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A quasiclassical approximation is used to obtain simple expressions for cross sections of N- 
photon ionization of highly excited atomic states. The corrections to these cross sections, which 
improve their behavior at interresonance minima, are found for the two-photon ionization case. A 
practically complete agreement between quasiclassical cross sections and corresponding quan- 
tum-mechanical values is obtained for the principal quantum number n = 8. This agreement is 
satisfactory even for the ground state of the hydrogen atom. 

PACS numbers: 32.80.Fb, 32.80.Kf, 3 1.50. + w, 03.65.Sq 

Experimental results obtained on multiphoton ioniza- 
tion of atoms are usually explained on the basis of a quan- 
tum-mechanical theory of higher order perturbations.'-3 In 
the case of ionization of the ground state of the hydrogen 
atom the calculations have been carried out including even 
the sixteenth order of perturbation t h e ~ r y . ~  However, the 
transition from the N-photon to the (N + 1)-photon ioniza- 
tion calculations always involves an additional integration 
(or summation) and the number of matrix elements that have 
to be calculated rises very rapidly on increase in Nand also 
on transition from the ground state to excited levels. Addi- 
tional mathematical difficulties arise in calculation of the 
crosssectionsof(N + k )-photonionization abovetheN-pho- 
ton ionization thre~hold.~.' Recent experimental 
indicate that up to seven additional photons can be absorbed 
above the five-photon ionization threshold of Xe. In the case 
of the experiments carried out by Bayfield's group9*'' on the 
ionization of excited states of the hydrogen atom with the 
principal quantum number n of the order of 50 and with N 
amounting to a few hundreds, a quantum-mechanical per- 
turbation theory can hardly be applied. Obviously, some 
simplifying assumptions are needed. Since highly excited 
states of atoms are hydrogen-like and also since in the case of 
multiphoton ionization of atoms the energy of the initial 
state as well as the energies of the intermediate and final 
states are less (in absolute value) than the energy on the first 
Bohr orbit, it seems natural to apply a quasiclassical ap- 
proach. The idea was put partly into practice in Refs. 11 and 
12, where the motion of an electron is described simply by 
classical equations and simple expressions are obtained for 
the cross sections of N-photon ionization, the expressions 
being generalizations of the well-known Kramers formula 
for the usual photoelectric effect. In the case of two-photon 
ionization above the one-photon ionization threshold the se- 
miclassical cross sections are accurate to within a few per- 
cent. However, the cross sections obtained by such calcula- 
tions are, strictly speaking, valid only above the one-photon 
ionization threshold because they do not reflect the reso- 
nance structure of multiphoton ionization cross sections and 
in the resonance region they give cross sections averaged 
over the resonances. 

We shall use a quasiclassical approximation1' to genera- 
lize the cross sections obtained in Refs. l l and 12 to include 

the resonance region. In the case of two-photon ionization 
we shall also find corrections which improve the behavior of 
the ionization cross sections at interresonance minima. 

51. DERIVATION OF MULTIPHOTON IONIZATION CROSS 
SECTIONS IN A QUASICLASSICAL APPROXIMATION 

We shall begin from the Schrodinger equation for an 
electron interacting with the Coulomb field of a nucleus and 
with a periodic radiation field; we shall use the dipole ap- 
proximation. If the wave function for this problem is ex- 
panded as a Fourier series in terms of the radiation field and 
as a series in terms of spehrical functions, the following sys- 
tem of equations is obtained for the radial  function^'^.'^: 

Here, E is the electron energy; M is the magnetic quantum 
number, which is conserved in the case of a linearly polar- 
ized radiation field; 12 1 M I ; Z is the nuclear charge; F, and o 
are the amplitude and frequency of the radiation field (the 
atomic system of units is used). 

