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The gain for a free-electron laser is found in the case of a long undulator and comparatively large 
energy spread of the beam electrons. Two nonlinear regimes are shown to exist in this case, those 
of weak and of strong saturation. In the weak saturation regime the efficiency of the free-electron 
laser is shown to increase, although it differs from that found in the weak-field approximation. 
The free-electron laser efficiency in this case can considerably exceed that of a laser with a "short" 
undulator, the amplification level in a weak field being the same. In the weak saturation region the 
amplification decreases slowly (compared to the case of a "short" undulator) and experiences 
appreciable oscillations. The feasibility of lasing under hard self-excitation conditions is dis- 
cussed. 

PACS numbers: 42.55.Bi 

1. It is well known1 that even in a weak field a free- 
electron laser (FEL), can operate in two different amplifica- 
tion regimes corresponding to the "short" and "long" undu- 
lator approximations. The quantitative parameter f which 
determines the effective length of the undulator and sepa- 
rates the two indicated regions is equal, apart from a coeffi- 
cient of the order of unity, to the product of the number n of 
the undulator periods and the relative width of the electron 
energy distribution A&/€: f = 2&?n~e/&. The undulator is 
"long" or "short" depending on whether f > 1 or f < 1. No- 
tice must be taken of a certain arbitrariness in the concepts of 
"long" and "short" undulator. A change in the parameter f 
and a transition from one regime to another can be ensured 
by a real change in the length L of the undulator, as well as by 
changing the electron energy spread Ae at a fixed length. 

Saturation in FEL and the linear behavior of the gain 
and efficiency have been quite thoroughly investigated in the 
"short" undulator approximation1 (see also the literature 
cited in the review1). In the present paper we shall investigate 
the features of saturation in an FEL that corresponds to'the 
inverse approximation, i.e., to the approximation of the 
"long" undulator, when f > 1. In this case, in contrast to the 
"short" undulator, regardless of the conditions of the appli- 
cability of the weak-signal approximation, two parameter 
ranges appear, corresponding to weak and strong satura- 
tions, in which the behavior of the gain and of the efficiency 
are significantly different. 

It will be shown below that the transition from the lin- 
ear approximation to different saturation regimes, just as the 
transition from the model of the "short" undulator to the 
model of the "long" one, lends itself to the following unified 
interpretation. Several mechanisms can broaden the gain 
contour in an FEL: the broadening can be due to the finite 
length of the undulator, to the electron-energy spread in the 
beam, or to the strong field of the electromagnetic wave. To 
each of these mechanisms there corresponds a separate 
width of the amplification band. The competition of the dif- 
ferent broadening mechanisms is such that the mechanism 
that predominates is always the one corresponding to the 
largest width. With change of the system parameters, the 

ratio of the widths that are due to the different mechanisms 
changes. The conditions for realization of one approxima- 
tion or another, or of one model or another, can be defined as 
the conditions under which the corresponding width pre- 
vails over all others. With changing width ratio a transition 
takes place from one broadening mechanism to another, i.e., 
from one model to another. 

2. In the weak-signal approximation, the gain of an FEL 
with a "short" undulator (f < 1) is known' to be 

2nN,e4BozL3 d sinZ u 
GL= -- 

c 3 m Z & ~  du uZ ' (1) 

where N, is the electron density in the beam, B, is the ampli- 
tude of the transverse magnetic field intensity of the helical 
undulator, o is the frequency of the amplified signal, 
u = - 2mA /E, A = E - E, is the detuning of the resonance 
relative to the deviation of the energy from the resonant val- 
ue, 

& ~ = r n c ~  ( o / 2 q o c )  'I2, qo=2n/k,,  

and A, is the undulator period. 
At large undulator length f >  1, but also in the weak- 

signal approximation, the gain is well known' and is given by 

where f (e) is the electron-energy distribution function nor- 
malized by the condition Sf ( E ) ~ E  = 1. 

Formula (2) is obtained in elementary fashion from (1) 
at f > 1 by averaging of GL over the distribution function 
f (4. 

