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The spectrum of an atom located in a strong resonant electromagnetic field and experiencing 
elastic collisions with the buffer gas is considered. In contrast to most previous work, in the 
present investigation the direct effect of the field on the dynamics of elastic collision between the 
working atom and buffer gas atom is taken into account. A general system ofequations is obtained 
for the density matrix of the composite system "atom + electromagnetic field" (atom "dressed" 
by the electromagnetic field). The equation system takes into account spontaneous transitions and 
elastic collisions between the working atom and the buffer gas atoms. Equations for the relaxation 
characteristics are obtained by considering the dynamics of the collision between the composite 
system and the buffer-gas atoms. Expressions for the shapes of the triplet resonance fluorescence 
lines and of the doublet due to transitions to a third nonresonant level, are derived from the 
transport equations. The shape of the absorption lines of a weak test signal is also considered. 
Relaxation characteristics which depend on the intensity and frequency of the electromagnetic 
field in a nontrivial manner enter in the expressions obtained for the spectral lines. In particular, 
the effect of the strong field on the collision act leads, in principle, to a narrowing of the resonance 
fluorescence lines down to the collisionless limit. The customarily used phenomenological elastic- 
collision characteristics (which do not depend on the properties of the electromagnetic field) are 
valid only in the impact limit corresponding to weak frequency detuning and electromagnetic 
field intensities. 

PACS numbers: 34.40. + n, 32.50. + d, 5 1.70. + f 

1. INTRODUCTION 

The properties of the atom as a radiator are significantly 
altered when it is placed in a strong resonant field; in particu- 
lar, the spontaneous-emission spectrum of the "atom + e- 
lectromagnetic field" system differs from the spectrum of 
the atom (for the literature see the books1.' and the review3). 
In the Seventies it was theoretically predicted'l.5 that a strong 
electromagnetic field can influence directly also the atomic 
collisions, changing thereby the optical properties of the me- 
dium (for details see the reviewsh.'). This leads to an optical- 
collisional nonlinearity that manifests itself, for example, in 
a decrease of the power absorbed per unit volume with in- 
creasing intensity (I2 lo7-lo9 W/cm2) of the external elec- 
tromagnetic f i e l~ i .~ -~  This fact was relatively recently ob- 
served in experiments by Szoke and co-workersx and by 
Bonch-Bruevich and co-workers9 (see also Ref. 7). The re- 
port of  experiment^'.^ that demonstrate directly the influ- 
ence of the electromagnetic field on the atomic-collision acts 
makes it urgent to consider also other manifestations of such 
an influence. 

This paper deals with the effects of the change in the line 
shape in the spectrum of a compound "atom + electromag- 
netic field" system (atom "dressed" by the field) on account 
of the influence of the electromagnetic field on the frequency 
of the collisions compound system with the broadening 
structureless particles (inert buffer gas). Usually the influ- 
ence of collisions on the spectra of resonant fluorescence and 
on the absorption of a weak test signal are considered phe- 
nomenologically by introducing the corresponding collision 
width~'~-l"see also Refs. 1-3). Such an analysis does not 

take into account the influence of the electromagnetic field 
on the course of the broadening collision. More consistent is 
an approach5,7 in which the relaxation characteristics of the 
medium are obtained on the basis of an analysis of the dy- 
namics of the collisions between the compound "atom + e- 
lectromagnetic field" system and the broadening particle. 
This approach, however, was previously used to find only 
"rough" optical characteristics of the medium: the power (of 
the strong electromagnetic field) absorbed per unit volume 
and the integrated (over the spectrum) intensities of the lines 
of spontaneous transitions in the compound system. To  find 
these rough characteristics it was sufficient to consider only 
the populations of the levels of the compound atom + elec- 
tromagnetic field The line-shape analysis present- 
ed here, on the other hand, calls for allowance for the corre- 
lation of the collisions, and consequently makes it necessary 
to resort to the density-matrix formalism." 

Roughly speaking, in this paper we attempt to con- 
struct a theory of spectral-line broadening not for an atom 
but for a compound system. This theory has certain peculiar- 
ities. First, in contrast to the "usual" broadening theory, the 
properties of the investigated object depend on the param- 
eters of the external electromagnetic field, and it is the de- 
pendence on just these parameters which is of primary inter- 
est. Second, it is impossible in principle to confine oneself 
here to an adiabatic model, i.e., to exclude the influence of 
inelastic collisions on the line shape. The point is that light 
absorption on account of elastic collisions between the atom 
and the broadening particles corresponds to inelastic transi- 
tions in the compound atom + electromagnetic field system 
(so-called optical collisions or OC  transition^^.^). Therefore, 
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even if the atom considered has nondegenerate levels, there 
will correspond to it doubly degenerate or more accurately 
doublet states of the compound system, and it is precisely 
transitions between these states which determine mainly the 
shapes of the lines investigated here (see below). 