A quantum-mechanical perturbation theory for the sys- 
tem of equations (1) is based on the use of the Green func- 
tions. In the quasiclassical approximation the Green func- 
tions for the open and closed channels are as follows: 

GNI ( r ,  r f )  =- [ k x l  ( r )  kSI  ( r ' ) ]  -I!' sin [S,, ( r , )  +n /4]  

x e r p  [ i ( S N l  (r , )  + n / 4 ) 1 ,  

E,>O, 
(3) 

Ghl ( r ,  r r )  =- [ k s l  ( r )  kxl  ( r r )  I -'{sin [ S X I  ( r , )  n/41 

x cos [Sxl ( r , )  + d 4 1  

+ t g  [ S s l  ( r ? )  ] sin [S,, ( r )  + n / 4 ]  sin [ S K I  ( r f )  + n / 4 1 ) ,  E . 4 0 ,  
,- 

S x l  ( r )  = d r f k x l  ( r J ) .  (4) 
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Here, r ,  and r, are, correspondingly, the smaller and larg- 
er of the quantities r and r'; r, and r, are the turning points 
(for simplicity, we shall omit the indices N and I of these 
quantities). Using a quasiclassical wave function of the ini- 
tial stateI5 with quantum numbers n and I ,  

we can develop a quasiclassical perturbation theory for the 
specific case of the system (I), which would have reduced the 
procedure to a calculation of quasiclassical multiphoton ma- 
trix elements. However, in view of strong oscillations of the 
quasiclassical functions fN,(r) and of the Green functions of 
Eq. (3), it is difficult to calculate them directly. We shall 
show later that over a major range of r the strongly oscillat- 
ing part of the radial functions is the same for all the chan- 
nels so that it is convenient to separate it in advance and to 
a d ~ ~ t ' ~ . ' ~  compelx, and slowly varying with r, amplitudes 
a ' , (r) using the representation 

f N l  ( r )  =-'12ik;I" {aNrf ( r )  exp [ i  (sNl (r) +n/4 )  ] 
-aNl- ( r )  exp[ -i (SNl ( r )  +n/4)  1). (8) 

Introduction of variable amplitudes a * ,(r) is analogous to 
the method of variation of constants in the solution of inho- 
mogeneous differential equations. If we now substitute Eq. 
(8) into Eq. (I)  and employ the usual quasiclassical approxi- 
mations, dropping the rapidly oscillating terms from the ar- 
gument of the exponential function S,.,, + S,, we ob- 
tain14.16 the following system of equations for the slow 

amplitudes: 

where the summation is carried out over all values of 
N '  = N f 1 and I '  = I + 1, and I, is the greater of the two 
values I and I '. We can see that the change in the amplitudes 
a * ,(r) considered as a function of r is entirely due to the 
coupling between the channels. 

We shall now consider the boundary conditions for the 
functions a+, (r) and a-, (r). Firstly, the function f,,(r) 
should decrease exponentially to the left of the turning point 
r,. This gives rise to the conditionI7 

~ N I +  (r,) =aNl- ( r , )  . (10) 
In the case of open channels in the ionization problem a wave 
converging at infinity should be absent, i.e., 

In the case of closed channels the function of Eq. (8) should 
also decrease exponentially to the right of the second turning 
point r,. This occurs only on condition that 

( T Z )  exp [ is , ,  ( r z )  ] +aNl- ( r z )  esp [-isNl ( r 2 ) ]  =0, 

EN<O. (12) 

It is this last condition that gives rise to a tangent in the 
Green function (3 )  and, in the final analysis, is responsible for 

resonances of the ionization cross sections. For a Coulomb 
field, we obtain 

SNI (r2)  = J I  [ 2 ( - 2 E ~ )  -'"-l-'/z]. (I3) 
Before applying perturbation theory to the system (9), 

we note that two limiting casesI7 may be encountered in the 
calculation of quasiclassical matrix elements. In one case the 
matrix elements are calculated between the states whose en- 
ergies are close to one another and, therefore, the matrix 
elements convege to the Fourier components of the corre- 
sponding classical quantity. In the other limiting case the 
energies of states differ considerably and the matrix ele- 
ments are exponentially small. However, in the problem un- 
der discussion the values of the matrix elements are in- 
fluenced not only by the energy but also by the orbital 
quantum number I. In the multiphonon ionization case the 
matrix elements are calculated between the states whose en- 
ergies differ by w. We shall assume that w is much greater 
than the separation between the neighboring levels, amount- 
ing to n-3, where n is the principal quantum number of the 
initial state. Since in the N-photon ionization case the value 
of No is of the order of n-2, it follows that further steps 
should be restricted by the conditions 