Figure 1 shows qualitatively the resonant dependence 
of the gain on the detuning, G (A ) at f < 1 and G (a ) at f > 1, 
where a = Z - E, is the average detuning that determines 
the deviation of the average electron energy from the reso- 
nant value E,. The width of the amplification band r is dif- 
ferent in these two cases: it is equal to r, = ~ / 2 r n  at f < 1, 
and r = r,, ZAE, i.e., the band width is equal to the width 
ofthe distribution function f (e), a t5  > 1. The maximum (rela- 
tive to changes of the detuning A ) values of the gain in the 
cases of the "short" and "long" undulator are 
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FIG. 1 .  Resonant dependence of the gain on the detuning. 

where we assume 

[d (sin2 u/u') /du] [ d f / d ~ ]  r n a x z t / z  ( A € )  

Equations (3) shows that the maximum values of the 
gain G , ,  and G,,, differ by the parameter f '. This means 
that the smaller of the two gains G , ,  and G,,,, is always 
realized (at the same value of B,, N ,  , and E). 

The parameter f, which separates the region of applica- 
bility of the "short" and "long" undulator approximations, 
is obviously equal to the ratio of the widths rA, and r , ,  
which are governed by the electron energy spread and by the 
finite undulator length: = I'A,/fiI'L. The width r of the 
G (A ) curve is determined in the weak-signal approximation 
by the larger of the values rA, and TL ; this corresponds to 
the rule formulated in Sec. 1 for separating the broadening 
mechanism corresponding to the larger of the widths. 

3. The region of applicability of the weak-signal approx- 
imation in the case of a "short" undulator (c < 1) is limited by 
the condition that the saturation parameter be small.' 

where E, is the amplitude of the electric field intensity of the 
amplified wave. At a large value of the saturation parameter 
p ,  the gain decreases with increasing field E,. In the approxi- 
mation linear in the detuning A, the asymptotic expression 
for the gain is of the form' 

where 

Qualitatively, the G (A ) dependence is characterized in 
this case again by the curve shown in Fig. 1 where, however, 
the band width r is determined by the value of the field E,: 

Equation (5) is valid at (A I < r E ,  p > 1 (Ref. 2). The maxi- 
mum value of the gain (relative to changes of the detuning A, 
but at a specified value of the field E,) is reached at 
A ~ A , , , ~ 1 . 4 r ~ :  

The numerical value p, of the saturation parameter p ,  
at which the transition takes place from the weak-signal ap- 
proximation [Eq. (I)] to saturation [Eqs. (5) and (7)], is deter- 
mined most convincingly from the approximate-equality 
condition G,,,, -vGL,, , which yields p,=: 2.3. Since it can 
be easily seen that p = T E / d L ,  the condition p k 2.3 
means that at rE < r, , i.e., at < 1 we have under saturation 
conditions rA, < r L  < r E .  Therefore the width of the gain 
band is in this case of the order of r E ,  and the inequalities 
cited confirm again the rule for determining the larger of the 
widths (Sec. 1). 

The numerical coefficients 1.4 and 0.8 in the definitions 
of the detuning A,,, at which the gain is a maximum, 
A,,, -- 1.4rE and of its maximum value G,,, (7), can of 
course not be obtained from the conditions for the applicabi- 
lity of the analytic asymptotic formula (5). These values, 
however, can be obtained from analysis of the G (A ) curves at 
p > 1, plotted from numerical calculations, such as in Ref. 3. 
Comparison of the maximum values of the gain, obtained in 
Ref. 3 a t p  = 2,3, and 4 (in our notation) with the calculation 
by formulas (7) and (3) yields again the numerical factor 
=0.8 in expression (7). Next, according to Ref. 3, the gain 
G (A ) at p = 2 and p = 3 is a maximum at the values of the 
detuning parameterspA /Am used in Ref. 3, namely pd /dm 
=2.9 and pA /A, ~ 3 . 9 5 ,  i.e., on the average at 
AzA,,, ~ 1 . 4 4 , .  

A more or less correct quantative estimate of the nu- 
merical coefficients A,,, and G,,, is important for a correct 
determination of the nonlinear gain in the FEL with "long" 
undulator and for the estimate of the region of applicability 
of the corresponding formulas (see Sec. 4 below). 

4. We proceed now to describe the saturation in an FEL 
with a "long" undulator, i.e., under the condition <> 1 (or 
r,, > T, ). In this case it is clear that the qualitative criterion 
of the applicability of the weak-signal approximation is as 
before the condition that the saturation parameter p (4) be 
small, or that the field width rE be small compared with T, . 