Let us dwell in greater detail on the formulation of the 
problem. Let the atom A be located in a strong monochroma- 
tic field of intensity 8' = 8', cos(o, t ), where the frequency 
w, is close to the frequency a, = (E, - E,)/fi of the atomic 
transition awb(E, and E, are the energies of the atomic 
levels). The atom A collides with the structureless particles 
B. The interaction of the atom A, of the electromagnetic field 
8', and of the particle B will be described by the Hamiltonian 

A=Ho+P,,, Ho=Aa+Ag+Pas, 
h A 

whereH, an tH,  areihe Hamiltonians of the free atom and 
the field, and V,, and V,, are the interaction operators. Let 
p, = (A (a), n) and q2 = IA (b ), n - 1) be the wave functions 
of the free ?tom %nd the field (the eigenfunctions of the Ha- 
miltonian HA + H ,  ), and let n be the number of photons in 
the laser field 8 ' (nsl) .  We neglect the degeneracy of the 
atomic levels. The determination of the stationary states of 
the compound atom + electromagnetic field s y ~ t e r n ~ . ~  
("dressed statesH3) reduces to consideration of a two-level 
problem. The wave functions of the compound^ system, 
which are the eigenfunctions of the Hamiltonian H,, are of 
the form 

11.'1'=(1, n)=b,cp,+ b,cp,, .Ip,= 12, n>=b,cpl-blcp,. (1.1) 

Here b,, = 2-'12(1 + Aw/R)1/2 are the coefficients of the 
expansion of the wave functions $, and $, of the compound 
system in terms of the wave functions rp, and q2 of the basis, 
which does not take interaction into ^account; 
R = (Am2 + v2)'/' is the Rabi frequency (V = ( b  I V,, la)/ 
fi = D, g,/fi, D,  is the matrix element of the transition sf 
the atom) and Aw = w, - w,. The Rabi frequency charac- 
terizes, in particular, the time R of establishment of the 
quasistationary states $, and $,. Corresponding to the states 
$, and 4~~ of the compound system are the energies 

We consider the scattering of a strong resonant radi- 
ation by a two-level and by a three-level system (see the fig- 
ure). For a two-level system, the spectral distribution of scat- 
tered radiation has, as is well known, three maxima (triplet). 
The central maximum corresponds to a frequency w equal to 
the frequency o, of the strong field (Rayleigh scattering). 
The two remaining maxima are shifted + R, from the cen- 
tral maximum so that their frequencies are w . = w, + R 
(three-photon scattering and fluorescence). In the language 
of the states of the compound system, this process is directly 
described as spontaneous transitions of the type 11, n)-+ll, 
n - I),  12, n)-+12, n - 1) (Rayleigh scatteringw =a,),  (1, 
n)+12, n - 1) (o =a+)  and (2, n)+(l ,  
n - I)(@ = w-).5.7.'4 For scattering with transitions to the 
third nonresonant level c, the spectral distribution of the 
radiation has two maxima (doublet). The appearance of these 
maxima correspond to the transitions 11, n)-+lA (c), n - 1) 

FIG. 1. Level scheme of compound atom + electromagnetic field system. 

and 12, n)-+IA (c), n - 1 ) (Ref. 14). The absorption of a weak 
test signal by an atom situated in a strong resonant field is 
described similarly. 

In the next section we construct a general system of 
transport equations for the density matrix of the compound 
system. This system of equations includes the relaxation 
characteristics obtained on the basis of an analysis of the 
dynamic problem-the collisions of the compound system 
with the broadening particles. Analysis of the dynamics of 
the broadening collisions (OC transitions) is given in Sec. 3 
with account taken of effects of optical-collisional nonlin- 
earity.' These effects arise when the matrix element of the 
transition in the atom becomes comparable under the influ- 
ence of the field V with reciprocal collision time (the Weiss- 
kopf frequency) R, = v/b,, where v is the relative velocity 
of the particles and b, is the Weisskopf radius. The corre- 
sponding Weisskopf field Z? , --,fiv/D,, b, has at b, -- 10 
a.u., v ~ 1 0 - ~  a.u., and D z 1  a.u. a value 8 ' , ~ 1 0 - ~  
a.u. -- lo5 V/cm, corresponding to an intensity I,-- lo' W/ 
cm2. In Sec. 4 we consider the kinetic problem and obtain the 
spectra for the resonant triplet and also for the doublet cor- 
responding to the transition to the nonresonant level. The 
final expressions contain the relaxation characteristics de- 
termined from the analysis of the dynamic problem and, gen- 
erally speaking, dependent on the characteristics of the field 
(a dependence on Aw and 8', appears at R 2 R ,). The analy- 
sis is summarized in Sec. 5. 

