattering. In the limit of strong acoustic nonlinearity, when there are many 
harmonics of comparable amplitude in the sound spectrum, the dependence of the reflectance on 
the incident radiation intensity is obtained. 
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1. The theory of stimulated Mandel'shtam-Brillouin 
scattering (SMBS) in a plasma has attracted great attention 
in recent years, because of practical considerations connect- 
ed with possible limitations imposed by such a process on the 
heatingof the plasma by laser radiation. '.'This attention has 
also been due to purely theoretical considerations, connect- 
ed with the insignificant achievements in the search of phys- 
ical processes, which has been carried out by different auth- 
ors, in the hope of suppressing the SMBS (see the review3). 
Even back in Ref. 4 devoted to a discussion of the premises of 
Refs. 1 and 2, a hope had been raised of suppression of SMBS 
by the nonlinearity of ion-sound waves. However, in the 
years that have passed since the publication of Ref. 4, such 
hopes have not been realized, in spite ofthe fact that up to the 
present time a number of works that take into account the 
nonlinearity of the sound wave have been published on the 
theory of SMBS. It is necessary to note here that even before 
the  discussion^'^^^^ of plasma heating, ideas on the impor- 
tance of nonlinear hydrodynamic effects, due to the action of 
high-intensity radiation, were advanced in works5 that de- 
termined in significant measure the development of the non- 
linear theory of SMBS after attention had been drawn to it in 
Ref. 6. 

A study of SMBS for a plasma layer of finite thickness 
was undertaken in Ref. 7, in which weak acoustic nonlinear- 
ity was described in the approximation of three harmonics. 
In that case the authors of Ref. 7 limited their consideration 
to conditions of comparatively strong sound dissipation, 
which did not permit them to bring to light the qualitative 
effect of suppression of the SMBS (see below); furthermore, 
the conditions of strong sound dissipation require the ac- 
count of strong acoustic nonlinearity, which makes the ap- 
proximation of Ref. 7 inadequate. 

A modification of the approach of Ref. 7, taking into 
account only two harmonics of the sound wave, was pro- 
posed in Ref. 8 for an unbounded plasma. It should be noted 
here that, first, as is shown below in our paper in accord with 
Ref. 8, the restriction to only two harmonics of the sound is 
completely adequate for the construction ofa weakly nonlin- 
ear SMBS theory, and second only by forgoing the formula- 
tion of the problem7 on SMBS from a plasma layer and consi- 
deration of the unbounded plasma the author of Ref. 8 failed 

to satisfy the criteria for SMBS suppression. The develop- 
ment of the premises of Ref. 8 to which Ref. 9 was devoted, 
did not change the notion of very intense scattering. 

Among the papers on weakly nonlinear theory of inter- 
action of radiation with a plasma, mention should be made of 
Ref. 10, in which the generation of the first harmonics of the 
acoustic field under the action of a given field of beats of 
electromagnetic waves was studied. Such a process deter- 
mines the structure of the fields in SMBS. However, even 
before Ref. 10, a theory of generation by such beats of a 
strongly nonlinear field with an unlimited number of har- 
monics was put forward in Ref. 11 (a direct continuation of 
the work of Ref. 5). The theory of Ref. 11 was further devel- 
oped in Ref. 12 where, first, the generation of nonlinear, 
though small in amplitude, acoustical excitations was con- 
sidered. These excitations had a rich spectrum. Second, a 
theory of SMBS from a halfspace filled with a nonlinear 
weakly dissipative liquid was constructed. Reference 12, 
which is rich in theoretical results, did not answer the ques- 
tion of realizing the hope of Ref. 4 of suppressing SMBS by 
the nonlinearity of the acoustic field. This was so because the 
authors of Ref. 12 considered the problem of a halfspace, the 
reflection from which, for example always amounted to 
100% without account of dissipation. At the same time, the 
importance of the result of Ref. 12 should be noted. This 
work was also confirmed subsequently in Refs. 13 and 14 on 
the establishment of strongly nonlinear sawtooth distribu- 
tion of acoustical excitations under the action of an electro- 
magnetic field. 

An approach that differed qualitatively from Refs. 7-14 
was used in the weakly nonlinear theory of SMBS in Refs. 
15, where the formation of subharmonics of the acoustic 
field was taken into account. Under conditions correspond- 
ing to actual experiment, such a process can lead to signifi- 
cant SMBS suppression only when a very intense acoustic 
flux flows into the region of interaction of the electromagnet- 
ic radiation with the sound waves. The presence of such a 
flux can be brought about, for example, in a laser plasma 
with developed ion-sound turbulence. However, in this case, 
the presence of turbulent fluctuations is itself a new cause of 
reflection of the radiation.l6 In this connection, in our analy- 
sis below we shall neglect the flow of the sound wave into the 
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region of interaction, which makes our approach similar to 
that used in Ref. 7 to a certain degree. 