At large values of the saturation parameterp, the weak- 
signal approximation is inapplicable but, generally speak- 
ing, the asymptotic formulas (5)-(7) are also inapplicable. 
The reason why these aymptotic formulas are inapplicable is 
that even although the field width T, at p > 2.3 indeed ex- 
ceeds the value rL governed by the finite length of the undu- 
lator, the condition f>  1 it can make it smaller than the 
width rA, determined by the electron energy spread. None- 
theless, the asymptotic formulas (5)-(7) are valid in this case 
for a separate group of elecrons with a specified energy E.  

This means that to obtain the gain of the entire electron 
beam as a whole it is necessary to average over the electron 
distribution function f (e) ,  but what is averaged in this case is 
not Eq. (I), but the strong-field gain defined by formulas (5)- 
(7). 

Bearing in mind the need for such an averaging and 
taking the condition TE > TL into account, we shall assume 
the G ( A  )plot for an electron group with a given energy E to be 
highly peaked, and approximated by a derivative of a 6 func- 
tion 
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G (A)  =-A6'(A). (8) 

The constant A is expressed in terms of the width and height 
rE and G,,,,, of the G (A ) curve, and is obviously equal to 
the area bounded by AG (A ) curve: 

+ - 
A = J A G  ( A ) ~ A = ~ ~ ~ Z G ~ , . ,  (9) 

- ca 
where a is a numerical parameter. An exact determination of 
a is possible obviously only on the basis of numerical calcu- 
lations. A more or less satisfactory result, however, can ap- 
parently be obtained with the aid of the analytic formulas (5) 
and (7). We approximate the G (A ) curve by the linear depen- 
dence (5) on the section [A I < 0.5Am, by a linear relation that 
satisfies the condition G (A = 1.44 ,) = G,,,, (7) on the 
section 0.5Am < lA I < 1.4Am, and by a linear decreasing de- 
pendence with a constant slope on the section 
1.44, < 14 ] < 2.8Am, assuming that G (A = 2.84,) = 0. 
Calculation of the integral (9) with such an approximation 
yields a ~ 4 . 2 .  Using this value of a in Eqs. (6)-(9), we aver- 
age the gain G (A ) over the distribution function f (&). As a 
result of the averaging we obtain the following expression for 
the average gain in the parameter region defined by the in- 
equalities TL < TE < : 

This is in fact the sought nonlinear gain of the FEL with a 
"long" undulator. 

The width of the gain band after averaging becomes 
equal to rA, =AE in accordance with the selection rule for 
the largest of the widths. The maximum value of the average 
gain (10) (relative to the changes of the average detuning 

= 2 - E,, i.e., for given Eo, L, andp) is of the order of 

The numerical value of the saturation parameter p ,  starting 
with which Eq. (10) and (I)  become valid, can again be ob- 
tained from the condition that E , ,  zG~,,,, which yields 
p z 3 .  

Equations (10) and (1 1) describe the nonlinear behavior 
of the gain in an FEL with a "long" undulator in the param- 
eter range rL < r, < r,,. With increasing field intensity E,, 
the gain 5, decreases in this region in proportion to E ; 'I2, 

i.e., much more slowly than in the range of values of the 
saturation parameter p in the case of a "short" undulator, 
where in accord with (7) we have G,,,, cc E; 3/2. Since EE 
decreases slowly, the parameter range rL < TE < rA, can be 
called the region of the weak saturation. The presence of this 
region is a distinguishing feature of the case of the "long" 
undulator, inasmuch as in an FEL with a "short" undulator 
the weak-saturation region, as is well known,' does not oc- 
cur. In an FEL with a "long" undulator, the strong satura- 
tion arises in the case when the field Eo is so strong that 

rE > rAE > rL . The ratio of the widths rE and TA, deter- 
mines the new saturation parameter 

The meaning of this parameter is that it is precisely the con- 
dition p *  > 1 (and not p > 1) which is the condition for the 
transition into the strong-saturation region in an FEL with a 
"long" undulator. At p *  > 1 the field width rE becomes so 
large that it exceeds the width AE of the electron distribution 
function. For this reason, at rE > r,, > rL there is no need 
for averaging over the energy distribution of the electrons, 
and the gain is determined again by the usual formulas (5)-(7) 
of the nonlinear theory, regardless of the value of the param- 
eter 6. The width of the gain band is euqal in this case, as 
before, to the largest of the widths TL,  T,,, and r , ,  i.e., in 
this case it is equal to the field width T,. 