2. EQUATION FOR THE DENSITY MATRIX 

We write the kinetic equation for the density matrixp of 
the compound atom + electromagnetic field system in the 
form 

i dp=-- 
at tt col 

(2.1) 

where so is the Hamiltonian of the compound system and 
includes the interaction of the atom with the external mon- 
ochromatic field; its eigenfunctions are of the form (1.1); 
(+/at ),, is the change of the density matrix on account of 
spontaneous transitions (see Ref. 14) and (dp/at ),,, is the 
corresponding change due to other collisions with the buff- 
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er-gas atoms. The change of the density-matrix elements on 
account of the elastic collisions is represented in the form 

where the indices i, i', j, andj' run through the values 1 and 2. 
The matrix elements of the operator p are taken over the 
state of the compound system, i.e., in the basis of functions of 
the type (1.1); the indices n and n' describe the number of 
photons in the functions (1.1), i.e., specify the considered 
doublet (see the figure). Summation over repeated indices is 
implied. 

We call attention to the fact that elastic collisions of an 
atom with a broadening particle lead to inelastic transitions 
in the compound system, i.e., to OC tran~ition?~.' We shall 
therefore call hereafter the matrix (operator) f the matrix 
(operator) of the rates of the OC transitions. The OC-transi- 
tion rate matrix is expressed in terms of the scattering S 
matrix just as the collisional relaxation matrix is expressed 
in the theory of the broadening of atomic lines (see Ref. 15, p. 
267). The only difference is that here we are dealing with 
broadening of not atomic levels but of levels of a compound 
system, so that the S matrix has a different form. Thus, for 
the matrix of the rates of the OC transitions we have 

where N is the density of the buffer-gas atoms; b is the impact 
parameter; the angle brackets denote averaging over the rel- 
ative velocities u.  From expression (2.3) and from the unitar- 
ity relations for the S matrix of a two-level system (see Ref. 
16, p. 341 of Russ. transl.) it follows that 

In the derivation of (2.4) we used also the fact that the 
average kinetic energy of the relative motion ( T )  is much 
larger than the distance between the levels of the compound 
system ( T > W  ). 

Of course, the elements of both the S matrix and the 
matrix of the rates of the OC transitions have in the general 
case a complicated dependence on the intensity go and on 
the frequency o, of the electromagnetic field. The quantity 
T o c = f  , I 1  = r2222 was introduced earlier,5 and character- 
izes the frequency of the OC transitions 1-2 in the com- 
pound system under the influence of elastic collisions 
between the working atoms and the buffer-gas atoms, inas- 
much as the quantity 

gives the probability of the OC transition in one collision. It 
is convenient here to separate the "trivial" part of the depen- 
dence of relaxation characteristics on the parameters %',and 
Am of the field and represent To, in the 

The quantity yo, characterizes the frequency of the elastic 

collisions that dephase the atom; yo, enters in the modified 
Lorentz formula that describes the line contour in broaden- 
ing theory, and also the modified Karplus-Schwinger for- 
mula for the absorbed specific power.' In the general case 
yo, has a nontrivial dependence on Aw and V. This depen- 
dence is lost only in the impact limit R <aw (Refs. 5 and 7, 
and below). Knowing the value of yo, we can describe the 
integrated characteristics of the scattered light, for example 
the intensities of the components of the triplet (see the fig- 
ure). To construct a theory describing the line shape, how- 
ever, it is necessary to know also other elements of the matrix 
of the rates of the OC transitions. 

To  find the density matrix p, with the aid of which we 
determine all the local characteristics of the medium, we 
must do the following: a) solve the dynamic problem and find 
the S matrix for the O C  transitions; b) average over the im- 
pact parameter and over the relative velocities, and find the 
r matrix of the OC transitions; c) solve the transport equa- 
tion (2. l )  with allowance for (2.2) and (2.3). Such a procedure 
is possible only under various simplifying assumptions. In 
Secs. 4 and 5 below we use the assumption that the doublet 
levels of the compound system can be separated (see the fig- 
ure), i.e., it is assumed that the Rabi frequency R is large 
compared with a spontaneous width y,, and with the colli- 
sion widths: 

In addition, in order not to take into account the inhomogen- 
eous broadening, we put R > y , ,  where y,  is the Doppler 
width. 