To be precise, we formulate below a theory of SMBS 
from a plasma layer of finite thickness. In contrast to the 
currently extremely popular (see, for example, Ref. 3) ap- 
proach of Refs. 17 and 18, which is used in the analysis of 
experiments on the action of intense radiation on a plasma, 
and which is restricted to the consequences of the three-wave 
problem of the interaction of a linear sound wave with two 
electromagnetic ones scattered and scattering, we consider 
the nonlinearity of the sound field. Inasmuch as, in contrast 
to Ref. 7, we consider the limit of negligible absorption, even 
the weakly linear theory that we have already developed pre- 
dicts a qualitative suppression of the SMBS from a rarefied 
plasma (a preliminary communication was published in Ref. 
19). We note here that the investigation of the strongly dissi- 
pative case in Ref. 20 demonstrated the significant attenu- 
ation of the weakly nonlinear effects by the strong sound 
absorption. As a supplement to the weakly nonlinear theory, 
which is suitable near the threshold of SMBS, we formulate 
below a strongly nonlinear theory of SMBS from a plasma 

critical density of the plasma, T is the temperature) the 
acoustic nonlinearity is insignificant and the SMBS can be 
described within the framework of the three-wave model. In 
the opposite limiting case, the three-wave model is valid only 
at very small reflection coefficients 

R < (ys/w,)2/(IE12/8nn,x~). 

2. For the description of the sound field excited by the 
electromagnetic field in the plasma, 

Z (r, t )  =Re E (z, t )  e-lOOt, 

we use the equation of dissipation-free nonlinear acoustics 
(see Ref. 12) 

where Sn = n - no is the perturbation of the density. The 
sound waves are propagated along the x axis, the variable 
a = x - u, t  describes the rapid change in the sound field in a 
system of coordinates moving with the speed of sound u s .  
Equation (2.1) holds at 

layer of finite thickness with weak sound absorption. Such a 1 >Sn/n,> 1 E 1 2/8.rrn, xT. 
theory allows us to obtain the dependence of radiation re- 

The electromagnetic field E(x,t ) consists of incident and flected in SMBS over a wide range of the intensity of the 
scattered waves. Taking it into account that the polarization radiation incident on the plasma. 

The initial equations, which describe the interaction of vectors of both waves are parallel (this corresponds to the 

the electromagnetic field with the sound field, are formulat- most intense interaction), we have 

ed in the second section. In this case the sound field is de- 
scribed by the equation of nonlinear acoustics. The condi- 
tions of applicability of the three-wave model, which 
describes the SMBS process with neglect of nonlinearity of 
the sound field, are obtained in the third section. The next 
section is devoted to weakly nonlinear SMBS theory with 
account of only the second harmonic of the sound. In spite of 
the comparatively narrow region of applicability, this theory 
allows us to demonstrate the strong effect of the acoustic 
nonlinearity and elucidate the effect of saturation of the 
SMBS in a rarefied plasma. The effect of the higher harmon- 
ics of the sound is considered in the fifth section, where it is 
shown that, within the framework of the weak nonlinearity 
approximation, account of the third harmonic does not lead 
to any change in the results. 

A strongly nonlinear SMBS theory is formulated in the 
sixth section. This limit corresponds to excitation of acoustic 
oscillations of comparatively small amplitude by beats of 
electromagnetic waves. The obtained distributions of the 
fields in the plasma as functions of the reflection coefficient 
on the amplitude of the pump wave are an extension of the 
results obtained in the fourth section to the case of a large 
excess over the SMBS threshold. 

It should be emphasized that the approximation in 
which sound dissipation is neglected, which is used in this 
work, has a wide range of applicability. Actually, a compari- 
son with Refs. 7-12 shows that under the conditions of 
strong damping 

(y, is the sound damping decrement, w, is its frequency, 
\EI2/8.rr is the intensity of the electromagnetic field, n, is the 

where k = (w,/c)(l - n ~ n , ) " ~ .  Since IEI2 is a periodic func- 
tion of the variable a with period ~ / k ,  the total perturbation 
of the density can be represented in the form 

Then the following set of equations follows from (2.1) for the 
sound harmonics : 

m 
dv, 1 8-1 

-=- 
d x  2 keoef'6.,,-ks(2 ~v.~.v.+..- ~v..v.-..). (2.4) 

