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The stability of quasi-one-dimensional conductors with a half-filled band against structural tran- 
sitions is investigated. It is shown that, under quite general assumptions about the form of the 
transverse characteristics of the electronic spectrum, the expected structural transition corre- 
sponds to the appearance of incommensurate lattice deformations. In its turn, a system that has 
undergone a dielectric Peierls transition can, under pressure, become unstable against spontane- 
ous soliton-wall formation as a result of the change in the tunneling integrals. A mathematical 
formulation is proposed which allows a complete description of the resulting new incommensu- 
rate phase, and it is shown that the indicated mechanism leads to the appearance of a special type 
of free carriers in the system. 

PACS numbers: 64.70.Kb, 72.60. + g 

INTRODUCTION 

In the present paper we consider the Peierls structural 
transition in organic conductors with a half-filled band: such 
a transition is often referred to as the appearance of a 1:2 
commensurate superstructure corresponding to the dou- 
bling of the lattice constant. Below we shall show that the 
weakly three-dimensional character of the electronic spec- 
trum facilitates the development of incommensurate struc- 
tures, specifically, the appearance of domain walls. We can 
essentially indicate two physical mechanisms for this pheno- 
menon. Because of the congruence of the Fermi surfaces for 
the  electron^,'-^ the appearance of a dielectric gap makes the 
Peierls transition into the new phase energetically advanta- 
geous. The first mechanism consists in the fact that, if the 
Fermi surfaces are not entirely congruent, then the greatest 
advantage in energy terms is gained through the optimum 
choice of the nesting vector for the various sections of the 
Fermi ~urface .~  The second mechanism is the spontaneous 
production of soliton walls, when the energy of production 
of the soliton state on one filament is canceled out by the 
kinetic broadening of the state in the transverse d i re~t ion .~  
The two mechanisms are related to each other, owing to the 
fact that the pinning energy in the case of a half-filled band is 
comparable to the energy gained in the structural transition. 

Our aim is to list the factors that facilitate the occur- 
rence of the phenomenon, and formulate a method by which 
we can, in principle, study such transformations into the 
incommensurate structure under conditions of finite defor- 
mation. Below we show that the corresponding formulas are 
a natural generalization of the mathematical methods devel- 
oped in the so-called soliton physi~s.~, '  

Thus far, the soliton solutions on one filament of polya- 
cetylene (see Refs. 8 and 9 for reviews) have usually been 
studied in connection with the unusual magnetic properties 
of the latter, properties which are apparently due to de- 
fects." Let us emphasize again that in the present paper, in 
contrast to Refs. 6-10, we are interested in the thermody- 
namically advantageous structures in a real crystal with a 

three-dimensional electronic spectrum. The tunneling over- 
lap integrals for organic materials are not too small (usually 
50-150 K), and are of the order of the phonon frequencies 
and (or) the dielectric-transition temperature itself. The 
crystals of polyacetylene (CH), are one example of a Peierls 
dielectric with a doubled lattice constant (i.e., with two fila- 
ments per unit cell"). To the same class of compounds with a 
half-filled band pertain, strictly speaking, materials of the 
type (TMTSF),PF6 (Ref. 12) and (TTT),13 (Ref. 13), al- 
though the dimerization in this case is slight, and they are 
closer to materials with a quarter-filled band.14 

We do not go outside the framework of a qualitative 
analysis, and do not study those rather complicated three- 
dimensional characteristics of the- electronic spectrum 
which are manifestable in the indicated materials. In equal 
measure, we consider the structural transition to be a well- 
defined three-dimensional transition, ignoring the problem 
of the possible role of the fluctuations. We shall presently 
formulate the conditions for this. 

I. THE MODEL 

We shall, in accordance with the foregoing, at once con- 
sider the three-dimensional elastic properties of the lattice. 
In other words, the dispersion Awi in the initial phonon - 

spectrum 

@ 0 2 ( ~ 1 )  = u o Z ( 2 k ~ ,  0) +AmO2(2kF, k,), (1) 
is not ass urn^ I to be small: 

Am('-cooz. 