We note that the situation under which the conditions 
(2.6) are violated is of no interest for the problems considered 
below. The point is that the nontrivial dependence of the 
elements of the S matrix of the OC transitions Aw and V 
arises only at  R k 0 ,  (Refs. 5 and 7). At the same time, by 
virtue of the binary character of the collisions we have Ir 7'1 
5 Nubw2<Rw - u/b,. This enables us to construct a theory 
that takes, in principle, full account of the nonlinear optical- 
collisional effects. 

3. LIMITING EXPRESSIONS FOR THE OC-TRANSITION 
MATRIX 

Equation for the S matrix. In  the basis of the functions 
of the compound system (1. I), the equations for the S matrix 
take the form5v7: 

Here U, = [ U ,  + U, + ( -  lYAwAU/J2 ] / 2  are the level 
shifts of the compound system, j = 1,2; U = A U V / 2 R  is the 
matrix element of the transition in the compound system, 
due to the Gastic interaction with the broadening particle B; 
U,,, = (mI V,, J m ) / f i ,  m = a,  b are the shifts of the atomic 
level by the particle B; A U = U, - U, ; it is assumed that the 
partjcle B causes no transitions between the atomic states: 
(a1 V,, Ib ) = 0 (the adiabatic approximation for the atom 
but not for the compound system). Equations (3.1) are valid 
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for binary collisions 0,) Ir 7'1 and for not too large spon- 
taneous widths a,) y,, . 

For the nonresonant (third) state Jc) of the atom the 
adiabatic approximation is valid, so that 

where U, = (cl̂ V,, Ic) is the shift of the state Ic) by the 
broadening particle. 

Impact approximation. Equation (3.1) admits of a gen- 
eral solution in the impact limit a <aw (Refs. 5 and 7). In 
this case it is necessary to neglect the nonlinear quantity R t  
in the arguments of the exponentials and make the change of 
variable 

after which (3.1) reduces to a second-order equation with 
constant coefficients. As a result we have 

S=e-tQ+ cos @--I- i sin 0- ( A o / Q )  -i sin 4- ( V / Q )  
-i sin @- ( V i Q )  cos 0 - - i  sin @- ( A o / Q )  

OD (3.3) 
a, = J dt (Ub*U.)/2.  

- ca 
For a power-law interaction Urn = C, r - " (m = a,  b; 

C, are the interaction constants of the power-law potential; 
r = (u2t + b 2)1'2 is the distance between the nuclei) we ob- 
tain 

@*= (bwlb)  "-lan (Cb* C o )  / (Cb-Co), 

where T (x )  is the gamma function. From the form of the 
matrix (3.3) we have in addition to relations (2.4) 
rl,~l=-rz11z=-ri221, ~12~~=~li~~=-~z2~~=-r,z22=(rz,ii)*. 

(3.4) 
All the relaxation characteristics are then expressed in terms 
of the quantities 

I?,," = (V2/2Q2)  y lmp.  
rrz"= (V12Q) (y,,,,,Ao/Qi- i A l m p ) ,  (3.5) 

~ i e 1 2 = ~ l m p ( l + A ~ L l Q L )  /2+ihImpAo/Q.  

Here 

A i m p = b  (i u 2nbdb sin a @ - )  4 7 i m p  

determine the width and the shift of the line in the contour of 
the absorption of the field energy $,by the atoms. In parti- 
cular, the quantities (3.6) enter in the Karplus-Schwinger 
formula for the absorbed power.' In this case yimp = yOc at 
R<R,. The analysis that follows (in Secs. 4 and 5) shows 
that in the impact limit, when the r matrix of the OC transi- 

tions is determined by Eqs. (3.4)-(3.6), the results of the pres- 
ent paper go over into the results of Ref. 11, which are based 
on a phenomenological account of the collisions. 

The relaxation characteristics that describe the transi- 
tions to the third level take for a power-law potential, in the 
impact approximation, the form 

I?$= (Ccb/Cbo ( 2 ' ( n - 1 )  [ I +  ( - l ) ' A o / Q ]  
[ y l m p - i  sign (CcbCba) Almp]/Z 

-I- (C,JCbo)  2'(n-" [ 1-  ( - l ) l A o / Q ] [ y , m p - i  sign(C,,Cb,) A,,,] / 2 ,  
(3.7a) 

I?,?= ( V / 2 Q )  { I  C,,/Cb, 1 21(n-i) [ y l m P - i  sign (CeaCba) A lmp]  
- I Ceb/Cba 1 2'(n-1) [ y l m p - i  sign (CebCh) A lme]  ), i+j, 

(3.7b) 
where C,,. = C,  - C, (m = a, b, c; i, j = 1,2). 