Substitution of (2.2) and (2.3) in the equation for the electro- 
magnetic field 

leads to the appearance of terms containing not only the 
dependence on the variable a with period 2 ~ / k ,  but also the 
higher harmonics with period ~ / s k .  However, the higher 
harmonics of the field produced by such terms turn out to be 
small because of the smallness of the parameter (kL ) - I ,  

where L is the characteristic scale of change of the field in 
terms of the slow variable x. Such small corrections are ne- 
glected in the set of truncated equations below. Therefore, a 
direct effect on the electromagnetic field is exerted only by 
the fundamental frequency of the sound field (cf. Ref. 12): 
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a $ + n / k  

de,/dx=-i(nk2/2nn,) e l  ( x )  5 dadrr (x, a )  
0 ,  

atfnlk P5) 
del/dr=i ( a k 2 / 2 n n o )  eo (x) 5 dadn (r. a )  

x exp (2ika) =-akvl'eo/2, 

wherea = (n,/no - I)-'.  The set of equations (2.4) and (2.5) 
is the starting set for our nonlinear SMBS theory in a plasma 
layer. 

3. We limit ourselves to the consideration of SMBS. Let 
the plasma layer fill the space 0 < x < I, let the incident elec- 
tromagnetic wave and the sound excitations propagate in the 
positive direction of the x axis, and let the scattered (reflect- 
ed) electromagnetic wave propagate in the opposite direc- 
tion. The amplitudes of the entering acoustic and the scat- 
tered electromagnetic waves will be assumed to be equal to 
zero and the amplitude of the incident wave to be given: 

v. ( 0 )  =0, el  ( I )  =O, e ,  ( 0 )  =I,", (3.1) 

where I = E (0) /8~n ,xT is the dimensionless intensity of 
the pump wave. We limit ourselves here to the weakly-non- 
linear regime, assuming smallness of the sound harmonics. 
Then the set ofequations (2.4) and (2.5), with account of only 
the first two sound harmonics, takes the form 

We note that the neglect of dissipation of ion sound, whose 
decrement of damping by electrons has the form 

y, = k u , ( ~ z r n / 8 ~ ) ' ~ ~ ,  

is possible in every case if the thickness of the plasma is not 
very great: 

kl<ku,/y ,- (!\f/zm)"'. (3.3) 

We shall assume that this condition is satisfied below. 
The first three equations of the set (3.2), with the bound- 

ary conditions (3.1) at v 2 r 0 ,  have been widely used pre- 
viously for the analysis of SMBS. They correspond to the 
textbook statement and analysis of the problem of the inter- 
action of three waves. Here a systematic description is 
achieved of the weakening (exhaustion) of the electromag- 
netic pump wave in the layer at the expense of an increase in 
the amplitude of the scattered wave. At the same time it is 
evident that the presence of the scattered wave leads to 
pumping of the fundamental of the sound wave. The interac- 
tion of v, and e ,  determines the nonlinear scattering law in 
the three-wave model. 

However, with increase in the fundamental of the 
sound, the second harmonic and its reaction on the funda- 
mental (and, correspondingly, on the scattered electromag- 
netic wave) increase even more rapidly. The purpose of our 
further study is to make clear the conditions under which the 
textbook three-wave formulation turns out to be inadequate 

for the description of the SMBS and the role of the second 
harmonic of the sound become predominant in the scatter- 
ing. 

Along with this, we must keep it in mind that the set 
(3.2) was obtained under the assumption of the smallness of 
the amplitudes of the higher harmonics of the sound. To test 
this assumption, we use below the equation for the sound- 
field third harmonic 

d ~ , / d ~ - G k \ ~ ~ i ~ ~ .  (3.4) 
which arises as a result of the merging of the fundamental 
and the second harmonic. 

Proceeding to the analysis of the solutions of the set 
(3.2), we first establish the region of applicability of the usual 
solution of the three-wave problem. We designate the fol- 
lowing as solutions of the set (3.2) at v, = 0: et' ,  ep', vy'. 
These functions satisfy the set of equations 

( 0 )  (0) de,, / d ~ = - a k e l o '  vjO' / 2 ,  de,  /dx=-akeAo' v lo '*  / 2 ,  

Using the integrals of this set of equations, 

and also the boundary conditions (3. I), we can write down 
the solutions explicitly with the help of the Jacobi elliptic 
functions 

( 0 )  ( 0 '  eo (x) =I" dn ("5 R , ) ,  el  (x) =RoI"l cn (g, Ro) , 

where 6 = (1/2)kx(a1)'/~, R, = 1 ey'(O)/ef'(O)( is the reflec- 
tion coefficient, the value of which is found from the require- 
ment of the satisfaction of the boundary condition (3.1) on 
the right-hand boundary of the layer x = I: 

where K is a complete elliptic integral of the first kind. 
Equation (3.8) has solutions only at p> 1. The condition 

p = 1 gives the instability threshold of the SMBS in a plasma 
layer of finite thickness. In the near-threshold region 
p - I g 1, in accord with (3.8), there is a linear dependence of 
the reflection coefficient R A = 4@ - I). 