N<n. (14) 

In fact, it follows from a comparison of the quasiclassical 
cross sections with the corresponding quantum-mechanical 
values (see below) that the quasiclassical cross sections are 
sufficiently accurate even subject to conditions less stringent 
than those given by Eq. (14). 

I f ~ ) n - ~ ,  a direct calculation based on Eqs. (4) and (2) 
can be used to show that the differences S,, - S,.,. are gen- 
erally of the order of n - n', ie., these differences are large, 
so that the matrix elements are exponentially small with just 
one exception. This exception occurs when I4n so that the 
differences SNl - S,.,, become small near the turning point 
r,. It is this range of variation of r that we shall be interested 
in the subsequent treatment. If Ixn, the tuning point 

r,= (n2/Z)  { I -  [ I -  (14- 'I2) 2/n2] "') = (1+1/2) '122 (1 5) 
is independent of the electron energy and it is approximately 
the same for all the channels (including open ones), because 
we are assuming that the usual quasiclassical conditions 
I - I '<I are obeyed. In the case of values of I close to n the 
differences S, - S,.,, again decrease, but there is also a 
reduction in the classically accessible range of electron mo- 
tion (the turning points r ,  and r ,  approach one another), so 
that once again the matrix elements are small. 

Expanding the quantities kNl as a series near the point 
r,, we find that 

SNr-SNPrrz (N-N') ot- (m-ml)cp, (17) 
r= (L2/2Z) (1+u2) ,  t= (L3/2Z2) (u+u3/3) ,  ( ~ = 2  tan-' u, 

L=10+i/2, m=l-lo, (18) 
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The approximations (16)-(18) imply that when the condition 
(19) is obeyed, the electron motion near r,  is the same for all 
the channels and follows a parabola. Here, t and p are the 
classical time and angle. The range far from r, makes an 
exponentially small contribution to the matrix elements and, 
therefore, in the calculation of these elements we can extend 
the variable r (or u)  to infinity. It follows from Eq. (17) that in 
our approximation the matrix elements again reduce to the 
Fourier components. As is usual in the calculation of quasi- 
classical matrix elements, we have to use a slightly ambigu- 
ous procedure of introduction of certain average quanti- 
ties.'' In our case such a quantity is the orbital momentum 
L. For simplicity, we shall equate it to the orbital momentum 
of the initial state. 

Ignoring the difference between the pre-exponential 
factors for the various channels in the system (9), allowing 
for Eq. (17) and adopting the variable t in accordance with 
Eq. (18), we finally obtain the following impact-parameter 
type equations instead of the system (9): 

where the summation is carried out over all the values 
N ' = N _+ 1 and I ' = I _+ 1, and the function a,, ( t  ) is equal 
to a+,,  (t ) and a - ,  ( t  ), for t > 0 and t < 0, respectively. The 
constant a,, ( - oo ) vanishes for EN < 0, whereas if EN < 0, 
we find from Eqs. (12) and (13) tht is determined by the con- 
dition 

a,., (-m) = a N m ( m )  exp [ 2 i n Z ( - 2 E N ) - " ]  . (21) 
We shall now introduce functions 

Using the definitions of Eq. (18) and the integral representa- 
t i o n ~ ' ~  of the Airy function Ai(x) and its derivative Ail(x), we 
readily find that 

H , = i n F o ( Z / 2 u 5 )  " ' ( 1 - M Z / L O 2 ) % [ - A i ' ( x )  f x'; Ai ( x ) ]  , (23) 

x= ( ~ 1 ~ / 2 2 ~ ) ~ / 1 .  (24) 

Since the initial state is described by the function (6), we 
can use Eq. (20) and the iteration procedure to obtain the 
following expressions for the first few amplitudes a,, : 

where 

The induction method can be used to demonstrate the valid- 

ity of the general formula 

a ,  
aNm(t )  = 

( ( N f  m )  12) ! ( ( N - m ) / 2 )  ! 