Owing to this circumstance, the structural transition 
possesses, according to Refs. 15 and 16, a well-defined tran- 
sition point T,, and the fluctuations are weak outside the 
neighborhood 

I (T-T,) /T,I  >gph'mo2/Aoo2~1 .  (2) 

The relations (1) and (2) enable us to study the characteristics 
of the structural transition as functions of the properties of 
the electronic spectrum. The latter could be entirely one- 
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dimensional (plane Fermi surfaces). Strictly speaking, when 
the overlap of the wave functions of the electrons on neigh- 
boring chains is slight, the electron interactions should be 
considered within the framework of the parquet approxima- 
t i~n, '~. ' '  but, let us repeat once more, below we discuss a 
Peierlptype structural transition whose origin is connected 
with the appearance of a soft mode (i.e., the onset of lattice 
instability). Under these conditions, it is sufficient to limit 
ourselves in a qualitative analysis of the phonon spectrum to 
the simplest diagram, shown in Fig. 1, for the polarization 
operator, i.e., we can generally neglect the interelectron in- 
teraction. Conceptually, with the assumptions made, our 
model and the so-called nesting model'-3 do not differ in any 
way, except in certain characteristics stemming from the 
strong anisotropy of the electronic spectrum. 

Among the latter is the assumption that electronic spec- 
trum is characterized by two nearly plane Fermi surfaces 
near the points pll  = k,. As has been assumed, the elec- 
tronic spectra in the neighborhoods of these sections respec- 
tively have the form 

~ i ,  2=f U F ( P I I ~ ~ F )  f t l ,   PI). (3) 
The general relation E( - p) = ~ ( p )  imposes on (3)  only the 
condition 

tl ( -pl)  =-t2 ( P I ) ,  

which introduces additional complications (see below) when 
there is no symmetry with respect topll -+ - pll . It is further 
assumed everywhere that the structural transition corre- 
sponds to k, = 0. In the tight-binding model1' total nesting 
(coincidence of the Fermi surfaces) would correspond to the 
doubling of the lattice constant in the perpendicular direc- 
tion as well. In order to make such a reconstruction disad- 
vantageous, we shall henceforth assume that 
d o ; ( 2 ~ ~ , k , )  >O in (1). Finally, let us recall that we are con- 
sidering the case of strong (i.e., 1:2) commensurability, in 
which 2k, = r / a  (a is the initial lattice constant). We shall, 
allowing for this last circumstance, write the expression for 
the renormalized (on account of the electrons) phonon fre- 
quency in the formI9 

0' ( 9 )  =mo2 ( q )  -'/2[n (q) +IT (q-Q) I ,  (4) 
where we have, for simplicity, chosen the reciprocal lattice 
vector Q as Q = (2r/a, 0,O). 

11. CHARACTERISTICS OF THE PHASE DIAGRAM" 

In this section we investigate the characteristics of the 
phase diagram determined by the condition 

0"q) =o. (4') 

k~ ~ I I  

FIG. 1. 

In principle, the condition (4') determines both the struc- 
tural transition temperature and, in general, the stability 
threshold of the normal phase as a function of the "doping" 
and the magnitude of the tunneling integrals, which simu- 
lates the pressure dependence. Of greatest interest here is, as 
it seems to us, the appearance of superstructures due to the 
three-dimensional character of the electronic spectrum. We 
shall first attempt to follow the tendency toward this pheno- 
menon by studying the possibility of an instability in (4') 
against the appearance of an incommensurate phonon vec- 
tor 

q,,=n/a+k. ( 5 )  

Let us, for simplicity, write the condition for the band to 
contain one electron as 

where the brackets denote averaging along the Fermi sur- 
face. Then 2kF = r /a .  Using (6), we can take the doping into 
consideration by introducing a small change into the Fermi 
momentum: 

kR=n/2a+6. (7) 
Let us at- once stipulate that first-order transitions are possi- 
ble in the system at arbitrary t,,, (p, ). In this case Eq. (4') is 
meant for the determination of the relative disposition of the 
boundaries of the metastable regions. 

