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A method is proposed for a self-consistent description of the propagation of intense wave beams in 
smoothly inhomogeneous nonlinear media. A system of equations is derived and it includes an 
equation for a reference ray which is the energy center of a beam, as well as an equation for the 
field in a coordinate system linked to this ray. An analytic study is reported of the beam path in the 
strongly nonlinear case when a beam splits into separate waveguide channels. It is shown that the 
paths of wave beams in a plasma with a focusing nonlinearity mechanism become "rectified" so 
that the beams penetrate denser plasma layers. 

PACS numbers: 03.40.Kf, 52 .35 .M~ 

One of the main difficulties encountered in the descrip- 
tion of the propagation of intense wave beams in inhomogen- 
eous nonlinear media arises from the need to allow simulta- 
neously for the influence of diffraction, nonlinearity, and 
inhomogeneity of the medium. Propagation of wave beams 
in homogeneous nonlinear media has been studied suffi- 
ciently thoroughly (for reviews see, for example, Refs. 1 and 
2). However, if the medium is inhomogeneous, the problem 
becomes greatly complicated primarily because of the dis- 
placement of a beam from a linear path. This displacement is 
estimated in Ref. 3 using perturbation theory. 

We shall propose a method for a self-consistent descrip- 
tion of the propagation of wave beams in smoothly inhomo- 
geneous nonlinear media and we shall allow for the diffrac- 
tion effects as well as for the refraction due to the 
inhomogeneity and nonlinearity of the medium. This de- 
scription presupposes, first, a weak angular divergence (a 
quasiplanar phase front) of a wave beam and, second, 
smoothness of the propagation path and a smooth variation 
of the inhomogeneity of the medium within the beam width. 
For the sake of simplicity, the treatment is carried out within 
the framework of the scalar Helmholtz equation. 

The main idea behind this treatment is an intuitive as- 
sumption that a wave beam with a weak angular divergence 
may remain localized near a certain curve (a reference ray) 
over extended paths. We shall select the reference ray to be 
the geometric locus of the centers of gravity of the energy 
flux in the wave beam R: 

where S is a surface orthogonal to the field of the vectors of 
the energy density flux II ( 1  lI 1 = I7 ); r is the radius vector of 
a point lying on the surface S; dS is a differentially small 
element of the surface area. 

This definition of the reference beam allows us to use 
the field equation in a description of the beam dynamics in 
terms of integral characteristics of the beam calculated on a 
constant-phase surface (see Sec. 1). On the other hand, near 
the reference ray we can use the hypothesis of a weak angular 
divergence of a wave beam and simplify the initial Helm- 
holtz equation going over to an equation of the parabolic 

type (Sec. 2). It is thus possible to derive a self-consistent 
system of equations for the reference ray path and for the 
structure of the field of the wave beam propagating along it. 
One should point out that although this system is simpler 
than the initial equation, concrete results can be obtained 
with its aid either using a computer or subject to further 
simplifications (for example, in the aberration-free approxi- 
mation). The procedure for obtaining such concrete results is 
outside the scope of the present paper. 

However, there is an important limiting case when the 
structure of a beam and the reference ray path can be calcu- 
lated analytically. It corresponds to the case of a strong non- 
linearity when in the initial part of the propagation path a 
wave beam splits into separate self-maintained waveguide 
channels (solitons) in accordance with laws governing a ho- 
mogeneous m e d i ~ m , ~  and then the propagation of such 
waveguide channels occurs independently of their "neigh- 
bors." The path of each solitary channel in a plane-layer 
medium can be found in quadratures (Sec. 3) and, conse- 
quently, it is possible to identify some characteristic laws 
governing nonlinear penetration of a beam into a dense plas- 
ma. 

Our treatment will be concluded (Sec. 4) by very simple 
estimates and a list of possible ways of generalizing the the- 
ory developed here. 

1. In the case of wave beams described by the linear 
scalar Helmholtz equation 

AE+ko2& (r ,  I E 1 ' )  E=O (1.1) 

[in the case of electromagnetic waves the quantity ~ ( r , l E  1') 
represents the permittivity of the medium and k, is the wave 
number in vacuum] the energy flux density vector is 
II = VpA * and the path of the reference beam is given by 

where A and p are the real amplitude and phase of the field 
E = The surface S in Eq. (1.2) is identical with the 
constant-phase surface. We shall rewrite Eq. (1.1) in the 
form of a system of equations for A and p :  

div ( A 2 V q )  =O, (1.3) 
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(Arp)'=e=~ (r, A') +AAIkOZA, (1.4) 

and we shall derive certain general relationships satisfied by 
the reference ray path. 