(26) 
The quantities R, satisfy the recurrence relationship 

s-4 

We are interested in the probability of the N-photon 
ionization process, which is governed by the amplitudes 
a,, ( w  ) when EN > 0. It follows from Eq. (26) that these am- 
plitudes are 

( X + m )  /ZHy-m),2 
a,, ( m )  =aoH+ R , l ( ( N + m ) / 2 )  ! ( ( N - m ) / 2 )  !. 

(28) 
Calculating the flux of electrons of energy EN across an 

element of the surface area, dividing it by the photon flux 
Fi/8?raw, and averaging over the magnetic quantum num- 
ber M, we obtain the differential cross section of N-photon 
ionization of a state with the quantum numbers n and 1,: 

Here, a is the fine structure constant, I? is the angle between 
the direction of emission of an electron and direction of po- 
larization of an electromagnetic field, and m assumes the 
values -- N, - N + 2, ..., N (naturally,l, + m>lM I).SinceM 
in the inner sum is the same for all the spherical functions, 
the cross section is independent of the angle q. It follows 
from Eqs. (28) and (23) that the cross section (29) contains the 
factor (1 - M */I:) raised to the power N. 

We shall replace the summation over M by integration 
with respect to the variable P, which is related to M by 
M = loco,$. After integration of Eq. (29) with respect to the 
angular variables and 8, and after summation over m, we 
obtain the total cross section of N-photon ionization of a 
state with the quantum numbers n and I,: 

I RN l 2  [.Iir ( x )  - x l /*  hi ( x ) ] tN  

x F [- N ,  - N ;  1 ;  [Ai' ( x )  

+ x'/-' .Ii ( ~ ) ] ~ / [ . i i '  ( x )  - x'i' hi ( x ) j 2 ] .  (30) 

The last factor in the above expression is a polynomial which 
can be expressed in terms of a hypergeometric function char- 
acterized by an argument which varies from 1 to 0 when x is 
varied from zero to infinity. 

We shall also determine the cross section for N-photon 
ionization of an atom for a shell with the principal quantum 
number n: 
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Using the relationship for hypergeometric  function^'^ 

we can rewrite Eq. (3 1) in the form 

where the numbers T,  are given by the integral 

These numbers were calculated in Ref. 1 1 .  In the case of 
circularly polarized radiation we have the same expression 
(33), but the numbers T N  should be replaced with others also 
given in Ref. 1 1. The cross section UN (n) calculated in Refs. 
1 1  and 12 differs from Eq. (32)  only by the absence of the 
resonance factor IRN 1'. The quantities R N  are defined by 
Eqs. (27)  and (25)  and for N = 1 ,2 ,  and 3, they are 

I - 1 / 2  ( I f 3  ctg n v ,  c tg  n v , ) ,  o t Z 2 / 4 n 2  

The different form of R N  at different frequencies is due to the 
fact that intermediate states may be in discrete or continuous 
spectra. It is clear from the above formulas that on transition 
of an intermediate state from a discrete to a continuous spec- 
trum the corresponding cotm, should be, in accordance 
with Eq. (25) ,  replaced simply with - i. In the N = 1 case 
the cross section (33)  reduces to the well-known Kramers 
formula for the usual photoelectric effect. 