The standard computations of the polarization opera- 
tor depicted in Fig. 1 will lead us to the following form of the 
condition (4') (below we use a system of units in which 
v, = 1) 

where T, is the transition temperature when t = S = k = 0 
and the function f is defined as 

tf ( P I )  ''12 Ctl ( P I )  -tz ( P I )  I (9)  

I. The stability threshold at T = 0. Letting T , - 4  in (8), 
or recalculating (at T = 0) the polarization operator, we can 
rewrite the stability condition for the normal phase at abso- 
lute zero in the form 

< l n { 1 4 ( t f f  6)2-k21 (ylnT,o)Z))=O (8') 

(where y is the Euler constant). 
Let t = 0 (the one-dimensional problem). The residual 

relation 

k2=46'* (nTcoly )  (10) 

describes the pinning: the instability vector does not coin- 
cide with the doubled vector 2kF. Qualitatively, this was first 
pointed out in Ref. 19. The expression (10) will figure below. 

Now let there be no doping (6 0 ) ,  i.e., let the unit cell 
contain one electron. There nevertheless remains the nontri- 
vial dependence on k in Eq. (8'). At high t )T,  the system 
corresponds to a 3 0  anisotropic metal. As t (i.e., the degree 
of transverse overlapping) is decreased, the instability may 
first manifest itself as an incommensurate wave with 
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k * = k (t,,)#O. We shall demonstrate the fact, noted in Ref. 
4, that such a situation is quite a general case by assuming 
that f is a step function (i.e., that f = + 1) at various parts of 
the cross section of the Brillouin zone [the areas of these 
parts should be equal in order for the fulfillment of the elec- 
trical neutrality condition (6) to be ensured]. Instead of (lo), 
we shall derive the same equation with S replaced by t. In the 
(k, t ) plane this equation bounds the instability region with 
asymptotes that go out to infinity. A slight smoothing out of 
the step in the electron dispersion law will clearly lead to the 
situation depicted in Fig. 2. 

For the purpose of investigating the more realistic dis- 
persion law, which can arise in specific examples, it is con- 
venient to transform (8') (for S = 0), using the following for- 
mula from Ref. 20: 

As a result, instead of (87, we obtain 
t - dx kz 

In - C 2 5 -(cos (xtf) )sin2 - = 0, 
to x 4 

0 

where to (the stability threshold for k = T, = 0) is deter- 
mined from the equation 

For the tight-binding model in the two-dimensional 
case, in which f = - cos( pa), the averaging over the period 
( - n/a < p  < n/a) yields the Bessel function Jo(tx) under the 
integral sign in (1 1). The integration is performed in the final 
form. As a result, we obtain the curve shown in Fig. 3, and 
determined by the equations (in which to = nT,/y) 

t=to, k<2t, 

k=t, (l-ttzjtoz), k>2t. 

Thus, in the two-dimensional case (i.e., for a plane filled with 
filaments) stability arguments in the tight-binding model do 
not determine the symmetry (periodicity) of the dielectric 
phase at all. 

The dispersion law 

f ( p x ,  p,) =-cos (pxa) -cos'(p,a) 

for the three-dimensional (30  ) tight-binding model of the 
square lattice gives us, upon being substituted into (1 I), the 
equation 

kx 
loz (tx) sin2 - = 0. 

4 

The positiveness of the integral term in (12) shows that t < to 
for any k, i.e., the boundary curve in the (k, t ) plane has here 
the shape of the dashed curve in Fig. 3, thus attesting the 
commensurate character of the ground state for t < to. In the 
vicinity of k = 0 the dashed curve behaves like 

contrary to the quadratic behavior expected in Ref. 4. The 
cause of this discrepancy lies in the asymptotic expansion 
performed in Ref. 4, where the integration of the singular 
denominators [see the formula (5) from Ref. (4)] should be 
performed with some care. 