A direct consequence of Eq. (1.3) is the law of conserva- 
tion of the total energy flux in a beam: 

9= 5 -4'1 VrpldS= ~ ' ~ ~ A ~ d S = c o n s t .  (1.5) 
S s 

Using Eq. (1.3) and the formula known from vector analysis 

r  div(AZVrp) =xjO div(xA2Vrp) -A2Vrp (1.6) 

[x;( j = 1,2,3) are unit vectors in a Cartesian coordinate sys- 
tem x = x,, y = x,, z = x3], we find that after integration of 
Eq. (1.6) in an arbitrary volume V bounded by a smooth 
surface S,  , we have 

We shall assume that Vis the volume between two infinitesi- 
mally close phase fronts p = p ,  and p = p,  (dp = p,  - p , )  
and we shall assume that the distance along the normal 
between them is dl = d p  /;' I2. We then readily obtain from 
Eq. (1.7) the following expression for d R/dp:  

Replacing in Eq. (1.8) the variable p with a variable s repre- 
senting the reference ray path length R(p) ,  and bearing in 
mind that 

dWds=so (1.9) 

[so is a unit vector of a tangent to the R(s) curve], we find the 
phase of the field in the reference ray: 

We shall assume that Eq. (1.4) is subjected to the action 
of an operator V = x; a/axj and we shall multiply the resul- 
tant expression by A 2/i. Then, simple transformations give 

Integrating Eq. (1.11) in the volume between two infinitesi- 
mally close phase fronts, exactly as has been done in the 
derivation of Eq. (1.8), we obtain 

Going over in Eq. (1.12) from the variable p to the variables 
[see Eq. (1.9)], we transform Eq. (1.12) to 

Here, no(s) is a unit vector along the normal to the reference 
ray R(s) and p is the radius of curvature of the reference 
ray." 

The relationships (1.9) and (1.13) represent a system of 
equations for the reference ray path R(s). However, this sys- 
tem is not closed, since the right-hand side of Eq. (1.13) de- 
pends on the integral characteristics of the wave beam. 
Therefore, it is necessary to supplement Eqs. (1.9) and (1.13) 
with equations describing the amplitude and phase struc- 
tures of the field in a coordinate system linked to the refer- 
ence ray. 

2. We shall now investigate propagation of wave beams 
with a weak angular divergence or, in other words, with a 
quasiplanar phase front. In the case of such beams the total 
phase of the field can be represented by a sum p = po(s) + G, 
where p,(s) is the phase advance in the reference ray and q, 
represents phase distortions within the beam localization re- 
gion; it is also assumed that 

I v q ~ q a c p ~ ~ a ~ l = [ ~ ~ ( ~ )  1%. (2.1) 

Moreover, we shall assume that the wave beam is narrow on 
the scale of radii of curvature ( p )  and torsion ( T )  of the refer- 
ence ray and on the scale of the characteristic lines of the 
inhomogeneity of the medium L 
(L = I E / ( ~ E [ ~ , A  2(r)l/ar).2=,,,,  I ) : ' )  

(A ,  is the beam width). 
The restrictions imposed by Eqs. (2.1) and (2.2) allow us 

to simplify greatly the initial Eq. (1.1). With this in mind, we 
shall go over in Eq. (1.1) to orthogonal curvilinear coordi- 
nates (s,l,v) related to the Cartesian coordinates r = (x,y,zJ 
by 

r=R(s )  f Ea(s) +qb (s) =R ( s )  +r,, (2.3) 

where 

a ( s )  =no ( s )  cos 0 ( s )  -m, ( s )  sin 0 ( s )  , 

b ( s )  =no ( s )  sin 0 ( s )  +mo ( s )  cos 0 ( s )  

is the orthogonal basis in a cross section transverse to the 
reference ray R(s); this basis rotates relative to the normal 
[no(s) is a unit vector of the normal] and relative to the binor- 
mal [m,(s) is the unit vector of the binormal] at an angular 
velocity dB /ds = 1/T.  The Lam6 coefficients of the new co- 
ordinate system are 

h.=[l- ( g  cos 0+q sin 0 )  lp], hi=h,=l, (2.4) 

and Eqs. (1.3) and (1.4), subject to the conditions (2.1) and 
(2.2), become 

+ AgE+Aqq-p-' (cos OAE+sin 0A,) 
ko2A (2.6) 