Before comparing the cross sections of Eq. (33)  with the 
corresponding cross sections found completely by the quan- 
tum-mechanical approach, it should be noted that in the res- 
onance region the cross sections (33)  should be sufficiently 
exact where they are large. However, at interresonance mini- 
ma, where the cross sections are much smaller than the aver- 
age quasiclassical values ( R N  = I), Eq. (33)  cannot yield all 
the fine features of the quantum-mechanical interference. 
Therefore, we shall find the corrections to the cross sections 
of Eq. (33) in the two-photon ionization case. 

§S.CORRECTIONS TO CROSS SECTIONS AT 
INTERRESONANCE MINIMA 

The main error in the quasiclassical cross sections given 
above originates not from the quasiclassical approximation 
itself but because of transition from the system (9) to the 

system (20) .  This involves neglect of the difference k ,  
between the various channels in determination of the pre- 
exponential factors and the arguments of the exponential 
functions allow for the difference in accordance with the 
expansions (16)  and (17) ,  i.e., only in the first order with re- 
spect to the difference of the energies and of the angular 
momentum. Expanding k ,  near the turning point r, in the 
same way as in Eq. (16) ,  we shall allow for the next order. 
Then, 

We can see that the corrections allowed for in the present 
section are small quantities of the order of L -'. 

We shall first consider the amplitude a,,. In this case a 
solution of the system (9) by the iteration method has only 
one term with N'  = N - 1 and 1 ' = I - 1 on the right-hand 
side. Substituting th expansions (36)  and (37)  into Eq. (9) and 
retaining only terms of the order of L - ', we obtain the fol- 
lowing expression for the amplitude a,,( ) below the one- 
photon ionization threshold 

(39)  
M,=2'"n [-Ai' ( x )  *x'"Ai ( x )  ] . (40)  

The first term in Eq. (39)  containing the cotangent corre- 
sponds to the approximation of the preceding section, and 
the correction I,, to this term obtained allowing for the inte- 
gral identity 

0 t - OD 

J dtf ( t )  J d t lg  ( t r )  = J d t g ( t )  J d t l f ( t ' )  (41)  
-0 -m - m t 

can be expressed in the form 

(42)  
where 
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g, ( u )  = (1+u2) (1-u2i3iu)  u p [ - i z  (u+ u 3 / 3 ) ] ,  

Near the resonance curve minima where the cotangent van- 
ishes, the term I,, predominates. Equation (39)  is derived 
ignoring factors of the order ofL - ' in front of the cotangent 
and the corrections of the same order of magnitude to the 
amplitudes in the nonresonance region, i.e., to the ampli- 
tudes above the one-photon ionization threshold. 

We shall now consider calculation of the integral (42). 
Firstly, we note that this integral is converging (this applies 
to the principal value), although it does contain negative 
powers of the variable u in the integrand. Allowing for the 
fact that n)L) 1, we can integrate Eq. (42) by parts to avoid 
completely the negative powers of the variable u. The same 
integration by parts can reduce the powers of the variables u 
and u'. The resultant single integrals then reduce to the Airy 
functions. If the variables u and u' are replaced with 
v = u + u' and v' = u - u', the remaining double integral 
can be reduced to a double integral with constant limits, and, 
in the final analysis, to an integral of the Airy function. The 
result of fairly lengthy calculations is the following expres- 
sion for the integral (42): 

FIG. 1 .  Cross sections ~ ~ ( 8 )  of two-photon ionization of the hydrogen 
atom from then = 8 shell, divided by the intensity of the radiation field I, 
plotted as a function of the radiation wavelength A( p). The continuous 
curve represents the quantum-mechanical calculations of Ref. 20, the 
dashedcurve gives the values calculated from Eq. (SO), and the chain curve 
is a calculation made using Eq. (50) without the last two correction terms. 

It is interesting to note that the argument of the function I,, 
can be obtained from the argument of the function M +  by 

- 
replacing 0 with 2 0  in the latter. 