We shall not cite any more specific examples of the dis- 
persion law, since the foregoing is sufficient for us to under- 
stand that the following two cases are possible in real materi- 
als: the asymptotic law depicted in Fig. 2 and the 
above-given behavior (12) in the tight-binding 3 0  model. For 
completeness we show in Fig. 3 by the dot-dash curve the 
schematic behavior of the stability threshold in the case, of 
interest to us here, in which incommensurate structures 
arise. It follows from the shape of the curve that the condi- 
tion [at (k )/dk 1, =,  > 0 is a sufficient condition for their 
appearance, although not a necessary one, as demonstrated 
by the dotted curve, which is quite probable at any stage of 
the dispersion. 

The sign of the derivative [at (k)/dk 1, =, is deter- 
mined, according to (8') or (1 I), by the characteristics of the 
vanishing of the function f ( p, , py ). Iff ( p,, py ) = 0 on some 
line, and the gradient of the function in the direction perpen- 
dicular to this line is everywhere finite, then t (k ) is quadratic 
in k in the vicinity of k = 0, although the sign of the coeffi- 
cient attached to k * depends on the entire function as a whole 
(the sign is positive if the transverse gradients are large). If 
the function f ( p, ,py ) vanishes when it possesses a saddle 
point, then the slope is linear in k, a fact which was demon- 
strated above in the tight-binding 3 0  model. 

FIG. 2. FIG. 3. 
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2. The transition temperature. In principle, for a fixed 
overlap t the system can go directly into theincommensurate 
phase as the temperature is lowered. But, in order to solve 
such a problem, we must fully investigate the shape of the 
instability surface T,(t, k ) as determined by the conditions 
(4') and (8). We limit ourselves to indicating the correspon- 
dencebetween the previous results and the shape of the indi- 
cated surface for T c 4 .  Let us note that the expansion of the 
function t (k ) in powers of k at T, = 0 was performed on the 
basis of Eq. (87, which it is convenient to rewrite with the aid 
of (1 1') in the form (when S = 0) 

t  1 ( 1 f2-k2/4t2.1) 
In-+- In 

f" 
=o. 

to 2 (14) 

Using the explicit representations of $(x), we can easily re- 
duce the general formula (8) to a form extremely suitable for 
the investigation of the general character of the T, (k, t ) sur- 
face at low T,. Thus, when k = S = 0, 

t  I "  t d z  
l n T + F J ( h I  4 - 5 1 )  ch-2(-$)E=~. (15) 

0 f 
If t)T,, the dominant role in the integral in (15) is played by 
the small z- T,/t. Comparing with (14), we see that, if the 
stability curve has the requisite bend, then T, as a function of 
t also has a branch in the region t > to. This behavior is de- 
picted in Fig. 4 in the (T, ,t ) plane. It is also easy to verify that 
the curve in the t = 0 plane always has the shape shown in 
the same figure. The tight-binding model in the 3 0  case nat- 
urally yields a linear slope, which is shown in Fig. 3  by the 
dashed curve. In the 2 0  case f = - cos(pa), and we find 
from (15) after simple calculations that 

The two-valued T,(t) branch (for k = 0) indicates either a 
first-order phase transition from the normal into the dielec- 
tric phase, or a maximum T, value (for a given t ) correspond- 
ing to k *#O. 

3. Commensurate dielectric phase at T = 0. For com- 
pleteness of the picture, let as discuss how the system might 
behave if it started from the dielectric phase ( T  = 0). For 
t = 0 the energy spectrum of the electrons in the commen- 
surate phase has the gap 

&=nTc0/y. (16) 

FIG. 4. 
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For a finite t the energy spectrum consists of two branches: 

where 

The chemical-potential shift Sp occurs on account of the 
indirect gap if the bottom of the "conduction band" and the 
top of the "valence band" asymmetrically shift, as a result of 
the transition to (17), relative to the old reference point. This 
circumstance introduces significant complications into any 
specific computation; therefore, below we assume, for sim- 
plicity, a spectrum such that 6 ~ ~ 0 .  The analytic form of the 
difference 

between the electron energies in the metallic phase and the 
state with a commensurate structural wave depends on the 
relation between the quantity &,, and A, i.e., on whether 
the system is a dielectric or it contains electron-hole "pock- 
ets", causing it to behave like a semimetal. In the first case 

When &,, >A, we have 

(18') 
where E * is the cutoff parameter and S is the cross-sectional 
area of the unit cell. 