5. Besides the gain of the FEL, great interest attaches 
also to its efficiency, defined as the ratio of the energy radiat- 
ed by the electron in one pass to the initial electron energy: 

We present now formlas for the efficiency of the FEL, v,, 
maximized with respect to the detuning A ( o r 2  ), in the weak 
field region (vL,, and v,,,,) and under saturation conditions 
(q,,, and q , ,  ) in the cases of the "short" and "long" undu- 
lators respectively: 

The v(,u) plots corresponding to these formulas are shown in 
Fig. 2. The solid and dashed lines in Fg. 2a shows the effi- 
ciency of FEL with "long" and "short" undulators. Actual- 

FIG. 2. Efficiency 11 as a function of the saturation parameterp in FEL 
with "short" (dashed curves) and "long" (solid curves) undulators at dif- 
ferent (a) and identical (b) gain levels in a weak field. 
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ly these curves correspond to systems in which all the pa- 
rameters including the undulator length L, coincide, with 
the exception of the width AE of the energy spread of the 
electrons in the beam. The difference between the values AE 
ensures in fact the transition from the case f < 1 to the case 
f = 5 > 1 (the specific value f = 5 was chosen for ease in 
illustration). 

Formulas (13)-(15) and the curves in Fig. 2a point to a 
considerable qualitative difference between the behavior of 
the FEL efficiencies at f < 1 and f > 1. It is known' that the 
efficiency of an FEL with a "short" undulator increases with 
increasing field and oscillates (on the average in proportion 
to E :I2), and the depth of the oscillations is far from small, as 
is illustrated by the dashed curve in Fig. 2a. The structure of 
the efficiency of the FEL with a "long" undulator in the 
weak saturation region (1 5) is at first glance quite similar to 
the structure of the efficiency of the FEL with a "short" 
undulator (14). However, the faster power-law growth (on 
the average proportional to E y) compared with 7, K E 
leads to a qualitatively new singularity. Up to a saturation- 
parameter value p = 1 1.5 the power-law factor p3 in (15) 
compensates for the decrease of the oscillating factor, as a 
result of which the FEL efficiency in the weak saturation 
region at p < 11.5 increases monotonically with increasing 
field intensity E,. The fact that r ] ,  (p) does not decrease at 
p S: 11.5 distinguishes qualitatively the FEL with the "long" 
undulator ([> 1) from systems whose parameters corre- 
spond to the "short" undulator model. The oscillatory de- 
pendence i j ,  (p) sets in the case of f > 1 only at p > 11.5 or 
else on going to a stronger saturation p > 2.45 f. In the re- 
gion of strong saturation, the gain decreases rapidly and be- 
comes less than the loss level in the cavity (Fig. 3). Therefore 
in practically the entire range of parameters of real interest, 
the efficiency of the FEL with a "long" undulator increases 
monotonically, although a p > 3 the i j (p)  dependence does 
differ from theji m p 4  dependence whcih is valid in the weak- 
signal approximation. 

The quantitative difference between the efficiencies of 
FEL with "short" and "long" undulators can also become 
quite noticeable at large values of the saturation parameter 
p ,  as illustrated in Fig. 2b. The dashed curve in Fig. 2b are, in 
a different scale, the same plot as in Fig. 2a, i.e., the effi- 
ciency of an FEL with a "short" undulator. The solid curve 

FIG. 3. Gain, normalized to unity asp-+O, in an FEL with a "short" 
(dashed curves) and a "long" (solid) undulators. 

of Fig. 2b is the efficiency of an FEL with a "long" undulator 
at f = 5. It is assumed that on going from the "short" to the 
"long" undulator the electron energy spread AE increases. It 
is also assumed that the electron current in the beam in- 
creases in this case by a factor f * = 25, the other parameters 
remaining unchanged. The increase of the current ensures 
an identical gain in the FEL with the "short" and "long" 
undulators in a weak field (as p a ) .  As can be easily seen 
from Fig. 2b, at identical gain in a weak field, the efficiency 
of an FEL with a "long" undulator in the weak-saturation 
region exceeds considerably the efficiency of an FEL with a 
"short" undulator. In the general case, the maximum in- 
crease of the efficiency is determined by the factor f ') 1 and 
is reached at the boundary of the regions of the weak and 
strong saturation, i.e., a t p  = 2.45 5 = 12.25. 

