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A theoretical investigation is made of a nonlinear interaction of a high-current ultrarelativistic 
electron beam with a cold plasma. It  is shown that external modulation not only provides an 
effective means for the control of the spectrum of instabilities [Ya. B. FaTnberg, Sov. J. Plasma 
Phys. 3,246 (1977)], but also largely determines the output power of a beam-plasma system, since 
the maximum of the oscillation energy corresponds to harmonics with small increments whose 
growth during the linear stage is partly suppressed by the external modulation. A nonlinear 
saturation of the field amplitude is due to a change in the waveguide properties of the plasma in a 
strong electric field and due to a considerable increase in the phase velocity of a wave (disappear- 
ance of a slow wave). Regular field pulses which appear in such a beam-plasma system are 
characterized by phase discontinuities near the amplitude maxima, which is typical of relaxation 
processes, and are described by a nonlinear equation with a small parameter in front of the 
highest-order derivative. 

PACS numbers: 52.35.Mw, 52.40.Mj 

1. INTRODUCTION ments. Since the complex correction to the frequency 
Experimental investigations of the collective interac- 

tion of high-current relativistic monoenergetic electron 2-"~(-1rtiI'Z)v'"/y~ JEI < < ~ ' ~ / y ~  

beams with plasmas have confirmed the theoretically pre- I E l >vlh/yo 
(2) 

dicted feasibility of control of the spectra of instabiliiie; by decreases on increase in the detuning = - o;/o; < 0, 
the application, at the input of a beam-plasma system, of a the change to small increments 6 = Im Aw is equivalent to 
regular signal stronger than the noise level in the plasma or the use of modulation frequencies much lower than the 
by initial modulation of the electron beam.' The necessary Langmuir frequency of the plasma. ,, 
power represents 10-4-10-6 of the oscillation power and it In the frequency range 2 vl"/yo, we obtain esti- 
slows down a transition of a beam-plasma system to a turbu- mates 
lent regime, suppresses the effects of quasilinear broadening 
of the oscillation spectrum,'" and facilitates conversion of 
the beam energy into a monochromatic wave with a regular 
phase frequency equal to the modulation frequency.' 

It follows from Ref. 5 that the field energy density of the 
most unstable mode of frequency om = w,(o, and w, are 
the modulation and plasma frequencies) grows on increase in 
the energy density in an electron beam proportionally to 
a = ~ " ~ y , ,  where Y = nb/np41, nb and n, are the beam and 
plasma densities, and yo is the relativistic factor, so that if 
a 5 1, the oscillation energy density becomes comparable 
with the beam energy density. However, in the case ofbeams 
with a high energy density so that a > 1, when phase oscilla- 
tions are suppressed by the relativistic increase in the mass6 
and the instability is stabilized by the plasma nonlinearity, 
the proportion of the energy transferred from the beam to 
the field decreases considerably7: 

Here, vo is the initial velocity in the beam, m is the electron 
mass, and E is the electric field. 

We shall consider the possibility of increasing the effi- 
ciency of operation of a beam-plasma system in the range of 
ultrarelativistic energy densities by converting the beam en- 
ergy into the energy of a field of harmonics with small incre- 

which generalize the expressions in Eq. (1) to the case of high 
values of lei. The dependences of the ratio of the field and 
beam energy densities on the value of u are plotted in Fig. 1. 
At low values of the parameter a 5 1 an increase in the di- 
mensionless frequency detuning I E J  is accompanied by a re- 
duction in the oscillation energy compared with the maxi- 
mum mode E = 0. Conversely, in the a > 1 range the curves 
have maxima at JEJ =PI3, where the field energy density is a 

FIG. 1 .  Qualitative dependences of the field energy density in a 
plasma w = E Z/4nn,mczyo, on the beam modulation frequency 
u = 1 . ~ 1  yov-'I3. Curves 1-4 correspond to the values of the pa- 
rameter a = 1.0,0.4, 1.5, and 2.0. 
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times greater than the corresponding values for the maximal 
mode. 

In the regions of negative slope of the curves the fre- 
quency of phase oscillations of beam electrons trapped by 
the wave field 

is of the order of the increment and the instability is stabi- 
lized by the nonlinearity of a low-density A postive 
slope corresponds to the inequality 

and the effects of trapping of beam electrons by a wave, sup- 
pressed by external modulation, are manifested less strongly 
than the plasma nonlinearity. When the inequality is strong, 
the plasma nonlinearity is the dominant effect and it limits 
growth of the field amplitude, whereas the beam remains 
linear (modulation of the density at the field maximum is 
weak: )6n, 1 gn,). 