Adding to (1 8) and (1 8') an elastic term, E,, , proportion- 
al to A '/$, , and varying the resulting expressions with re- 
spect to A, we see that, for &,, <A, the quantity A = A,. 
The energy difference (18) depends, of course, on t, and, as t 
increases, the system eventually goes over into the metallic 
state. How this transition occurs depends on the characteris- 
tics of the electronic spectrum. Let us assume that tf,,, >A,, 
and that the system contains electron-hole pockets. Varying 
(18') with respect to A, we obtain a condition for the deter- 
mination of the the gap in the form 

For the purpose of carrying out specific calculations, it is 
again convenient to transform (19), using the representation 
(see Ref. 20) 

We obtain 

Let us set t *fm,, =A,. Let the pockets for t > t * have the 
form of ellipsoids in the neighborhoods of the corresponding 



FIG. 5 .  

maximum and minimum points: 

I f-fmaX I = (apx2+Ppy2)/S. 
In this case the appearance of pockets represents the so- 
called Lifshitz 2.5-order transition, and the behavior of A, 
given by 

is depicted in Fig. 5. Two simple examples show that the 
situation can be complicated. Choosing, as was done above, 
a step Fermi surface, we obtain two solutions directly from 
(19): 

A=Ao,  t<A, ~ = A ~ ( ~ ~ / A ~ - ~ ) " ~ , ~  t>A, 

which clearly indicates a first-order phase transition. In- 
deed, it follows from the expression (18) for E = E,, + AE 
that it is more advantageous for the system to be in the metal- 
lic state (with k = 0) when t > A0/q2. At the same time, 
according to Eq. (10) (with S replaced by t ), the metallic state 
is unstable! We conclude from this that the transition into 
the incommensurate state is possible in the case of a more 
realistic Fermi surface that nevertheless bears the features of 
this steplike curve (large gradients off ). 

The second example is the tight-binding 2 0  model: 
f = - cos( pa). The integral with two Bessel functions in (20) 

FIG. 6 .  

FIG. 7. 

yields the step: 
A=Ao=nTc0/y, t<A, 

t=Ao, P A .  
[In this casep 0 in (21).] 

Figure 6(a) depicts the possible behavior of A beyond 
the point t * after the appearance of the pockets; Fig. 6(b), the 
behavior near the point to. Let us point out that the appear- 
ance of the A (t ) branch in the region t > to is uniquely con- 
nected with the corresponding knee of the instability curve 
for T = 0 [Eq. (1 I)] by the relation 

t 4 dy dx 
-(cos (tfx) )sin2 - 1nt,+; J ( ~ - , 2 , ~ a  J ( " ) -0, 

which is obtained by combining (1 I), (1 l'), and (8') with Eq. 
(20) (A, = rTEO/y) .  Let us emphasize that the relative dispo- 
sition of to and t * depends on the model. 

According to (1 l'), in the case of the tight-binding 3 0  
model we have 

t*=nTc0/2y =te/2. 

The form of the solution for A (t ) is shown in Fig. 7 in accor- 
dance with (1 3), which indicates a second-order phase transi- 
tion region. Because of the complexity of the integration in 
(18) and (18'), we did not seek the transition points. Summa- 
rizing the results obtained in this section, we note the follow- 
ing. We have shown that a comparison of our results regard- 
ing the stability of a 3 0  anisotropic metal with the properties 
of the dielectric phase reveals such behavior of T,(t )and A (t ) 
which allows us to believe that the pressure-induced struc- 
tural phase transitions often have in realistic models the 
character of second-order transitions, and (or) are associated 
with the ap ,arance of an incommensurate phase.2' The 
mechanisn~ underlying the formation of incommensurate 
structrces in a system initially in the dielectric phase, i.e., the 
spontaneous formation of soliton walls, is found in Ref. 5. 