In addition, we find corrections to the solution (3.7) that 
are connected with the account of the second harmonic of 
the sound. Its intensity v ~ ' ( x )  is found with the help of (3.7) 
from the last equation of the set (3.2): 

(3.9) 
where E is an elliptic integral. Comparing vy' and vy' with 
the help of (3.7) and (3.9), we find that the assumption of 
weak nonlinearity of the sound wave v2<v, corresponds 
near the instability thresholds of the SMBS to the following 
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inequality, which is of importance for us, 

This same inequality arises also when finding the amplitude 
of the third harmonic with the help of Eq. (3.4). At large 
values, greatly exceeding the threshold @) l ) ,  the expression 
k x ( a ~ ) " ~  on the right-hand side of (3.9) can reachp. There- 
fore, under these conditions, weakness of the nonlinearity of 
the sound wave is realized at 

pea.  (3.11) 

It is taken into account here that according to (3.8), at values 
far exceeding threshold, the reflection coefficient is close to 
unity, in accord with the usual three-wave theory. 

The formulas (3.10) and (3.11) allow us to perceive the 
interesting dependences on the plasma density that charac- 
terize the possibility of use of the assumption of weak nonlin- 
earity of the sound. Thus, in a plasma with density close to 
critical, when a ) l ,  the effects of nonlinearity of the sound 
are weak even far above the instability threshold. On the 
other hand in a rarefied plasma at a(1, the assumption of 
weak nonlinearity of the sound is satisfied only in the near- 
threshold region. Therefore, it is in the rarefied plasma that 
we can expect a significant manifestation of the effects due to 
the nonlinearity of the sound waves. 

4. We now return to the solution of the set of equations 
(3.2), keeping in mind both the depletion of the pump and the 
generation of the second harmonic of the sound. The set (3.2) 
has three first integrals: 

and in accord with the boundary conditions (3.1) we have 
C ,  = 1(1 - R 2 ) ,  C2 = I ,  C3 = 0 ,  where R = le,(O)/e,(O)l is 
the reflection coefficient. With account of (4.  I ) ,  the set (3.2) 
for the four complex functions e,, e l ,  v, ,  and v2 reduces to 
two equations for the complex amplitude of the second har- 
monic: 

s = ( a 1 l 2 / ~ I  'I2)v2 vy2/ lv ,  l 2  
and for the total amplitude of the soundfield 

RZ 
(I -RZt2)  (I-t" - 4 -  ( t2 - l s l z )  (Im s)' , 

a2 I '" 
where 6 = 1/2kx(aI)'I2,  and the boundary conditions (3.1) 
reduce to the following: 

wherep = ~ - I k l  (aI)'12 is the quantity, introduced in the 
third section, that characterizes the excess over threshold. 
The last condition in (4.4), written down for the right-hand 
boundary of the region, is used to find the reflection coeffi- 

cient R .  The solutions of (4.2) and (4.3) determine, in particu- 
lar, the distribution of the sound field at the fundamental 
frequency: 

and also the distribution of the electromagnetic fields of the 
incident and scattered waves: 

I e , I = [ I ( I - R 2 t Y ) ] ' " ,  I e , I = R [ I ( l - t 2 ) ] ' " .  (4.6) 

Returning to the solution of the set (4.2) and (4.3), we 
first show that Ims = 0 follows from the boundary condi- 
tions (4.4). Actually, taking the imaginary part of Eq. (4.2), 
we have 

d R 
- Im s = 4 -Re s.Im s.  
dc a 

Consequently, 
rf 

Im s(6 ) = Im s(O)exp(4R /a)  d l  'Re s ( l  '). I 
the reality of the function s ( < )  over the entire region 
0 < 6 < 73-p/2 then follows from the first condition of (4.4). We 
also note that, in accord with the solution (4.8) obtained be- 
low s - R  / a .  Under conditions of weak nonlinearity of the 
sound wave, the only conditions under which the set (4.2) 
and (4.3) holds in accord with (3.  lo) ,  we have R g a .  There- 
fore, even in this case, the change of Im s over the thickness 
of the layer can be neglected when Im s(0) # 0 .  