The last case is relatively simple to investigate because 
there is no need to model a beam numerically. The range of 
validity of an analytic solution given below is limited by the 
inequalities 

the first of which specifies that the increment 6 should be 
small compared with the maximum value, whereas the sec- 
ond allows us to neglect the trapping of beam electrons by a 
wave and to assume that the electron beam is linear. Since 
the correction to the frequency given by Eq. (2) is pure imagi- 
nary, an increase in the field amplitude is not accompanied 
by a linear phase drift. Therefore, near the amplitude ex- 
trema a nonlinear "dephasing" takes place as a result of 
which the electron beam goes over abruptly (compared with 
a small parameter p = 6 /lei 4 1) to a state which is in anti- 
phase with the wave and the sign of the derivative of the field 
amplitude is rever~ed.~'  

The inequalities of Eq. (4) are compatible in the ultrare- 
lativistic range of the beam energy densities characterized by 
a) 1, and the energy density carried by high-power regular 
Langmuir pulses of frequency wm = w,(l + ?13)-'12 

reaches the value ~ ~ ' ~ n , r n c ~  and is independent of the beam 
energy. 

2. SYSTEM OF NONLINEAR EQUATIONS 

It follows from Ref. 6 that an instability of an ultrarela- 
tivistic monoenergetic beam v'I3 yo) 1 in a linear cold plasma 
is described by a system of nonlinear equations for the com- 
plex field amplitude E (t ) and the beam velocity v(t ): 

where vo = v(0) and yo = y(0). Slowing down of the beam is 
accompanied by a reduction in the ratio (v/v,)~ and, conse- 
quently, the beam nonlinearity does not suppress the insta- 
bility. Therefore, it is necessary to allow for the plasma non- 

linearity, i.e., for the dependence of the plasma fpequency on 
the wave field amplitude. 

The field amplitude is governed by a system of nonlin- 
ear hydrodynamic equations of motion of a plasma whose 
solution for an arbitrary electron beam density should be 
sought in the self-consistent approximation in the form of a 
wave 

E (t, z )  =Re E (t) exp [io ( t - z / c ) ]  . (6)  

However, in the case of a low-density beam when the incre- 
ment is small compared with the plasma frequency, the 
problem simplifies greatly because the beam makes contri- 
bution only to the increment and the waveguide properties of 
a beam-plasma system are governed mainly by the plasma. 
This makes it possible to ignore the presence of the beam in 
the determination of the nonlinear correction to the plasma 
frequency and then use Eq. (5) replacing in it the plasma 
frequency o, with its field-dependent value w,(E). In the 
case of waves of the E (t  - z /c )  type the system of equations of 
motion of the plasma electrons and the Poisson equation 
lead to the following nonlinear equation 

w""/,opZ [(i-@) -2-1] =0, (7) 

where @ = eE /mew,, and a prime denotes a derivative with 
respect to the total argument. 

In the case of small amplitudes I@ 141 the nonlinear 
oscillations described by Eq. (7) are nearly harmonic and 
their frequency is1 

opz(~)=0p2(1-3/81 ~ 1 ~ ) .  (81 

It should be noted that the above expression is identical with 
the analogous formula in Ref. 7 where an allowance is made 
only for the relativistic correction to the plasma electron 
mass in the field of a wave. 

Using Eq. (8) and expressing in Eq. (5) the beam velocity 
in terms of the field amplitude, we obtain a nonlinear equa- 
tion 

In the ultrarelativistic limit 1 considered here 
the contribution of the electron beam to the nonlinear term 
of Eq. (9) represents a small correction to unity and the cor- 
responding term can be omitted. For the mode with the max- 
imum increment (2) in terms of dimensionless variables 

Eq. (9) has no algebraic parameter and can be integrated only 
n~merically. '~ The field amplitude varies from the initial 
value to Em with a period of the order of several reciprocal 
increments. Hence, we obtain the second estimate of Eq. (1). 

3. RELAXATION OSCILLATIONS 

The presence of external modulation of frequency 
om <a,, satisfying the condition J E J ) V ' / ~ ~ ~ - ' ,  alters dras- 
tically the nature of the instability, because in accordance 
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with Eq. (2) the frequency correction becomes purely imagi- 
nary and the increase in the amplitude is not accompanied by 
a linear drift of the field phase. 

Bearing in mind the presence of an additional, com- 
pared with Eq. (lo), parameter (&I, we shall represent Eq. (9) 
in the form 

ipy"'+[(l--  1 y l Z )  y]"-y=O, 
!/=EIEnL, Em2=) E 1 EpZ, ~ = 6 t ,  (11) 

where 6 = w ~ / ~ ~ ' ~ I E I " ~  is the increment predicted by the 
linear theory. 

The term containing the highest-order derivative is pro- 
portional to the small parameter p and it is important only 
near extremal points of the amplitude (see Sec. 4). Omitting 
this term, we obtain a real second-order equation which is 
integrable in quadratures: 

wherey, andy; are the initial perturbations of a function and 
its derivative. 