Figure 3 shows the dependence, on the saturation pa- 
rameter p ,  of the FEL gain referred to its value in a weak 
field (G,,, or G,,,), in the "short" (dashed curve) and 
"long" undulator (solid curve) regimes. The parameters of 
the systems in these two cases are again chosen such that the 
difference in the value of the parameter is determined ex- 
clusively by the difference between the values of the width 
AE of the distribution function f (E), with all other conditions 
equal. The qualitative distinguishing features of the satura- 
tion in the "long" undulator regime are the following: 1) on 
the average, the gain decreases with increasing field En much 
more slowly than in the "short" undulator regime; 2) as a 
result, the oscillations of the gain as functions of En become 
much more noticeable, as can be easily seen in the figure. The 
last circumstance makes more realistic the possiblity of ob- 
serving two lasing bands in the case of a "long" undulator. 
Lasing in an FEL is possible if the gain exceeds the loss level 
in the cavity. If the loss level is determined by the horizontal 
dash-dot line of Fig. 3, lasing is obviously possible both at 
field intensities starting from zero, and in another band of 
stronger fields (hard self-excitaiton), but is impossible in the 
intermediate region. In Fig. 3, the regions corresponding to 
the possiblity of lasing are shaded. 

In principle, a similar possibility exists also in the 
"short" undulator region.' In this case, however, the gain 
G (0) must greatly exceed the loss level, since the second max- 
imum of the gain is quite small ( -0.02GL,, , Ref. 1). In con- 
trast, in the case of a "long" undulator the height of the 
second maximum of the gain is only slightly smaller than its 
value in a weak field. Therefore in this case lasing in this hard 
self-excitation regime is possible if, for example, the loss lev- 
el in the cavity, referred to the weak-field gain G, , ,  , is in the 
interval from 0.18 to 0.3. Observation of the hard regime of 
self-excitation in the FEL is possible, naturally, on passage 
of a priming electromagnetic wave whose intensity is so large 
that the system is immediately in the lasing region adjacent 
to the second maximum of the gain. 

From the practical point of view it is clear that, depend- 
ing on the beam parameters obtained with different accelera- 
tors and on the undulator parameters, any of the amplifica- 
tion regimes, with "short" and "long" undulators, can be 
realized. For example, in the case of the Stanford experi- 
ment,4 the undulator length was L = 5 m at a periodicity 
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pitch A, = 3.2 cm and a relative width of the electron distri- 
bution in energy AE/E - corresponding to a parameter 
value 5 ~ 0 . 5 5 4 ,  i.e., to the "short" undulator regime. It is 
clear that the "long" undulator regime can be realized, for 
example, at the same values of L and A,, but the larger value 
o f A ~ ,  i.e., in beams that are less monoenergetic, which are in 
fact those realized in many accelerators. For example, at A&/ 
E = 0.93 x we hvec = 5. In order for lasing to be possi- 
ble in such a system, it is necessary to ensure preservation of 
the previous value of the gain ( -  10% in Ref. 4). This condi- 
tion can be satisfied not withstanding the decrease of the gain 
by a factor < on going over to the "long" undulator, if the 
electron current is increased by the same number of times. In 
the example considered, this means that the current must be 
25 times larger than under the conditions of the experiment 
of Ref. 4, i.e., it should amount to I = 65 A. This value is 
perfectly realistic at an electron energy spread AE/E- lop2. 
In such a system, all the above singularities of the weak satu- 
ration regime should take place, namely a monotonic in- 

crease of the efficiency, as well as a slow decrease and noti- 
ceable oscillations of the gain. 

We note finally that an analysis of the properties of sat- 
uration in an FEL with a "long" undulator can be important 
for the development of a nonlinear theory of amplification in 
a Compton laser for noncollinear propagation of electrons 
and of the amplified wave, inasmuch as optimization of the 
gain in such a scheme is determined in the linear regime 
precisely by the relation between the long region of the inter- 
action and the electron-energy scatter in the beam.5 
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