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A theory is developed of the ionization of highly excited atomic states by a low-frequency field of 
noncoherent laser radiation with a large number ofmodes. Analytic formulas are obtained for the 
probability of the tunnel ionization in such a field. An analysis is made of the case of the hydrogen 
atom when the parabolic quantum numbers are sufficiently good in the low-frequency limit, as 
well as of the case of highly excited states of complex atoms when these states are characterized by 
a definite orbital momentum and parity. It is concluded that the statistical factor representing the 
ratio of the probability in a stochastic field to the probability in a monochromatic field decreases, 
compared with the case of a short-range potential, if the "Coulomb tail" is included. It is shown 
that at a given field intensity the statistical factor decreases on increase in the principal quantum 
number of the state being ionized. 

PACS numbers: 32.80.Fb, 31.50. + w 

We shall consider the process of ionization of highly We shall multiply Eq. (2) by the distribution (3), and 
excited atomic states by the field of low-frequency laser radi- integrate the product with respect to 8 between the limits 0 
ation. In a static electric field the ionization probability w, and a using the steepest descent method. The justification 
for an atomic state with the principal quantum number n and for the use of this method is the smallness of the value of 8 
parabolic quantum numbers n , and n, is determined using with the characteristic atomic field l/n4. Omitting the inter- 
the hydrogen-like appro~ imat ion l .~  valid in the case of high- mediate steps, we give only the final result: 
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ly excited states, i.e., when n) 1: 3'" 
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Here, 8 is the electric field intensity. (w) 31'3iz3n2! ( n - n , - 4 )  ! (4) 

In the case of a monochromatic field of low frequency 
w, such that the condition (w/n8)'< 1 is ~a t i s f i ed ,~  the tun- Like Eq. (21, it applies to the case n2 > n ,+ If n, < n, then Eq. 
neling probability per unit time w, is obtained from Ref. 4: (4) should be modified by the transposition 

lo,= ( ~ F I L ' I ~ ; ~ )  ":[c,. (2) We shall now calculate the statistical factor G which is ... 
where w, is given by Eq. (1). The result given by Eq. (2) 
applies when nz > n ,. If n, < n ,  Eq. (2) should be modified by 
the transposition n , s n 2 .  It should be noted that Eq. (2) is 
obtained ignoring exponentially small corrections in the 
n) 1 case. It is shown in Ref. 5 that, in reality, the result (2) is 
valid subject to a condition more stringent than that given 
above, namely (w/n B)'n < 1. If only our less stringent condi- 
tion is obeyed, the splitting of the initial term into quasien- 
ergy levels becomes important; the formulas for the tunnel- 
ing probability then become much more complex. They are 
given in Ref. 5. 

We shall assume that the conditions are such that we 
are well within the tunneling region, so that the expression 
(2) is valid in a monochromatic field. However, in reality, a 
laser radiation field is frequently nonmonochromatic. Our 
aim will be to calculate the probability of tunnel ionization in 
a multimode laser radiation field. It is known that such a 
field is characterized by the following distribution between 
the amplitudes of the electric field of the wave: 

rr (a) = (?8i@) esp (-a?/@). (3) 

Here, is the rms amplitude of the electric field of the laser 
radiation wave. 

defined as follows: 

G = I O  (8) iw,(Z) 
Dividing Eq. (4) by Eq. (2), we obtain the result in the form 
which is valid when n ,  > n ,  or n ,  < n 2  (and also when 
n ,  = nz): 

(5) 
The first multiplier in Eq. (5) represents the difference 
between the statistical factor in the Coulomb potential and 
the statistical factor in the short-range potential.6 Since this 
multiplier is small compared with unity, we may draw the 
conclusion that in the Coulomb potential the statistical fac- 
tor is much less than in the short-range potential and that on 
increase in the principal quantum number n the statistical 
factor decreases rapidly (for a fixed value of the field intensi- 
ty @). 

It is assumed in these calculations that on application of 
the field the parabolic quantum numbers n, and n, remain 
"good," in spite of the fact that the external field is alternat- 
ing. The small degree of their mixing is due to the fact that it 
occurs only as a result of allowance for other principal atom- 
ic shells and the effect of these shells is small on condition7 
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that a, F?2gw,,., where a,  is the atomic polarizability of the 
n-th level. An estimate based on a,  a n6, yields the condition 
8 <n - 4.5, when Eq. (5) is valid. 

It should also be pointed out that under these validity 
conditions the frequency w of the external field is known to 
be low compared with the classical frequency l/n3 of the 
revolution of an electron along a highly excited orbit. 

We shall now consider the case when the atomic states 
are characterized by an orbital momentum I and its projec- 
tion m. In the case of highly excited (Rydberg) atomic states 
this situation is encountered when the energy separations 
between the levels of one multiplet with different values of I 
are large compared with the perturbation, i.e., compared 
with the value of n2 %' . According to Ref. 4, in a monochro- 
matic field the probability w, of tunnel ionization is of the 
form 

xexp -- . ( :ns8) 

Here, C,, is the coefficient in the asymptotic expansion of an 
unperturbed atomic wave function Y (r) at large distances r 
from an atom: 

In spite of the dependences of the level energies on I because 
of perturbation of the atomic core potential, the wave func- 
tions Y of highly excited states remain, to a good approxima- 
tion, hydrogen-like. According to Ref. 8, the coefficient C,,, 
in Eq. (7) has the following value: 

Equations (6)  and (8) yield the expression for the probability 
w, of tunnel ionization from a highly excited state (nlm) in a 
monochromatic electromagnetic field: 

Multiplying Eq. (9) by the distribution (3) and integrating 
with respect to F?, we find the probability w of tunnel ioniza- 
tion of a state (nlm) in a stochastic electromagnetic field of 
low frequency. We shall give only the relevant statistical fac- 
tor G, where w, is substituted in the form of Eq. (9): 

(10) 
Naturally, it differs from Eq. (5) only by a different form of 
the preexponential multiplier. 

It is worth noting that, in contrast to the probabilities 
w, and w themselves, the statistical factor of Eq. (10) is inde- 
pendent of the orbital momentum I .  

We may therefore conclude that the multimode nature 
of a laser radiation field increases the probability of tunnel 
ionization compared with the monochromatic field case, but 
the increase becomes smaller for larger principal quantum 
numbers of the state being ionized. 
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