In accord with (4.4), we set Im s = 0 in what follows. 
We then obtain the following for s(t ) from the set (4.2) and 
(4.3) 

a n d s ( t = O ) = O , O < t < l .  
The smallness of the higher harmonics of sound, as ap- 

plied to (4.7), corresponds to the inequality s<t 5 1 ,  which is 
satisfied under the conditions of smallness of the parameter 
4R / a (  1 .  Here we can neglect the terms2 in the right side of 
(4.7). We than have for s(t ) 

4 
s  ( t )  = -, [ F (arcsin 1, R )  -E (arcsin t ,  R )  1, 

aR 
(4.8) 

where F and E are elliptic integrals of the first and second 
kind, respectively. We than have, at R 2( 1 ,  

s ( t )  = ( 2 R l a )  [arc sin t - t ( l - t 2 ) ' " ] .  (4.9) 
If, however, we assume that t( 1 ,  we get from (4.9) 

Keeping in mind the increase of s(t ) with increase in t ,  we 
write down the inequality s ( t  in the most "dangerous" place 
on the right-hand boundary of the layer at t = 1. It then 
takes the form 

K ( R )  -E ( R )  e a R I 4 ,  (4.10) 

where K and E are complete elliptic integrals. 
It follows from formula (4.10) that at R that is not small 

in comparison with unity the second harmonic of the sound 
wave can be assumed to be small only in a plasma with a 
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density that is close to critical, when a is large. If, however, 
we assume smallness of the reflection coefficient R '< 1, then 
the inequality (4.10) takes a form similar to (3.10): 

This indicates an important restriction on the applicability 
of a theory that neglects the effect of the second harmonic of 
thesound. Actually, it is just the latter inequality that should 
be satisfied if we apply the formula (4.9) to the case of a 
rarefied plasma, when a is small and when the limitation 
imposed by the condition (4.11) is especially significant. 

The obtained dependence (4.8) allows us to solve Eq. 
(4.3) and to represent the dependence 6 ( t  ) in the form 

:=F'(y. R )  + (8i.:x2R2) { [ F ( ( F ,  R )  - -E( (F,  R ) I 3  
--2 c t g  q[l-R' \I,,' y] [F(q .  R )  -E(q ,  R ) I 2  
- ( ' + I { -  cob' q-2R- ~111' (F) [I ' ( (c ,  R )  -E ((F, R ) ]  

-R-E ( ( I .  R )  -H>sln q c os [ I-R2 sin- q ] ) (4.12) 

with accuracy up to terms - (R /a)'< 1. Here q, = arcsin t .  
Using the last of the boundary conditions (4.4) 
f (t = 1) = ~ p / 2 ,  we find the following equation for the re- 
flection coefficient: 

where K = K(R ) and E = E(R ) are complete elliptic inte- 
grals. 

For a dense plasma, with density close to critical, when 
a) 1, the dependence R (p) follows from (4.13), in particular 
in the case 1 - R '(1: 

R ' = 1 - 16exp [ - ap(1 - 2a2p2/3a2) 1. 
Here the condition 2a2p2d3a2, which determines the appli- 
cability of the approximation of -veak nonlinearity of the 
sound, must be satisfied (cf. (3.11)). 

A qualitative effect develops in a rarefied plasma when 
a(1. Here we obtain the following from (4.13) under the 
conditions (4.1 1) (cf. Ref. 19) 

This formula corresponds to the condition (4.1 1) in the case 
of small excess above threshold p - 1 ( 1, when the nonlin- 
earity of the sound field can be regarded as small. At the 
same time, such a weak nonlinearity, according to (4.14), 
decreases the coefficient of reflection from the rarefied plas- 
ma by a factor aP2, 1 in comparison with the prediction of 
the three-wave theory. 

The observed strong effect of the nonlinearity of the 
sound field in a rarefied plasma is due to the fact that under 
the conditions a< 1 the usual effect of pump depletion turns 
out to be unimportant. For an illustration of this fact, we 
consider the energy distribution of the field of a scattered 
electromagnetic wave in the layer. Here, in accord with 
(4.11) and (4.14), we limit ourselves to the case R ( 1. Then, in 
accord with (4.6) and (4.12), we have 

Ie , (E)  12=R21cos2 cp(E),  
(4.15) 

R" R 
g=cp + - (cp - s i n  rp cos (F) + - ((F + s i n  cp cos cp-2rp2 ctg cp) . 

4 a2 

FIG. 1. Energy distribution of the scattered wave in a plasma layer at 
p = 1.5 for a = m (curve 1) and a = 1 (curve 2). 

A graph of the dependence of le, I *  on f at fixed excess above 
thresholdp = 1.5 is shown in Fig. 1 for a = oo , which corre- 
sponds to the three-wavemodel, and fora = 1. It is seen that 
even at a = 1 (this corresponds to a plasma with a density 
equal to one half of the critical value) the intensity of the 
scattered field falls by a factor of 2.5 upon decrease of the 
density of the plasma by a factor of 2. Along with this, the 
form of the distribution of the amplitudes of the electromag- 
netic waves and of the fundamental of the sound depends 
very weakly on the parameter a .  For illustration of this fact, 
we show in Fig. 2 the t (6 ) dependence at fixed excess above 
thresholdp = 1.5 for two extreme values a = 0 and a = co . 
The closeness of the curves in Fig. 2 allows us to draw the 
conclusion that the basic effect of the sound nonlinearity in 
the case R 4 1, R (a reduces to a change in the amplitudes of 
the scattered and the sound waves. Along with this, to find 
the distribution of the fields of the scattered and the sound 
waves in the plasma layer, it suffices to make use of the solu- 
tions of the three-wave problem (3.7), replacing R,  by the 
value of the reflection coefficient (4.14) found above. 