Ill. THE INCOMMENSURATE SUPERSTRUCTURE 

The question arises whether it is possible, at least in 
principle, to compare the energies of the various phases, and 
determine the character of the transition, for which purpose 
we need first and foremost a mathematical method that al- 
lows us to find the free energy of the incommensurate phase 
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in the case of a finite value of the distortion. The key point is 
the fact that the distortion (or the "gap") is incommensurate 
only in respect of the longitudinal component of the wave 
vector, i.e., the superstructure depends on one coordinate. 
Because of this, it is possible to generalize for the study of the 
proper.ties of organic conductors with a 3 0  electronic spec- 
trum the mathematical tools developed for the construction 
of soliton solutions in one-dimensional 

Let us explain these ideas by demonstrating again how 
they are connected with the three-dimensional character of 
the phonon spectra. Indeed, in the inhomogeneous phase, 
the lattice distortion has, generally speaking, the form 

V(r) -sin (T ) A*, ( x )  exp (ikLr,),  
k, 

where the A k, (x) are slowly-varying functions of the coordi- 
nate x. Then the energy functional of tbe system (at zero 
temperature) can be written in the form 

where the E (p,) are the transverse-momentum ( p , )  depen- 
dent energy levels in the field V(r);gkl is the electron-phonon 
interaction constant, g being the maximum value of the func- 
tion gkl. We can assume without loss of generality that 

g=glk l= ,  andSdL-g2(1. 
As usual, in consequence of the cancellation of the loga- 

rithmic contributions, the first two terms in (23) together are 
ofthe same order ofmagnitude asA ', whereas the last term is 
of the order of 

A'0gr ,* /g '~A2.  

(The dispersion Sgi, of the dimensionless interaction ampli- 
tude includes, generally speaking, the dispersions of both the 
phonon frequency and the interactions themselves.) 

Let us write the electron wave functions in the deforma- 
tion field (1) in the form (k, = 0) 

$ P ,  ( 2 )  =$pL + ( I )  exp ( i n d 2 a )  +$,, - (2) exp ( - inx /2a) ,  

where the $,,, * (x) are slowly-varying-in comparison with 
the atomic scale-functions of x that satisfy the equations 

[-idldx+tl (P,)  -E (PJ 1qp,+ ( 4  +iA (4 - (4 =0, (24) 

Let us make the following change of variables in (24): 
( x )  =$* (z) exp [-it-(p,) X I ,  E (P,)  =E+t ( p L ) ,  

t - (p , )  =i/z [tl ( P I )  +tz(p,) I ,  t (p , )  = [ t i  ( P , )  -t2 ( P L )  112. 

Then the functional (23) has the form 

states, and E is the eigenvalue of the Hamiltonian 

The functional (25) ,  (26) is similar to the earlier investi- 
gated6" functional of the one-dimensional Peierls model. It 
is well known that functionals of this type have extrema in 
the class of the so-called finite-band potentials A (x) (see Ref. 
7). Let us consider the simplest case of potentials with two 
forbidden bands. To it corresponds a lattice deformation of 
the form of a single-phase superstructure: 

A ( x )  =Ak sn ( ~ A a l k ,  k) . 
where sn is the elliptic sine and A ,  and k are parameters to be 
determined. In this case the electronic spectrum (26) has two 
forbidden E '- < E ' < E : and three allowed 
E ' > E '+ , E ' < E '- bands (Fig. 8). 

The parameters A ,  ,k and E,, E- are connected by the 
following relations6: 

k = ( E + - E - ) / ( E + + E - ) ,  Ak=E+-E-. 

