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We consider one-dimensional classical systems with a potential of the W = 2(V(xi) 
+ U(xi + x, - , - y) ) type where Vis a periodic potential of period 1 and U is the energy of the 

interaction between the particles. We show that as T 4  the limit of the Gibbs distribution is 
described by an invariant probability distribution for a certain two-dimensional transformation. 
We study the dependence of such a distribution on the parameter. 

PACS numbers: 64.60.Cn 

We consider a model of interacting particles placed on a 
crystalline substrate. We assume that there are only interac- 
tions between nearest neighbors and that the interaction is 
elastic. In the one-dimensional case the potential has then 
the form 

The parameter y is equal to the average distance betwen the 
particles. The effect of the substrate is described by the po- 
tential V(x) which is a periodic function having the period of 
the background, which we take as the unit length. The origin 
is taken at a point, is assumed to be unique, where V is a 
minimum. The total potential energy of the system equals 

One-dimensional chains with the interaction (1) have been 
studied, starting with the work of Frenkel and Kontorova' 
who investigated the case V(x) = a ( l  - cos 2?rx), U(x) = x2. 

Frank and Van der Merwe2 and Dzyaloshinski'i3 have 
discussed a continuous variant of such systems. In those pa- 
pers the possibility of a "commensurability-non-commen- 
surability" type phase transition was first indicated. Recent- 
ly models of the kind (1) were the subject of active studies in 
papers by A ~ b r y , ~  P o k r o ~ s k ~ , ~  Bak,6 and others. We pro- 
pose in the present paper a new approach to constructing a 
phase diagram of similar systems at T = 0. In the one-di- 
mensional case only such diagrams have a meaning because 
of the impossibility of phase transitions. We restrict our- 
selves the range of values y > 1. Other regions can be studied 

Here k is the Boltzmann's constant, T the temperature of the 
system, and Z the grand partition function. 

It is convenient in the one-dimensional case to study the 
Gibbs distribution (2) by using the transfer matrix method 
(see, e.g., Ref. 7). We put yi = ( x i  1,  where (...I is the frac- 
tional part sign, and zi = xi  - xi - , . In our problem the 
transfer matrix describes the transition from ( y i p  , , zi - , ) to  
( y,, zi) and has the form 

The next step consists in normalizing the operator K, 
using its positive eigenfunction, in order to change to the 
transfer operator of a Markov chain. To do this we look for 
positive functions gs( y), gz( y, z) for which 

Here the As are the corresponding positive eigenvalues 
which are the same in (4) and (5). 

Using go and gz we change to the stochastic kernel 

in a similar way. 
We consider on the segment [ - R, R 1 in the configura- The meaning of this change is that in the thermodynamic 

tion space of the particles a grand canonical ~ i b b ~  ensemble limit R-oo the Gibbs distribution becomes the probability 

with a chemical potential = 0. lts density in the subset of distribution corresponding to a Markov chain whose states 

N-particle configurations has the form are the pairs ( y, z), with y a cyclic variable andz varying from 
- co to + co , while the transfer operator has the form (6).  It 

1 1 " N- L is natural to represent the space Cof such pairs as a cylinder. 
-erp n (I- kT [z ~ ( 2 , )  + U(X.-X.-~-Y)]} . (21 The stationary distribution of this Markov chain, which - 

z ~ i  i- i gives the first correlation function of our problem, has the 
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density 

where the eigenfunction~g~ andgp* are normalized such that 

As ~ - - + c o  the limit of the Gibbs distribution is concen- 
trated on those configurations for which W takes on a mini- 
mum value. Hence we must have il W/&, = 0 or 

We can write this relation in terms of the ( y, z) variables in 
the form 

As U' is a monotonically increasing function, the first equa- 
lity in (7) allows us to find z i t ,  uniquely from yi, zi. 

We introduce the transformation S of the cylinder C, 
which acts according to the formula 

where 

In that case (7) means that the configurations where W is a 
minimum are, indeed, trajectories of the transformation S. 
In the case of the Frenkel-Kontorova model S transforms 
into 

z'=z+2na sin y, yl=yS-z'. 

This transformation was studied by Chirikov et al. (see the 
review paper, Ref. 8) in connection with the stochasticity of 
dynamical systems. 

As already mentioned, the first correlation function of 
our problem is the probability distribution on the cylinder C 
with a density 

In that case 

and is independent of i. Here Pg is the probability evaluated 
using the Gibbs distribution for our system. Taking the limit 
as &CC we see that the Gibbs distribution as P+CC turns 
out to be concentrated on the set of configurations which are 
trajectories of S while the limit lim PD(A ) as fl-+oo is the 
probability distribution on C and has the property that 
P (A ) = P (SA ) since as 0--, oo it follows from ( y,,  z , ) d  that 
( ~ r t  , t ~ I t l ) ~ A .  

The probability distributions satisfying this last rela- 
tion are called invariant under S (see Ref. 9). We thus find 
that the limit of the first correlation function asp-+ co is the 
probability distribution on Cinvariant under S. It is natural 

to assume that the phase flagram of our model is a function 
describing the y-dependence of P. 