It should be noted that Eq. (2.6) is derived by dropping, on 
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the basis of Eq. (2.1), terms of the order of 1/ for thereferenceray path: 
k,' min { p 2 , ~ ' , ~  j ; however, terms linear in respect of the 
small parameters v = I V & ~ / E ~ ' ~  and p = A,/min { p,T,L ) 
are included in Eq. (2.6). We shall introduce a complex field 
amplitude along the coordinate s: 

8 = E : 1 4 ~ e i ~ 6 .  P7) 

Then, Eqs. (2.5) and (2.6) are readily transformed to the same 
parabolic equation 

Using Eqs. (2.1) and (2.2), we can simplify also the equa- 
tions deduced earlier for the reference beam path [Eqs. (1.9)] 
and [(1.13)]. Firstly, the assumption (2.1) of a quasiplanar 
phase front makes it possible to replace integration over the 
surface area S by integration over a cross section orthogonal 
to the reference ray, i.e., integration with respect t og  and 77. 
Secondly, it follows from Eqs. (1.4), (2. I), and (2.2) that 

At t f  A ,  ( 8 ~  (R;;;, A 2 )  
E--E ( R ,  A') + - + 

ko2A r l  

- At cos 8+A, sin 0 + 0 ( $ 1  P V l  v2) 
pkoZA 

Eo =eo+2 - ( E  cos 8+q sin 0 ) ,  
P 

where 0 ( p2,vp,p2) are terms which are quadratic in respect 
of small parameters v and p. 

We shall multiply Eq. (2.9) by (fAcA + vAIA) and 
average over ,$ and 7. Bearing in mind that in view of the 
definition of the reference ray (1.2) 

we find after integration by parts that 

A' 

~ ( r ,  A') = J e (r, A') dA? 
0 

We shall now substitute Eqs. (2.9) and (2.10) into Eq. 
(1.13). Standard but fairly cumbersome transformations (in 
particular, integration by parts) yield, if we neglect terms 
quadratic in v and p ,  the following approximate equations 

where 

It is natural to call U,, the effective potential energy of a 
beam. 

When the system (2.12) is used, we must remember that 
this system is valid only on condition E,> 0, i.e., when the 
phase of the field in a reference ray (and, generally, in a beam) 
is a real quantity. 

We shall now introduce in Eq. (2.12) a variable T which 
is related to s by d r  = (ds/ U;L2), = .. Then, instead of the 
system (2.12), we obtain 

It is interesting to note that, in contrast to a linear medium 
when the condition E, = E(R) > 0 implies also 
U,, = E(R) > 0, in a nonlinear problem we encounter a situa- 
tion when E, > 0 and U,, < 0 (for an example see Sec. 3). The 
validity of the system (2.12) is self-evident. However, the sys- 
tem (2.14) can be used if U,, < 0, but now dr = id?, is a 
purely imaginary quantity. 

Two more or less self-evident consequences follow di- 
rectly from the system (2.14): firstly, in the case of homogen- 
eous nonlinear media a wave beam satisfying the conditions 
(2.1) and (2.2) propagates along a straight path and, second- 
ly, in linear media where U,, = ~ ( r )  the center of gravity of 
the energy flux in a beam is concentrated near the reference 
ray and it lies on an ordinary geometric locus. If the medium 
is both nonlinear and inhomogeneous, then the system (2.14) 
must be solved together with Eq. (2.8). 

We shall now give the expression for U,, applicable to a 
medium with a cubic nonlinearity [E = &,(r) + &,(r)A '1: 

In the case of a plasma in which the concentration gra- 
dient VN is antiparallel to VE, but parallel to V E ~  (striction 
nonlinearity), we can substitute Eqs. (2.15) and (2.12) to dem- 
onstrate that the radius of curvature of the path of the center 
of gravity of the energy flux in a wave beam increases com- 
pared with the linear case. In other words, a beam which 
displaces a plasma by its own field tends to "rectify" its prop- 
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agation path and thus penetrate "deeper" into denser plasma 
layers. 