The number of states in the central band is equal to 2n, where 

n = E + / K ( r )  , r= (E,.2-E-2)'i3/E+. 

According to Ref. 7, the density of states is equal to 
1 (EN 21E(E2-C)I 

- --= , C=- E ( r )  E+2, 
L dE nR'"(E2) K ( r )  

R ( E 2 )  =E2 (E2-E-') (E2-E + ' )  7 

and E (r) and K (r) are complete elliptic integrals. 
As in the one-dimensional ~ a s e , ~ . ~  the following self- 

consistency condition obtains here: 
1 1  dp, E sign (E2-E-') 

dE- 7 + J J S [ (E2-E-') (E2-E+') ] 
= 0. (27) 

- E C a ( p , )  

Under the condition (27) the system's energy (25) is equal to 

Here L is the length of the system, d N  /dE  is the density of 
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where 

and F ( q ,  E-/E+) and E (q, E-/E+) are elliptic integrals. 
In the one-dimensional problems considered 

the inhomogeneous state arose as a result of a change in the 
electron concentration. In this case the chemical potentialp 
always lay in the forbidden band. The two free parameters 
E +  and E- were determined in terms of the given electron 
concentration n and from the self-consistency condition. 

In the problem being solved by us, the magnitude of the 
chemical potential is not a priori known, and, thus, the free 
parameters are the three parametersp, E+,  and E-. We can 
obtain two relations connecting them from the self-consis- 
tency condition (27) and the condition for the conservation 
of the total number of particles. The last free parameter is 
determined by minimizing the energy (28), (29). 

The condition for the particle-number conservation can 
clearly be written in the form 

Taking account of the fact that two states in the middle band 
are combinations of one state from the conduction band and 
one state from the "valence" band of the dielectric phase,21 
we have 

Equation (30) has a simple meaning: the central band should 
on the average be half-filled. 

Let us use the above-obtained general relations to study 
the behavior of the system near the instability point of a 
homogeneous Peierls state, where the lattice deformation 
has the character of widely spaced domain walls occurring in 
the background of the Peierls structure. To do this, we must 
investigate Eqs. (27)-(30) for small E-, i.e., for E--0. Let 
us first consider the condition (30) for particle-number con- 
servation. For a given t (p, ) function, the chemical potential 
p, (for E- = 0) is determined from the requirement that the 
contour I on which t (p, ) =pa divide the cross section of the 
Brillouin zone into two equal-in area-parts. 

It follows from (30) that, for E- #O, 

Let us note that, when t (p,) has a sufficiently symmetric 
shape, we h a v e p ~ p , ,  whereas in the case of arbitrary t (p,) 
we can assume thatp =pa = const only with specified accu- 
racy. 

Let us now consider the self-consistency condition (27). 
It can be written in the form 

Aoz dp, (E+'-a') ',;f (E-'-a2) '" 
ln = 2  J -1n, 

S E+'-E-2 (E+'-E-') '" 
9 

la(p,)l<E- 

(31) 

where A,-E *exp( - n/$) is the gap in the homogeneous 
Peierls dielectric. 

For E--PO we find from (3 1) that 

At=E+2-E-2+ 2Ao d p ,  J - [ E - ' - d  (p,) It/*, (32) 
In(p,)l<E- 

S 

the integral term being of the order of E 5 . For small E-, we 
can, using (32), write the expression (28) for the energy in the 
form 

W = - A o Z / 2 n + n A + n E - 9 ,  (33) 

wherep (I ) is the transverse component of the electron veloc- 
ity on the contour I. 

The quantity A is the energy required to produce one 
domain wall. When t (p,)=O, it goes over into the soliton 
energy E, = 2Adr for the one-dimensional Peierls mod- 

The formula (34) shows that interchain electron jumps 
decrease the quantity A.  and, as was first noted in Ref. 5, the 
quantity A can change its sign when the function t (p,) has 
the proper form. The condition A = 0 is the threshold for 
absolute instability of the homogeneous Peierls state. 