Weak-jeld approximation. If the field is assumed to be 
sufficiently weak (V is small), we can obtain the S matrix by 
perturbation-theory methods from the matrix element of the 
transition U = AUV/2f2. With allowance for terms of first 
order in V, we have 

where 
0 

D , ~ =  ju.at, rn=a,b 

is the phase that accumulates in the state of the atom m on 
account of the interaction with the buffer gas 

2 

q = A o t  - 1 ~ u d t '  (3.9) 
- m 

is the phase advance in the compound system. 
For the elements of the matrix of the rates of the OC 

transitions, which we shall need below, we have 

where 

To calculate y' we shall need terms of second order in V in 
the S matrix. In the impact limit Idol (aw we can neglect 
the first term in the phase shift (3.9), in which case yo, 
= yimp and (3.10) coincides with (3.5) for V< Idol. We note 

especially that the quantities (3.11) depend on the frequency 
detuning of the electromagnetic field. In other words, even 
in the weak-field limit we cannot introduce phenomenologi- 
cal constants that characterize only the interaction of the 
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atoms A and B and are independent of the properties of the 
electromagnetic field. 

Quasistatic region. In the quasistatic limit R > R ,  the 
situation is not as simple as in the impact limit. In particular, 
the results depend strongly on whether or not there exists a 
point of intersection of the terms r,, of the compound sys- 
tem, specified by the condition A U (r,, )Aw/R = 0. The be- 
havior of the quantity y,, as a function of Aw and V was 
investigated We shall dwell here only on cases in 
which the S-matrix element are small. This takes place, in 
particular, for sufficiently strong fields V>R, (for more de- 
tails see Refs. 5 and 7). If we neglect the 1-2 transitions in 
the course of the collision, then 

and one characteristic 

turns out to be different from zero. The last equation is valid 
for a power-law interaction (see above). Thus, in sufficiently 
strong fields, V>Aw and V>R,, a decrease takes place not 
only in the frequency of the OC transitions l++2', but also in 
the other characteristics of the collisional widths. 

In the same limit ( VsAw, R,), the collision widths T3, 3' 

of the doublet for the transition to the third level Ic) tend to 
finite limits, and the constant C, of the resonant level is re- 
placed by another quantity C,: 

I'sj3j= I CCjlCao I Z/(n-i' [y ,mp-i4 imp sign (CCjCb.) ] , 
(3.13) 

cj= [ca+cb+ ( - l ) ' i C b , ~ ~ / ~ ] / 2 ,  ]=I, 2 .  

4. RESONANT FLUORESCENCE AND ABSORPTION OF TEST 
SIGNAL 

We first obtain expressions for the spectrum of the 
spontaneous transitions between the states of the compound 
system (the spectrum of the triplet) and for spontaneous 
transitions from states of the compound system into a third 
nonresonant state /c)  (the spectrum of the doublet). For the 
sake of argument we shall assume that la) is the ground state 
of the atom and Ib ) the excited one. 

Spectrum of triplet. The spectral distribution of the scat- 
tered radiation is given by the Fourier component of the 
correlation function (see, e.g., Ref. 14). 

W ( a )  =n-I Re g ( o )  , 
T T 

(4.1) 

g ( w ) = k  Jdt'J dttBi(t)D-(tr))erp[-iw(t-tf)]O(t-t'), 
0 0 

(4.2) 
D +( t  ) and D -(t ') are the operators of the dipole moment of 
the atom in the Heisenberg representation, having respec- 
tively positive and negative frequency terms, B (t - t ') is the 
Heaviside ("step") function, and T is the time of irradiation 
by the strong field, while the factor k is defined kelow [see 
(4.9)]. We represent the dipole moment operator D ' in the 

form 

where 

The correlation function (6 ,  +(I )6 -(t ')k satisfies at t > t ' 
the same equations as the mean value (D,+(t))  (Ref. 17). 
According to (4.3) we have 

(b i j+( t )  >= Sp pBii - Di j f ( j ,  n-l lp l i ,  n)=Dij+(pil+ (t) )', + -E 

The sum of the density matrix elements that are diagonal inn 
will be designated p,, : 

po = (i, rtlplj, a). (4.7) 
11 

Thus, the quantities ( 6 ,  +(t  ) ) / D ,  + and ( 6 ,  +(t  )6 -(t I ) ) /  

D, + satisfy at t > t ' the same equations as the elements of the 
matrix ( p,, +)*. 