3. We shall analyze the problem further by considering 
the example of two-dimensional r = (x,z j wave beams prop- 
agating in a smoothly inhomogeneous medium with a cubic 
nonlinearity. In this case we have to modify Eqs. (2.10) and 
(2.15) by replacing double integration with respect to 6 and rl 
with single integration with respect to 6 [r = R(s) + {n,(s)] 
and rewriting Eq. (2.8) bearing in mind that 8' and E are 
independent of 7, : 

d 8  d Z 8  1812 
2e..hk0 - + - + K O 2  [ e ,  ( r )  +r2  ( r )  - - 

ds d t Z  

We can identify two limiting situations: 
a) a wave beam in a "weakly nonlinear" medium when, 

in addition to Eqs. (2.1) and (2.2), we can assume that the 
following condition is satisfied: 

b) a wave beam in a "strongly nonlinear" medium, when 

In case a) we find from Eq. (2.12) that the radius of 
curvature of the reference ray is close to the value predicted 
by the linear theory. Therefore, the displacement of a wave 
beam because of nonlinearity in a path of length of the same 
order as the characteristic inhomogeneity scale of the medi- 
um is small compared with the path length, but-in princi- 
ple-it can be considerably greater than the transverse di- 
mensions of the beam itself. Then, a "nonlinear" 
displacement of the reference ray path can be found by the 
method of successive approximations. We shall represent R 
in the form 

R=Ri ( t )  +Qn, ( t ) ,  (3.4) 

where R,( t )  is a linear geometric-optical beam (d2R,/ 
dt = ~VE,,  dt  = ds /~ i '~) ;  n,(t )is a unit vector along the nor- 
mal to the curve R,; Q (t ) is a nonlinear displacement of the 
reference ray. We shall substitute Eq. (3.4) into Eq. (2.14). 
Then, in the first order of perturbation theory with respect to 
a small parameter lQ J/min { p,L ) , we find that Q ( t  ) obeys 
the equation 

and the intial conditions 

We can estimate the displacement of a wave beam relative to 
the curve R,(t ) by replacing in Eq. (3.5) 

( 9 is the total energy flux in the beam and $,,, is the 
maximum value of the field in the beam), and we can find the 
beam width A,  using, for example, the aberration-free ap- 
pro~imation.~ 

In case b), when the nonlinearity is sufficiently strong, it 
is meaningful to consider the reference ray path for a wave 
beam in which the field structure is close to the field of a 
stationary soliton. This is due to the fact that even over short 
paths when the inhomogeneity of the medium can be ignored 
a fairly wide wave beam rapidly splits into separate (soliton) 
 channel^.^ 

We shall therefore seek a solution in the form 

8=vo+pv,+ . . . , (3.6) 

where 

(i is a small parameter of the problem). In the zeroth ap- 
proximation with respect to the parameteri, we find that v, 
obeys an equation 

whose localized (soliton) solution corresponding to real E, 

and positive E, ( E ~  > 0) is 

where A ,  is the channel width: A,  is the maximum field am- 
plitude in a channel; E, is the square of the propagation con- 
stant (E, is always greater than zero); q is a conserved quanti- 
ty, proportional to the total energy flux in a channel. 

We shall not analyze the equation for u, obtained in the 
next order with respect to /I, but simply note that the condi- 
tion of absence in u ,  of secular terms is the selection of the 
reference ray path R(s) satisfying Eq. (2.14) (Ref. 6) .  

We shall now substitute Eq. (3.9) into Eq. (2.15). We 
then find that 

2 ~ 2  ( R )  
F (R) = 

E ,  ( R )  + [ e i 2 ( R )  + ~ ' E ~ ' ( R )  I N h '  

We thus find that Eq. (2.14) can be written in the form 
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(the plus sign corresponds to U,, > 0 and the minus sign to 
u,, < 01.~1 

In a plane-layer medium, when E,  and E, depend only on 
one coordinatex [E,(x), &&)I, the system (3.1 1) simplifies. In 
addition to the integral of motion 

( p, and p, are the projections of the vector p on the x and z 
axes, respectively), we can obtain an explicit expression for 
p, as a function of the coordinate x. In fact, 