The quantity B characterizes the interaction energy of 
the domain walls. As in the one-dimensional model, this en- 
ergy decreases exponentially as the wall spacing increases. 
But, if in the one-dimensional case we always have B >  0 
(Ref. 8), now, as can be seen from (351, we can, in principle, 
choose the function t (p,) such that B < 0. When B > 0 the 
instability of the homogeneous state will develop as a (pres- 
sure-induced) second-order phase transition, while when 
B < 0 the phase transition will occur discontinuously at some 
A > 0. No unique relation exists between A and B. The peri- 
odic state considered by us is the alternative to the flow of 
particles from the valence into the conduction band of the 
Peierls dielectric, a flow which leads to the formation of elec- 
tron-hole pockets (i.e., to the occurrence of the 2.5-order 
Lifshitz transition). 

The latter clearly begins when 

mas t (p,) - min I (p , )  =2A0. 
"I .L 

This condition, in its turn, does not depend on the inequal- 
ities fci A and B. Consequently, the dielectric Peierls state 
can, for different t (p,) functions, go over into the three-di- 
mensional (anisotropic) metallic state in any one of three 
different ways. Specifically, this can occur through a homo- 
geneous 2.5-order Lifshitz, a first-order, or a second-order, 
transition into the state with a periodic superstructure. 

As in the preceding section, let us consider as an exam- 
ple the two-dimensional tight-binding model t(p,) 
= - t cos (up). This model is highly degenerate. Indeed, the 
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electron-hole pockets are formed at t =Ao.  According to 
(34) and (35), A and B vanish simultaneously at this same 
point. Thus, the critical points of all the phase transitions 
coincide. Let us recall that this model exhibited a similar 
degeneracy in its phase diagram in the region of instability of 
the metallic state. 

The above-obtained results show that the formation of 
the metallic sections of the Fermi surface as the overlap inte- 
gral between the chains increases is possible on account of 
two mechanisms. In the first case small electron-hole pock- 
ets are formed in the cross section of the Brillouin zone when 
the condition (36) is fulfilled. The states corresponding to 
them adjoin in terms of energy the valence and conduction 
bands. In the second case one isolated cylindrical Fermi sur- 
face with a finite cross section is formed in the Brillouin 
zone. 

The possibility that more complicated deformations of 
the lattice will lead to the appearance on these Fermi sur- 
faces of new small forbidden bands cannot be ruled out. In 
the first case this can be regarded as an effect of the three- 
dimensional electron-hole pairing; in the second case, this 
would correspond to a deformation A (x) that produces an 
additional forbidden band near E = 0. The corresponding 
A (x) deformations can be investigated through a simple gen- 
eralization of the methods used above. However, without 
carrying out these calculations, we can, using the results ob- 
tained in Ref. 7, indicate a form of the electronic spectrum (a 
step Fermi surface) for which an additional forbidden band 
is certainly not produced. 

In the present paper we have not investigated the phys- 
ical manifestations of the specific free carriers that appear as 
a result of the appearance of the domain walls. Let us, by way 
of a simple illustration, note that the two mechanisms under- 
lying the formation of metallic Fermi surfaces can be distin- 
guished by measuring the conductivity anisotropy near the 
transition. The conductivity in the transverse direction 
should increase sharply when the metallization involves the 
formation of domain walls, whereas in the case of pocket 
formation the anisotropy essentially does not change. 

In conclusion, let us note that the results obtained in 
Sec. I11 can mainly be applied to materials with incommen- 
surate superstructures, materials such as TTF-TCNQ and 
NbSe,. There also exist solitons with a half-filled central lev- 

el in the case, corresponding to these systems, of the Peierls 
model with a complex order parameter A (x) (Ref. 22). 

''Someof the results of this section were obtained in collaboration with J. 
Sah. 

"It is appropriate to emphasize that the character of the transition is not 
necessarily symmetry-related, but is a consequence of the microscopic 
(i.e., electronic) nature of the mechanism underlying the transition. 
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