5. Having observed the substantial influence of the sec- 
ond harmonic of the sound, we must now make clear the 
conditions under which account of the higher harmonics 
will change the discussed effect of reflection attenuation. 
For this purpose, we consider the field of the third harmonic 
of the sound waves. Denoting s, = (U'/*/RI 1'2)v3 and using 
the expression (4.5) for the amplitude of the fundamental, we 
rewrite (3.4) in the form 

On the other hand, for comparison of the fields of the har- 
monics, in accord with the results of the previous section, it 
makes sense to consider the dependence ofs, on t .  Then, with 
the aid of (5.1) and (4.3), we obtain the equation 

FIG. 2. Distribution of sound-wave amplitude in a plasma layer at u = m 
(curve 1) and a = 0 (curve 2); p = 1.5. 
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which enablks us to find s3(t) directly, subject to the bound- 
ary conditions,(t = 0) = 0, with the help of the results of the 
previous section. As applied to the case of small reflection 
R '<I, using the condition (4.91, we find 

s3(t) = 2 4 ( R l ~ ) ~ [ t ( l - t ~ / 3 )  - (I-t")' arc sin t]. (5.3) 
The amplitude of the third harmonic grows from the zero 
value at t = 0 to a maximum at t = 1, when it reaches the 
value s,(t = 1) = 16R '/a2. A comparison of the obtained 
expression (5.3) with the formula (4.9) shows that the third 
harmonic of the field of the sound wave turns out to be small 
in comparison with the second harmonic in the case R <(T/ 

16)a. 
The effect of the third harmonic manifests itself in a 

weakening of the growth of the second harmonic because of 
the change in the last equation of the set (3.2): 

dv2/dx = 2k< - 4kv:v,. 

The last term in this equation is negligible, as is shown by a 
comparison of (5.3) with (4.9, upon satisfaction of the ine- 
quality s,< 1 or 32R '<a2. We note here that modification of 
the equation of the second harmonic and account of Eq. (3.4) 
lead to the following modification of the integral C2 (4.1): 

C2 = (eo12 + a(lvl12 + lv2I2 + 2/3lv3I2). 
It also follows from this that under the conditions of satisfac- 
tion of the inequality (4.1 1) the effect of the third harmonic 
can be neglected. All this indicates that the qualitative de- 
crease, and realized under the conditions (4.1 I), of the reflec- 
tion due to the SMBS from a rarefied plasma is caused only 
by the comparatively small second harmonic of the field of 
the sound wave, and the higher harmonics do not change the 
result (4.14) under these conditions. 

6. Although the approximation of weak nonlinearity of 
the sound field, which was used in the preceding sections, 
has led us in the case of a rarefied plasma to a qualitative 
decrease of the reflection coefficient, it is seen at the same 
time that the region of applicability of the resutls is compara- 
tively narrow. In the most interesting case of a rarefied plas- 
ma (a( 1) the weak nonlinearity approximation of the sound 
field is satisfied in the case of comparatively small values of 
the reflection coefficient (R < a (  I), which occurs, according 
to (4.14), only in the near-threshold region Ip - 1 5; 1). In this 
connection, it is important to consider the opposite case of a 
large excess over threshold Ips 1), when, in correspondence 
with the results of the third section, the effects of nonlinear- 
ity of the sound field should become strong in a rarefied 
plasma. 

Since, at R 5 a in accord with the previous section, the 
amplitudes of the various harmonics of the sound waves are 
comparable in magnitude, we shall not start out with the 
expansion (2.3) below, but shall make use directly of the set 
of equations (2.1) and (2.5), which we represent in the form 

deoldx=-akvlel/2, del/dx=-akv,'e,/2, 

dv (x, a) ---- - 
(6.1) 

d x 
[ v 2  + Re (e,e.'eZik') 1, 

2 aa 

where 
a8+n/k 

rj, (x) =i(kln) J dav ( x .  a)  e-2ikr' .  rl(x, a) =6n(x, a)/n.,. 