Integrating the above relationship with respect to rH and 
bearing in mind that 

we obtain 

where x, is the coordinate of a point at which the initial 
(corresponding to TH = 0) value p, is specified: 

pi (50) = 1 Ueff (xo) 1 '!' sin a 

(a is the angle between the initial direction of propagation of 
the wave beam and the x axis). We shall substitute Eq. (3.13) 
into the integral motion (3.12). Substituting in this expres- 
sion p, = 0, we obtain an equation which defines the posi- 
tion of a turning point x, ("refletion point"): 

[the plus sign corresponds to U,, (x ,  )/Ueff (xo) > 0; and the 
minus sign to U,, (x, )/ U,, (x,) < 01. 

The right-hand side of Eq. (3.14) contains a positive de- 
terminate quantity. Therefore, there is no solution of Eq. 
(3.14) with the minus sign, i.e., there are no waveguide chan- 
nels which will penetrate from the region U,, > 0 to the re- 
gion U,, < 0 or vice v e r ~ a . ~ '  

4. It follows that the propagation of intense wave beams 
satisfying the conditions (2.1) and (2.2) in smoothly inhomo- 
geneous nonlinear media can be analyzed conveniently using 
a system of equations which includes Eq. (2.14) for the refer- 
ence ray path (center of gravity of the energy flux in the 
beam) and Eq. (2.8) for the field in a coordinate system linked 
to the reference ray path. It should be stressed that the non- 
linearity of the medium may have a considerable influence 
not only on the structure of the field in the beam, but also on 

its propagation path. For example, it follows from Eq. (3.5) 
that even a weak nonlinearity displaces a beam relative to the 
path predicted by the linear theory. Even the simplest esti- 
mate of the displacement over paths of length 1, which gives 

shows that if 

then Q is greater than the transverse dimensions of the beam 
A , .  

In the strongly nonlinear case when the propagation of 
the field in a beam is soliton-like it is possible to simplify 
most of the problem. Then, as shown in Sec. 3, the propaga- 
tion path can be found by solving a closed system of ordinary 
differential equations. In this case the conditions of validity 
of Eqs. (2.1) and (2.2) are supplemented also by the require- 
ment (3.7) of a sufficiently slow change in the width and 
length of a soliton wave. The restriction on the smoothness 
of the wavelength il = 2n-/k,~;'* coincides with the condi- 
tion of validity of linear geometrical optics; the only change 
is that the linear permittivity E,(R) in Eq. (3.7) is replaced 
with E,(R) representing the phase advance in the reference 
ray. It should be noted that an increase in the soliton power 
(parameter q) widens the region of space where the inequal- 
ities (3.7) are obeyed. Bearing in mind that in the case of a 
strong nonlinearity in the homogeneous medium any wave 
beam with a quasiplanar phase front splits into separate soli- 
tons4 and, therefore, we can expect that in the case when the 
distance in which solitons are formed is short compared with 
the characteristic inhomogeneity scale of a medium the ref- 
erence ray can also be found by solving a system of ordinary 
differential equations. 

We have considered media with a local nonlinearity. 
However, this is not of fundamental importance. The above 
analysis can generally be applied without changes to media 
for which the permittivity is specifieid as some functional of 
the field (for example, in the case of a thermal nonlinearity). 

We shall conclude by noting that in generalization of 
the results obtained to vector problems we may encounter 
new effects associated with the behavior of the field polariza- 
tion. An analysis of these effects is outside the scope of the 
present paper. 

"It should be noted that Eqs. (1.5)-(1.13) are valid also in the case when S 
represents a region of the phase front surface (p  = const] bounded by the 
same lines of the vector field Vp. Only then one can speak of a path of the 
center of gravity of the energy flux penetrating a given area S a n d  not of 
the total energy flux. Going over in Eq. (1.13) to a differentially small area 
S = dS, we obtain an equation for the lincof force of the vector field V p  
(i.e., an equation for a ray): d 'R/dr2 = ~ V E ,  which is a consequence of the 
transfer of energy along rays (d7 = ds/E1''). 
''Here, ((a /ar)  F ( r J  '[r))), =con,, means that in finding the derivative we 
regard the quantity A ' ( r )  as a parameter independent of r. 
"Here, U(r,A 2, is the potential energy in the expression for the density of 
the Lagrange function (2) of the initial equatlon (1.1): 
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