There are, in general, many invariant probability distri- 
butions for the transformation S. To make clear which of 
them arises from the Gibbs distribution in the limit asp- oo 
we introduce for any probability distribution Q on C the 
integral 

which has the meaning of the average value of the energy per 
particle. One can show (see Ref. 10) that for the probability 
distribution P in which we are interested 

h ( P )  =min h (Q) , 

where the minimum is taken over all invariant probability 
distributions for S. This last relation is the basic criterion to 
be used to study the phase diagram. Below we apply this 
criterion to the case when 

V (y) =avo ( y ) , U(z) ='12z2+aUo (nu-'"), 

where 

while a is small. A model with such a potential can naturally 
be considered to be a small perturbation of the Frenkel-Kon- 
torova model. 

We put 

We write the transformation Sin terms ofthe variables (Y, Z ) 
in the form 

Z'+U0'(Zf-r) =Z+Uof (2-r) +a'"Vo'(Y), 

(9) 
Y' = Y+dhZ'. 

For small a Eq. (9) is the difference approximation with step 
all2 for the set of differential equations 

as the first of Eqs. (9) can be rewritten up to quantities of 
order (Z ' - Z )2 as follows: 

The set (10) has the first integral 

a = - v o (  Y) + z ~ + ~ z u , ~ ( z - ~ )  -2u0 (2-r), 

and on the (Y, Z ) phase plane its integral curves are the lines 
of constant X. We consider its structure in more detail. The 
function 
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FIG. 1. 

is strictly monotonic for 220 ,  as 

and has the same sign as Z because 

Hence, for any k the equation G (Z ) = Vo(Y) + k determines 
twocurvesZ = Y, . (Y). When k = k, = G (0) these curves 
go through the point (0,O). When k < k, these curves are, 
indeed, the upper and lower parts of a single curve Y , ,  and 
when k > k, the 2, . curves are, conversely, different ones. 
The shape of the 9, , is in principle the same as the shape of 
the integral curves of a physical pendulum, albeit slightly 
less symmetric (Fig. 1). 

As a 4  the invariant probability distributions of the 
transformation S go over into the invariant probability dis- 
tributions for the system (9). For our purposes it is sufficient 
to restrict ourselves solely to undecomposable, or ergodic, 
probability distributions which in the case of the system (9) 
are of three kinds: 

1) The probability distribution Q, concentrated on the 
curve Y , ,  k < ko. If we take as the parameter on 9, the 
time coordinate, reckoned from some point, we have 

where IIk is the period of the motion along 2,. 
2) The probability distribution Q, . concentrated on 

the curve 9,. , k > k,. For it also 

3)Theprobability distribution Q 'O' concentrated on the 
fixed point (0,O) of the system (9). 

The energy integral h (Q ) becomes 

h ( Q )  =a [v. (Y) (2-I')'+U0 (2-I') ]dQ=aho ( Q )  . 

It is natural to take the phase diagram of the system (9) to 
mean the function P (T ) with T > 0, defined such that for it 

where the minimum is taken over the invariant probability 
distributions for the system (9) of the described three kinds. 

We note now that 

It is more convenient to study 

In the first two cases dQ is proportional to dt and 
dt = Z - 'd Y. Therefore 

I ZdQ = I dY=O when k<ko, 

J ZdQ1- = l d ~ = - i  when k>ko. 

If the correction Uo is sufficiently small, we have 

h'O' ( Q )  -h'" (Q'O') >O 

foral lQoftheformQ= Q,, k < k , o r Q =  Q,-, k>k,. 
There remain only the probability distributions Q, + . 

Here the result now depends on T .  A more detailed analysis 
shows the following. We consider the equation for T,: 

j 1 vo ( y l  -zuo (z-r,) -t3I2 (uo (z-rl) 

where Z is a function of Y by virtue of the equation 

Its solution depends, of course, on the form of Vo and Uo. 
When U, = 0 Eq. (1 1) can be simplified: 

0 

The meaning of (1 1) is that it is equivalent to the relation 

The phase diagram of the continuous model depends on 
the solution of Eq. (1 1). When T<T, the derivative 

dho ( Q k + )  '~k'O 

for all k > ko and therefore 

min ho ( Q )  =ho (Q" ' ) ,  
Q 

i.e., P = Q (". When T >  T, this minimum now depends on T .  
The value k (T ) at which it is reached can be found from the 
equation 
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FIG. 2. 

which for Uo = 0 takes the form 

When U,#O the form of this equation is very complicated 
and we do not give it. We show in Fig. 2 the plots of the 
functions h,(Qk + ) - h,(Q'O') for different values of T. 

The reasoning above referred to the continuous limit of 
our model, which occurs as a-0. We now consider a > 0 
and study how the phase diagram changes. Initially we con- 
sider the structure of the invariant sets of the transformation 
S. 