The set of equations of the form (6. I), supplemented by 
account of the sound damping, was obtained in Ref. 12 on 
the basis of the theory of SMBS of light in a half-space. How- 
ever, since in the case of a half-space such a system of equa- 
tions leads to complete reflection of the light, Ref. 12 does 
not contain the answer to the problem of interest to us, 
namely, the dependence of the reflection coefficient on the 
intensity of the scattered radiation, since such a problem can 
be posed in a spatially homogeneous plasma only for a layer 
of finite thickness. 

For analysis of the consequences that follow from the 
set of equations (6.1) it is convenient in introduce the new 
functions 

eoe: = Irfy)e-'@@), v(x, a) = (21)"~b Cy, 0) ,  

which depend on the slow dimensionless coordinate 
y = kx(1 /2)'12 and the new fast variable 8 = 2ka + @. Here, 
using leJ2 - [ell2 = 1 ( 1  - R 2, (cf. (4.1)), wecan write down 
the following set of equations in accord with (6.1): 

db dm d b  db2 -+--= -2-+rsinO, 
d y  dy d0 d 0 

where 

The system (6.2) holds in the interval 

0 < y < y,,, = k1(1/2)'/~ = rp/*. 

The variable 8 corresponds to a fast, oscillatory dependence 
of the sound field excited by the beats of the scattered and 
scattering electromagnetic waves, with period 2 T.  The peri- 
od of the driving force determines the period of the function 
b Cy,B ). It follows from the first equation of the set (6.2) that 
the average value of the function b (over the period A8 = 2a) 
turns out to be independent of the variable y, and therefore, 
by virtue of the vanishing of the amplitude of the sound field 
on the left-hand boundary of the layer, such an averaged 
value turns out to be equal to zero. Then the function b Cy,8 ) 
should satisfy the following conditions: 

er+zn 

b(O.0) =O. b(y, 0+2n) = b ( y ,  0). J d0 b(y, 0) =O. 
er 

The boundary conditions 

correspond to the absence of a scattered wave at the right- 
hand side of the layer. Finally, the condition 

r (0) =R (6.5) 

determines the reflection coefficient of the electromagnetic 
wave. We note that the distribution of the electromagnetic 
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fields in the layer is given by the formulas 

~eo,~2='/21{[(1-R.L)~+[I~~~] & ( I - R 2 ) ) .  (6.6) 

An equation similar to the first equation of the set (6.2), sup- 
plemented also by the account of viscosity, was used in a 
number of studies1'-l4 of the excitation of nonlinear sound 
waves by the beats of two electromagnetic waves. 

We can write down the simplest solution of Eq. (6.2) if, 
following Ref. 12, we assume that the amplitude of the elec- 
tromagnetic field r(y) is such a slow function of the variable y 
that in the first equation of the set (6.2) we can neglect the 
derivatives with respect toy. Then, keeping it in mind that 
this equation reduces to the algebraic one 2b ' + r cos 8 
= const, and also taking into account the last two condi- 

tions of (6.3), we obtain (cf. Ref. 12) 

b ( ~ .  0 ) =  [ r ( ~ ) ] '  sin ( 0 1 2 - H X ) ,  (211-1)~~<0<(211+1).~. 

(6  71 
I - . ' ,  

where n is an arbitrary integer. Here we must note that the 
solution (6.7) is inaccurate near the left boundary of the lay- 
er, where the first condition of (6.3) should be satisfied, 
which, if (6.7) is used literally, contradicts the condition 
(6.5). Actually, this means that the region of rapid change of 
b (y,8 ) is located near y = 0. As we shall see below, the solu- 
tion (6.7) is also violated near the right boundary of the layer. 

The solution (6.7) is a sawtooth wave with discontinui- 
ties at the points 8, = (2n + 1 ) ~ .  AS is shown in Refs. 1 1-14, 
account of dissipation smooths out such discontinuities to a 
certain extent. This turns out to be unimportant for our 
~roblem of finding the field of the scattered wave and the - 
reflection coefficient, since it is necessary for us to know only 
the fundamental of the sound wave. According to (6.7), 

bi (y) = ( 4 1 3 ~ )  [ r ( y ) ]  ">. (6.8) 

Since Im b, = 0, we have @ = 0 according to (6.2) and the 
boundary condition (6.4). Finally, in accord with the second 
equation of (6.2) and (6.8) we obtain the following simple 
equation which determines the field of the scattered wave: 

Just as with formulas (6.7) and (6.8), this equation is inaccur- 
ate in the immediate vicinities of the left and right boundar- 
ies of the layer. The solution of Eq. (6.9) that satisfies the 
boundary condition (6.4) is written in the form 

Here, in accord with the condition (6.5),  the dependence of 
the reflection coefficient R on the excess above threshold is 
given by the following equation: 

Before we discuss the conclusions that follow from Eq. 
(6.1 I), we shall dwell on the conditions of applicability of the 
solutions (6.7) and (6. lo), obtained under the assumption of 
satisfaction of the inequality 