When the inequalities (2.6) are satisfied, the system of 
equations for the matrix elements p, + is separable. The 
equations for the matrix elements p,+ take according to 
(2.l), (2.2), and (14) the form 

where the matrix element D, + are defined by relation (4.4) 
and k is the proportionality factor between the square of the 
modulus of the dipole-moment matrix element D, * and the 
probability of the spontaneous transition y, between the 
states I j, n)  and 1 j, n - 1): 

The matrix elementsp; and& satisfy the system of equa- 
tions 

We represent the function g(w) (4.2) in accordance with 
(4.3) in the form 

The functionsgI2(w) andg,,(w) describe the outer lines of the 
triplet, and the function 
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describe the central peak. From (4.5) and (4.9), extending the 
integration with respect to t in (4.12) to infinity, we obtain 

F 

5 2 1 j = ~ L + ~ l j + i ( y i + y j )  /2+ir,!;. 

The Eqs. (4.7) for the matrix elements pii have accord- 
ing to (2. l) ,  (2.2), and Ref. 14 the same form as the corre- 
sponding equations for p$, (4.8) and (4. lo), if we omit from 
the latter io,pii +. On the basis of inequalities (2.6), we can 
neglect in (4.14) the contribution of the off-diagonal ele- 
mentsp,i. Assuming that the main contribution to the inte- 
gral (4.14) is made by stationary solutions, we obtain 

We obtain in an analogous manner the function gc(w): 

where the relations (2.4) were used. The stationary values of 
PI  I and p,? are 

pi,= ( y l z + r i i i i ) /  ( ~ i z + ~ Z i + 2 r i i 1 t ) ,  pz2=l-pli .  (4.17) 

Expressing the matrix elements taken over the wave 
functions of the compound system (1. I), in terms of the ma- 
trix elements of the transitions in the atom, we get 

where y is the total spontaneous-radiation probability in the 
transition 1b )+la) in the atom A. From (4.17) and (4.18) it 
follows that 
&I= [ ( I f  A u / Q ) ~ ~ / ~ + I ' ~ ~ ' ~ ]  1 [(1+Ao2/Q2) y/2+2rii i i ] .  

(4.20) 
The expression for the function W (w) of the spectraldistribu- 
tion takes, according to (4. I), (4.2), (4.1 I), (4.13), (4.15), and 
(4.16), the form 

where the widths of the triplet lines are determined by the 
expressions (see also Ref. 13) 

Using expressions (4.18)-(4.2 I), write down in explicit 
form the intensities of the triplet lines. The intensities of the 
coherent and incoherent components of the Rayleigh scat- 
tering Q, and Q ; are respectively 

The total intensity of the Rayleigh scattering QR (Refs. 5 and 

7) 

does not depend on the collisional relaxation characteristics. 
The intensities Q+ and Q -  of the outer components of the 
triplet are7 

rv4~-2+4r,ifi (Q+AW) 
Q+=yizPzz = 8[Qa+~oz+41'i,"~z~-'1~ 

(4.26) 
y v 4 ~ - z + 4 r 1 1 f i  (Q-A~)z  

Q-=rziPii = 8 [ 5 2 2 + A ~ 2 + 4 r 1 i 1 ' Q 2 ~ - i ]  ' 

If the collisions are neglected (r, , I 1  = rl2I2 = O), the 
spectral distribution (4.21) becomes symmetrical and coin- 
cides with known  result^.'^*^^ In the impact limit RgR,, 
using (3.5), we arrive at the results of Ref. 10. At 0 4R, it is 
necessary to use for r, ," and r12'2 the other expressions 
from Sec. 3 and from Refs. 5 and 7. 

Spectrum of doublet. We find the line shape of the emis- 
sion connected with the transition of the atom to the third 
level (c) (see the figure, state (3, n - I)), unperturbed by the 
strong field (spontaneous Raman scattering). In this case, as 
is well known, instead of the triplet of the resonance fluores- 
cence a doublet will be observed whose central frequencies 
are respectively 

oj=mj3= (Ej,-E,- (12-1) AmL) / f i  
=at,=- ( - i ) j ( Q -  ( - i ) j A o )  /2. (4.27) 

Here and below j = 1, 2. The stationary intensities of these 
lines, just as for the levels of the triplet (4.21), are determined 
by the relations 

where y,, and y,,, ycb are the probabilities of spontaneous 
emission for the transitions / 1, n)+/ 3, n - 1) and 12, 
n)+/3, n - I),  1 b )-tic), but in contrast to (4.20), to calcu- 
latep, , andp,, in the stationary state for a three-level system 
it is necessary to introduce the probability 7 of the inelastic 
transition from the state lc) into the ground state la). We 
then obtain from the equations for p,  ,(t ), p22(t ), and pc,(t ) 

where y,, is the probability of the spontaneous transition 

b*, Y = Y C ~  + yo, .  
The line widths r, and T, are obtained in analogy with 

(4.23) from the equations for the matrix elements 

where a,,. are defined by relations (4.23). We obtain accord- 
ingly 
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In the impact limit f2<f2,, using for r,,') expressions (3.7), 
we arrive at the results of Ref. 20, and in strong fields 
VsR ,, Aw it is necessary to use (3.13). The characteristics 
rjJ3' are symmetric here with respect to the states / a )  and 
lb ). 