The amplitudes a,, -, are calculated in a similar man- 
ner. The resultant integral I,. _, differs from Eq. (44) only by 
the opposite signs at fractional powers of y. The amplitude 
a,, is determined by two matrix elements in accordance with 
two possible values of the orbital momentum I ' = I ,  & 1 of 
an intermediate state and can be represented in the form 

-13 M2 [(>) M+M- ctg n ~ , - o - ~ ~ ,  ] + 0 - 3 ~ ) .  

if" P = - - j  S d ug- ( u )  G+ ( u ) .  (47) 
- P) 

The last term in the amplitude (45) appears because of the 
difference between the factors 1 - M , / I  " for these two ma- 
trix elements. Calculations similar to those described above 
yield the following values of the integrals I,, and P: 

n 
I,. = -{ (296~+5y')Ai  ( y )  + (226y2+5y5) Air ( y )  

320 

Knowing the amplitudes a,, ( w ) and applying the same 
procedure as in the derivation of Eq. (33), we obtain the two- 
photon ionization cross section below the threshold of one- 
photon ionization for an atomic shell with the principal 
quantum number n: 

0 " 
aFOzZ'"' [co  ctg2 nv,-c, - ctg nr,+c2 . (50) 02 ("' = Z ""I 

The constants c,, c , ,  and c,  are given by the integrals 
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FIG. 2. Cross section ~ ~ ( 1 )  of two-photon ionization of the ground state of 
the hydrogen atom, divided by the intensity of the radiation field I, plotted 
as a function of the radiation wavelength A. The continuous curve repre- 
sents the quantum-mechanical calculation given in Ref. 4 and the dashed 
cuve is the calculation made using Eq. (50). 

Numerical integration yields the following values of these 
constants: 

co=0.8058, c,=1.612, c,=1.299. (52) 

The last two terms in the cross section (50) are the cor- 
rections calculated above to the two-photon ionization cross 
section and we can see they are the first terms of the expan- 
sion in terms of a small quantity I X ' ' ~ .  

53. COMPARISON WITH QUANTUM-MECHANICAL 
CALCULATIONS 

We shall now compare the simple expressions for the 
cross sections given by Eqs. (33) and (50) with the corre- 
sponding quantum-mechanical expressions. In the case of 
two-photon ionization above the one-photon ionization 
threshold the results given by Eq. (33) are accurate to within 
a few percent" even in the case of low values of n.  Unfortun- 
ately, only one quantum-mechanical calculationZ0 of the 
two-photon ionization cross sections for large values of n has 
been published so far. The results of these calculations are 
compared in Fig. 1 with Eq. (50). We can see that just the first 
term of Eq. (50) ensures a satisfactory agreement with the 
quantum-mechanical calculations, excluding the regions of 
interresonance minima. Allowance for the last two terms in 
Eq. (50) ensures a practically complete agreement with the 
quantum-mechanical calculations. A similar agreement is 
observed also for n = 9 and 10. Figure 2 makes the same 
comparison for the ground state of the hydrogen atom. Even 
in this case Eq. (50) gives a satisfactory result. Naturally, we 
can expect that in the case of the differential cross sections 
(29) and (30) the differences from the corresponding quan- 

tum-mechanical cross sections will be larger than for the 
cross section a N ( n )  because in the latter case the finer quan- 
tum-mechanical effects may disappear as a result of averag- 
ing of Eq. (3 1). However, more detailed quantum-mechani- 
cal calculations are needed to determine this question. 

The cross sections (33) and (50) apply, strictly speaking, 
only to the hydrogen atom. Although the highly excited 
states of complex atoms are hydrogen-like, it follows from 
the above analysis that the probability of multiphoton ioni- 
zation of highly exicted states of atoms is governed mainly 
by the small distances r and states with low values of 1, i.e., 
precisely by those values of r and I at which the deviation of 
the wave functions of complex atoms from the hydrogen 
wave functions is greatest. An allowance for this deviation 
can be made in the quasiclassical approximation by apply- 
ing, for example, the quantum defect method.' 
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