Since Eq. (1 1) corresponding to p = 0 has singularities 
yf = 1/3, corresponding to a maximum of the electrical in- 
duction of a plasma, it follows that plotting the solution 
along the whole axis we must alter the sign of the derivative 
on passing through a singularity, which is equivalent to the 
replacement of ( + ) with ( - ) or vice versa on the right-hand 
side of Eq. ( 12). 

The nature of the solution depends stongly on the con- 
stant C. If C = 0, Eq. (12) has a solution of the soliton type 
(Fig. 2a): 

If C> 0, the solution is periodic and has an alternating sign 

(Fig. 2b): 
k,'sin 2rp 

( I - ~ Y - ~ )  F ( q ,  h.)-3y-' (I -c) [ 
\ q+' E(rp'  2A (rp, P,) I 

y-2 -- - - A ( r p ,  k3) yL2 
ki' sin. k12= ~ i _ ~ - 1 .  

If C <  0, there is a constant-sign periodic solution (Fig. 2c): 

k,' sin 2cp 
~ ( 9 ,  $ ) - 3 g [ ~ ( r p ,  k Z j -  

Y+ 2A (Q ,  k l )  

In Eqs. (14) and (15) the quantities P(p,k ) and E (p,k ) are 
elliptic integrals of the first and second kind,13 and 
A (p,k)  = 1 - k sin2p. The integration constants C,, C2, 
and C3 are determined by the initial conditions or by the 
continuity of the function y(x) at singularities. 

It should be noted that retention of the sign of the deri- 
vative on passing through a singularity makes it possible to 
plot smooth (free of discontinuities of the derivatives) solu- 
tions with the maximum amplitude yi,, = f. However, 
these solutions do not satisfy the initial equation. This can be 
demonstrated by integrating Eq. (1 1) between the limits 0 
and UJ, and then adopting zero initial  condition^.^' 

4. NONLINEAR PHASE DYNAMICS NEAR AMPLITUDE 
SlNGULARlTlES 

Near amplitude singularities the derivatives of the func- 
tion y(x) increase and it is necessary to allow for the term 
ipy" in Eq. (1 I), because this term is no longer small. The 
appearance of an imaginary correction is an indication of a 
phase shift, because the field amplitude becomes complex. 

In an investigation of the phase dynamics near singular- 
ities it is convenient to use a system of equations for the field 
amplitude in a plasma and a variable component of the beam 

FIG. 2. Graphs of the function y(x):  a) C = 0; b) C = 0.013; c) C = - 0.013. The initial value of the function is yo = 0.15, and the maxi- 
ma and minima correspond to * 3 - ' I 2 .  
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density f i b  : 

- ~ t y l + i ( l -  1 y I 2 ) y = R ,  

= i  .T=/tx~~.,,fi~,,'mJ E I E,,, 

which is equivalent to Eq. (1 1). Substituting in Eq. (16) the 
expressions y = iae-j0 and $ = Ne - jP, we obtain a system 
of nonlinear equations for the amplitudes and phases: 

pa'=--.Y s in  ( 8 - ( F ) ,  q".l;+3~p',+"=-a s in  ( 0 - ( F ) ,  

k~nFI'=--n ( I - a 2 )  -N cos ( 0 - ( r ) ,  (17) 

.V"-qlZN=-n cos (0-rp).  

The first two equations of the system (17) yield an integral 

which allows us to drop from the equations the terms origi- 
nating from the derivative of the beam phase and small com- 
pared with the others in the ratio,u2. In this approximation 
the system (17) has another integral 

N1'=-a2( l -aZ/2)  -2n"V cos I)+ C ,  
11=8-(F (19) 

Using Eq. (19) and eliminating the variable N by means 
of the third equation in the system (17), we obtain 

[ a(1-a2)+uaq '  1 ' -- 
cos I) 

The system (20) generalizes Eq. (12) to the casep > 0, and the 
integration constants are the same in both cases. 

Far from singularities the determining factor is the 
growth of their amplitude, whereas the phase plays a secon- 
dary role and is governed by the second equation of the sys- 
tem (20). Conversely, near singularities the phase motion 
predominates and it determines the behavior of the deriva- 
tives when the field amplitude remains actually constant. 