Line contour of test-signal absorption. Assume that a 
classical test field with amplitude W' and frequency w', also 
close to the frequency wo of the resonant transition, is ap- 
plied to the system in addition to the strong resonant field 8. 
We shall assume that the test field has a low enough intensity 
and does not perturb the levels of the compound system 
(dressed states). We obtain theabsorption spectrum W1(w') of 
this test signal. It is determined in analogy with (4.1) and 
(4.2) by the Fourier component of the correlation functionlo: 

<B- ( t )  b+ ( t f )  -B+ ( f )  b- ( t ' )  ). (4.32) 

It follows directly from this expression that the components 
have the same central frequencies w' = w, & 0 and the 
same widths as the fluorescence spectrum (4.21). The ab- 
sorbed specific powers Q+ - at the frequencies w' = w, + 0 
will be 

where the level populationsj511 and& are given by expres- 
sions (4.20) and (4.17), while the spontaneous-transition pro- 
babilities yU are given by expressions (4.18) and the factor k is 
defined in (4.9). After substituting (4.20), (4. IS), and (4.33) we 
obtain 

The quantities Q+ and Q- have opposite signs, that one 
component is enhanced while the other, symmetrical to it, is 
absorbed. The intensity of the central component at the fre- 
quency w = w, is equal to zero in this approximation, i.e., 
accurate to terms of order IT,JUl/f2, since the level popula- 
tions of the compound system, which have different values of 
the quantum number n, coincide at n )  1. The widths of the 
lines corresponding to the intensities (4.34) are given as be- 
fore by relation (4.23), i.e., are determined by the relaxation 
characteristic rI2l2. At resonance (Aw< V) the populations 
P I ,  and p,, are equal and the avlues of Q + tend to zero. A 
nonzero result is obtained with the is solved at a 
higher accuracy with respect to the smallness parameter 
(2.6) (see Ref. 10 in this connection). 

A similar procedure is used to calculate the absorption 
line contour of the test signal on the transition to the third 
nonresonant level (the Autler-Townes doublet). If this third 
level lies above the level b, spontaneous transitions to it are 
impossible, and it is populated only because of the action of 
the weak field g' at the frequency w' close to the transition 
frequency w,, (see the figure). The frequencies correspond- 
ing to the maxima of the doublet components are determined 
as before by relations (4.27), but they must be taken with the 
opposite sign, if the level c lies higher than b. The intensities 
of the components are determined by a relation of the type 

(4.33) in which, however, but now the transition is between 
level 1 (or 2) and the nonresonant level c. The widths of the 
components r,,, will be given by relations (4.31), to which it 
is necessary to add the spontaneous width y, of the nonre- 
sonant level c: 

In the impact limit R g 0 ,  these expressions go over 
into the result of Ref. 20, while in a strong field R ) a ,  it is 
necessary to use (3.13). 

5. DISCUSSION OF RESULTS 

We have obtained in this paper the fluorescence line 
shape [the spectrum of the triplet (4.21)-(4.26) and of the 
doublet (4.28), (4.29), (4.3 I)], and also considered by absorp- 
tion of a weak test signal [for the triplet (4.33), (4.34) and for 
the doublet (4.33), (4.35)]. The quantities contained in the 
results are determined in various limiting cases by expres- 
sions obtained by analysis of the dynamic problem of OC 
transitions (Sec. 3). 

The main general conclusion of the paper is that the use 
of phenomenological characteristics of elastic collisions 
(Refs. 1-3, 10-12,20) is restricted by the limits of the impact 
region of the Rabi frequencies, f2(Rw. At R 2 a, the re- 
laxation characteristics begin to depend on the properties of 
the electromagnetic field even in the weak field limit V & ?  ,. 
In the strong-field limit VBR,, Am the quantities TI , ' I  and 
r I 2 l 2 ,  which determine the line widths of the resonant flu- 
orescence (4.22) and (4.23), begin to decrease, so that the 
lines can narrow down, in principle, to the collisionless limit. 
This effect was discussed in general form in Ref. 21. The 
change of the integrated intensities of the sideband lines of 
the triplet on account of the influence of the field on the 
collision act (the dependence of T, , ' I  = To, on A w and V) 
was predicted in Refs. 5 and 7. 