)8b!dy)  <<I.) sin 01, (6.12) 

which is necessary for neglect of the left side of the first 
equation of (6.2). When using (6.7) and (6. lo), the inequality 
(6.12) can be represented in the form 

It then follows that our approximation is violated near the 
points of discontinuity 8,. However, the size of the region in 
which the relation (6.13) is violated is smaller the lower the 
density of the plasma. This is precisely why the discontin- 
uous approximation (6.7) can be used at a(1. Another re- 
gion of violation of the inequality (6.13) is located near the 
right edge of the layer, cn(<, 1/2/2)-+1. Here (6.13) takes the 
form 

3/2npz<< ( l - R 2 )  (1-xI1)'Jcos (012-nn) 1 .  (6.14) 

It then follows, that at values of the reflection coefficient 
that are not too close to unity, the size of the region near the 
right edge, in which the condition (6.12) is violated, turns out 
to be smaller the higher the excess above threshold @> 1). In 
discussing the condition for the applicability of the approxi- 
mation (6.7)-(6. lo), we must consider the inaccuracies of the 
solution (6.7) near the left boundary of the layer, as men- 
tioned above. The corresponding approximate expression 
forb (y,B ), which satisfies the first ofthe boundary conditions 
(6.3), can easily be written down at small values of y, when 
r = R. Here we have 

b ( y ,  0 )  =yR sin 0-2/3y3R2 sin 2 0 f  O ( y 5 R 3 ) .  (6.15) 

This formula describes the growth of the sound field near the 
left boundary of the layer, when the condition 

( ~ l y , , ) ~ ~ 3 a / 2 n ~ p ~ R  I cos 0 1 (6.16) 

is satisfied. Since the transition region (6.15) and (6.7) corre- 
sponds to the values y- R -Ii2, the comparative narrowness 
of the transition layer is assured by the inequality 

yE,u,=n2p2/2a>i, (6.17) 

which holds because of the sufficiently large excess above 
threshold ( p  > 1) and the rarefaction of the plasma (a < 1) (see 
Fig. 3). 

We now proceed to a discussion of the consequences of 
the Eq. (6.1 1) which determines the reflection coefficient. 
We shall first show that, in the limit ap2, we obtain 

FIG. 3. Distribution of sound amplitude (curve 1) and a scattered electro- 
magnetic (curve 2) wave in a layer according to the solution of Eqs. (6.2) at  
a value of the parameter a / R  = 0.23. 
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FIG. 4. Dependence of the reflection coefficient R on the excess over 
threshold of SMBS in the three-wave model (curve 1) and with account of 
the acoustic nonlinearity for ndn, = 0.25 (curve 2) and ndn, = 0.1 
(curve 3). 

from (6.11). Here, in the first place, the reflection coefficient 
is small compared with unity; second, the reflection coeffi- 
cient increases with increase in the intensity of the scattered 
wave and in proportion to that intensity; third, at p- 1 Eq. 
(6.18) is approximately the same as (4.14) obtained above as a 
result of the theory of weak nonlinearity of the sound. Thus, 
the dependence of the small rzflection coefficient R @)( 1 for 
large and small superthreshold is given by formulas (4.14) 
and (6.18), respectively. At values of R (p) that are not small, 
we must use the formula (6.11). At the same time, for very 
intense scattered fields, whenap2) 1 or, what amounts to the 
same thing. 

when the reflection coefficient approaches unity, we have 
the following simple formula: 

The power law of the approach of the reflection coefficient to 
unity distinguishes the result (6.20) qualitatively from the 
exponential law that appears in the theory neglecting the 
nonlinearity of the sound field. 

An illustration of the dependence for the reflection co- 
efficient that has been obtained is given in Fig. 4, where the 
dependence R '(p) is given both for not taking into account 
the nonlinearity of the sound field of the three-wave model 
(curve 1) and for our theory at a = 1/3 (curve 2), which cor- 
responds to a plasma with density one fourth that of critical, 
and at a = 1/9 (curve 3), which corresponds to the condition 

ndn, = 0.1. We note here that the numerical calculations 
indicate the comparatively broad range of application of the 
asymptotic formulas (6.18) and (6.20). That is, the first of 
these is applicable at a2 5 R 5 0.1, and the second at 
R 2 0.6. A comparison of the curves of Fig. 4 shows that, in 
spite of the fact that in our dissipation-free theory, the reflec- 
tion coefficient tends to a value equal to unity in the limit of 
high excess above threshold, our allowance for the nonlin- 
earity of the soundfield significantly suppresses the growth 
of R Ip). With decrease in the density of the plasma, this sup- 
pression of the SMBS becomes ever more substantial. 
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