We shall now consider the solution of the system (20) in 
the vicinity of a singularity y, = 3-'I2 where derivatives of 
the function y(x) become infinite for ,u = 0. Assuming that 
a ,  = a - a, and f = x - x, (a,(a,, I f  / (x,), and also that 
I7 1 < 1, we shall reduce the system (20) to the form 

The phase ~ ( f )  reaches its maximum at the point 
- g z p ,  where 7' changes its sign. Since in the 7' > 0 case we 

havepq1( 1, the system (21) simplifies to 

Sufficiently far from a singularity I f  1%,u4I5 it follows 
from Eq. (22) that 

I - a , 2 = - t / 3 1  3, (23) 

which corresponds to the approximation of Eq. (12). The 
formula (23) describes more accurately the nature of a singu- 

FIG. 3. Graph showing the function ~ ( 2  ) (curve 1) and 
its derivative ~ ' ( 2 )  (curve 2) near an amplitude maxi- 
mum corresponding t o p  = A. 

larity of Eq. (1 1) at ,u = 0: we have a'=: I f  [ - ' I2  in the limit 
If 1-0. 

It follows from the formulas (22) and (23) that the term 
,uv' becomes comparable with a: when If / 2,u4/', and that 
beginning from this point the increase in the phase slows 
down the growth of the amplitude. It is clear from the first 
expression in the system (22) that a further shift of the field 
phase relative to the beam alters the sign of 7' when 
a: -7; I f m  I z,u. This estimate can be obtained by intro- 
ducing a new scale f ,  = f /p into the system (22). 

In the region I f  I < / f, I, where (, corresponds to the 
maximum phase q,, the phase rapidly decreases and at the 
point f = 0 the system (21) has a solution 

Therefore, it is clear that near the zero point the equations in 
the system (21) are dominated by the terms proportional to 
7': 

Integrating Eq. (25), we obtain 

If 16 1 (4,u2, then Eq. (26) becomes identical with Eq. (24) and 
in the region I f  1 %4,u2 we have 112 = 3 16 I/v"t, which is of the 
same order of magnitude as the value given by Eq. (22) when 
If I =:P. 

It follows from the second expression in Eq. (22) that 

and, consequently, the field amplitude reaches its maximum 
when f = 0. The kinks in the curves in Fig. 2 therefore coin- 
cide with maxima or minima of the function y(x). 

The nonlinear variation of the field phase and of its deri- 
vative near an amplitude singularity are illustrated in Fig. 3. 

5. DISCUSSION OF RESULTS 

We shall conclude by considering the physical mecha- 
nism of nonlinear stabilization of the instability and of the 
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appearance of phase discontinuities in a plasma with an ul- 
trarelativistic electron beam. The effect can be followed 
qualitatively even in the case of the initial formulas (8) and 
(91, and it is related to a nonlinear reduction in the plasma 
frequency because of the relativistic increase in the electron 
mass and because of a change in the waveguide properties of 
the plasma. However, even at the field amplitude maximum 
the plasma permittivity retains its sign at the modulation 
frequency E(E ) = E + IE 12/Ei and the nonlinear saturation 
of the amplitude cannot be explained by a simple change in 
the sign of S = - o : / d ~ ( E )  (by vanishing of the incre- 
ment). In reality, this process is more complex because of the 
nonlocal nature of the nonlinearity [the nonlinear term oc- 
curs in Eq. (9) in the second derivative] and it is manifested 
by an increase in the phase velocity of a wave 
vpf = v,(1 - 68 ' / o m )  near extremal points of the field am- 
plitude. During the nonlinear stage of the instability we have 
8 = p / 2  and a retarded wave with up, < v,, amplified by 
the beam under the Cherenkov effect conditions, forms in a 
plasma. However, on increase in the amplitude the value of 
8 ' decreases and vanishes, and then it becomes negative in 
the region I f  I S p .  Correspondingly, the wave becomes fast 
(v,, > v,) and interacts weakly with the beam. Next, when 8 ' 
changes the sign again, the beam is already in antiphase with 
the retarded wave and the Cherenkov deceleration changes 
to acceleration and the energy density of oscillations in the 
plasma decreases. The process is repeated periodically as a 
function of the initial conditions. 

In the optimal modulation case the energy density of 
oscillations ?'3n,mc2 is independent of the beam energy 
and, consequently, the efficiency of beam-plasma systems 
can be increased further by increasing the beam density and 
not its energy. 

"Our analysis presupposes that up to the moment of development of an 
instability the electron beam is modulated uniformly over its length and 

the external modulating signal acts as the initial perturbation. However, 
if the modulation takes place at the entry of the beam to the plasma, then 
the perturbation evolves in space rather than in time. The problem for- 
mulated in this way for a nonrelativistic beam injected continuously into 
a plasma half-space is solved in Ref. 8. 

"In the equation for the complex field amplitude there is a small param- 
eter in front of the highest-order derivative, which is typical of relaxation 
processes." The possibility of appearance of relaxation oscillations in 
beam-plasma systems was pointed out by Ya. B. Fainberg in 1967. 

"This property of the equation was drawn to our attention by L. I. Ruda- 
kov. 
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