The relaxation characteristics r3,31 and r3,32, which 
determine the widths of the lines of the transition to the third 
nonresonant level lc) of the working atom, also depend on 
the field characteristics V and Am. In the strong-field limit 
VsR,, Aw, the quantities r313L and r3,32 turn out to be 
symmetrical with respect to the parameters of the states la) 
and Ib ) of the working atom A.  

We note in conclusion that in the experiments per- 
formed to datexa9 they investigated not the spectral charac- 
teristics but the line intensities of the compound atom + e- 
lectromagnetic field system. I t  appears that observation of 
the spectrum of the compound system can yield in principle 
more extensive information on the interaction of atomic par- 
ticles, since the spectral characteristics contain then not one 
quantity TI, ", but two of them, rll I '  and Experi- 
ments are also possible in which the transitions between 
weakly polarized states jb ) and Ic) are investigated when 
state jb ) is mixed by the strong field with the highly polariz- 
able (C, >C,, C,) state / a ) .  It is possible that in experiments 
of this kind it will be useful to employ methods of optical 
spectroscopy that single out the collisional widths of the 
lines against the background of the Doppler contour.22 

749 Sov. Phys. JETP 56 (4), October 1982 Bakaev et aL 749 



The authors thank S. A. Akhmanov for a stimulating 
discussion and for a discussion of the results. 

''A problem similar in formulation was considered inRef. 13. There, how- 
ever, the dynamic problem of finding theSmatrix was not solved and the 
spectral intensities of the scattered radiation were not calculated. 

IN. B. Delone and V. P. Krainov, Atom v sil'nom svetovom pole (Atom in 
a Strong Light Field), Atomizdat, 1978. 

'S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nelineinye rezonansy 
v spektrakh atomov i molekul (Nonlinear Resonances in the Spectra of 
Atoms and Molecules), Nauka, 1979. 

3P. L. Knight and P. W. Miloni, Phys. Rep. 66 (1980). 
'L. I. Gudzenko and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 62, 1686 
(1972) [Sov. Phys. JETP 35, 877 (1972)l. 

'V. S. Lisitsa and S. I. Yakovlenko, ibid. 66, 1550 (1974); 68, 479 (1975) 
[Sov. Phys. JETP. 39, 759 (1974); 41,233 (1975)l. 

'S. I. Yakovlenko, Kvant. Elektron. (Moscow) 5, 259 (1978) [Sov. J. 
Quantum Electron. 8. 151 1197811. . , 
'S I. Yakovlenko, Usp. Fiz.   auk 136, 593 (1982) [Sov. Phys. Usp. 25, 
216 (1982)l. 

'J. L. Carlsten, ASzoke, and M. C. Raymer, Phys. Rev. A 15,1029 (1977). 
'A. M. Bonch-Bruevich, G. A. Vartanyan, and V. V. Khromov, Zh. 
Eksp. Teor. Fiz. 78, 538 (1980) [Sov. Phys. JETP 51, 271 (1980)]. 

"B. R. Mollow, Phys Rev. A 5, 2217 (1972). 
"B. R. Mollow, Phys. Rev. A 2, 76 (1970); A 15, 1023 (1977). 
I2G. Nienhuis and F. J. Shuller, J. Phys. B 12, 3473 (1979). 
"V. Rabin and A. J. Ben-Reuven, J. Phys. B 13,201 1 (1980). 
'"C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10,345,365 (1977). 
"L. A. Vainshtein, I. I. Sobnel'man, and E. A. Yukov, Vozbuzhdenie 

atomov i ushirenie spektral'nykh linii (Atom Excitation and Spectral- 
Line Broadening), Nauka, 1979. 

"N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 
Oxford, 1965 [Russ. transl., Mir, 19691. 

"M. Lax, Phys. Rev. 172, 350 (1968). 
"A. I. Burshtein, Zh. Eksp. Teor. Fiz. 48,850(1965), 49, 1362 (1965) [Sov. 

Phys. JETP 21, 567 (1965),22, 939 (1966)l. 
"B. R. Mollow, Phys. Rev. A 188, 1969 (1969). 
"B. R. Mollow, Phys. Rev. A 5, 1522 (1972). 
"E. G. Pestov and S. G. Rautian, Zh. Eksp. Teor. Fiz. 64, 2032 (1973) 

[Sov. Phys. JETP 37, 1025 (1973)l. 
22V. P. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy, 

Springer, 1977. 

Translated by J. G. Adashko 

750 Sov. Phys. JETP 56 (4). October 1982 Bakaev et aL 750 