The point (0,O) is as before a fixed point ofS and is of the 
hyperbolic type. This means that the trajectories of S in the 
vicinity of (0,O) lie on hyperbola-type curves which are sepa- 
rated by the stable and unstable separatrices y'"and y(") (see 
Fig. 3). When a = 0 the separatrices and y'") coincide in 
the sense that the continuation of y'"' goes over into y'"), and 
the other way round. When a > 0 this is no longer the case 
and y(') and y("' intersect when they are continued, in general 
at a non-zero angle. The points where the separatrices y"' 
and y'"' intersect are called homoclinic points (see Ref. 11). 
Their intrinsic definition consists in that SnA-+(O,O) as 
n - t  f cc for any homoclinic point A. Since the angle of in- 
tersection of the separatrices is non-zero, a so-called "sto- 
chastic layer" (see Ref. 8) is formed in the vicinity of the 
homoclinic trajectories. The number of different homoclinic 
trajectories formed is always even and the chaotic behavior 
manifests itself in the appearance of disordered transitions 
from one homoclinic trajectory to another. 

The width of the stochastic layer is determined by the 
so-called Mel'nikov-Arnol'd integral (see, e.g., Refs. 12, 13) 
which in our case has the form 

Here Y = Y ( t  ) and Z = Z ( t  ) are the solution of the set 11 1) 
when requals the r, from (1 l), for which Y (t )4, t-t - w , 
and Y (t 1-1 as t-t w . When I #O the widthof the stochastic 
layer is of order all2. For the Frenkel-Konotorova model 
I = 0 and the width of the stochastic layer is therefore con- 
siderably smaller. We shall consider this problem in more 
detail elsewhere. 

We denote the coordinates of the homoclinic points 
formed when y(") and +"I intersect by (Y'", Z '", i = 1, 2, ..., 
2p (see Fig. 4). For the trajectory of each of the homoclinic 
points (Y"), Z'O) we consider its relative energy in relation to 
the energy of the basic configuration concentrated in (0,O) 
and for which the points are positioned in the points where 
the potential V is a minimum. It equals 

We put % = min @'). It  is clear that 8 is a function o f r .  We 
find such T,(a) that %' > 0 for all 0 0  < r,(a) and < 0 for 
r > T , ( a ) .  It then turns out (see Ref. 10) that when I #O the 
point r (a) possesses the property that when r < r,(a) 

In other words, for such r the configuration on which the 
potential energy reaches a minimum is unique and in that 
case the points are arranged in the points of the potential 
minimum. When r > r , ( a )  this is no longer the case. For 
arbitrarily small excess above criticality, r - T,(a) > 0 there 
are already many such configurations, they lie in the sto- 
chastic layer, and the probability distribution P is concen- 
trated in that layer. 

Moreover, for small a the Kolmogorov-Arnold-Moser 
theory (KAM theory) is applicable to the transformation S 
and it follows from it that the transformation S has many 
invariant curves close to the curves 3, and 3, + (see Refs. 
12, 14). However, these curves do not fill completely the 
cylinder C and there are also narrow stochastic layers 
between two of them. Nonetheless, the area filled by the 
invariant curves is positive and as a 4  the fraction of the 
are>. occupied by such curves tends to unity. 

FIG. 3.  
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We consider the invariant curves close to the curve 
Y, + . To each such curve we can assign the coordinate r of 
its point of intersection with the line Y = 0. In such cases we 
shall write Y(r;a) .  The transformation S on the curve 
Y( r ; a )  can be reduced to a rotation by means of an appropri- 
ate coordinate change. We denote by u the coordinate on 
Y(r;&) in which S is reduced to a rotation, i.e., Su = u + p, 
wherep =p(r;a) is the angle of rotation on Y(r;a) .  The nat- 
ural invariant probability distribution Q(r;a) for which 
dQ (r;a) = du is concentrated on the curve Y(r;a) .  

There arises the natural problem of how to find for a 
given a that r (r;a) = r for which 

TO simplify some formulae in what follows we consider the 
case Uo = 0. We have 

h(Q (r; or)) =a [ J V ,  ( Y )  du + j  Z2do-ir Jzau+rz] . (12) 

The first two integrals are independent of r and are func- 
tions of r. We consider / Z  du in more detail. It is clear that 
for any point (Yo, Z0)eY(r;a), (Yi, Zi) = Si(Yo, 2,) 

J zdu - lim - 2 zf. 
n 

By virtue of (9) 

It is clear from this relation that I Z d u  characterizes the 
number of rotations in the coordinate Y, normalized to 
a-1/2, i.e., the average rotation after a- 'I2 steps. We denote 

this quantity by x (r;a). It is clear that as a 4  it goes over 
into the number of rotations for the corresponding curve 
9,'.+. 

Differentiating (12) formally with respect to r we find 
that the value of r for which h (Q (r;a)) is a minimum must 
satisfy the relation 

On the other hand, for a given r this equation determines that 
r for which the equation 

min h(Q) =h(Q (r; a) ) 

is possible. However, as the curves Y (r;a) exist only on the 
"perforated" set of r values, in principle this last relation is 
lacking in mathematical precision. This will be seen to else- 
where. 

I thank I. E. Dzyaloshinskii, V. L. Pokrovskii, S. Bur- 
kov, and S. A. Pigarov for useful discussions. 
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