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It is indicated that to determine the temperature dependence of the activation conductivity in 
films and wires it is essential to solve the electrostatic problem of the Coulomb interaction 
between an electron that hops over to a new localized center and the hole produced at the old 
center. When solving this problem, account must be taken of the differences between the polariza- 
bilities of the film (wire) and vacuum. The dependences of the conductivity on the temperature 
and on the electric field are obtained for thin films, wires, and MIS structures. The dependences of 
the conductivity on the electric field in three-dimensional bodies near the metal-insulator transi- 
tion point are also discussed. 

PACS numbers: 73.40.Qv, 73.60. - n, 72.10.Fk 

1. INTRODUCTION 

The static conductivity u is disordered systems with 
sufficiently strong disorder is zero at T = 0. At finite tem- 
peratures, the u(T)  dependence has an activation character 
and the conductivity increases exponentially with rising 
temperature, the argument of the exponential being propor- 
tional to a certain power of the temperature (see Refs. 1-3). 
Usually'-3 one considers the case when the overlap of the 
wave functions corresponding to different centers is small, 
and the energy t i j  connected with the hopping from one cen- 
ter to another is less than the scatter of the one-center ener- 
gies wi and the Coulomb interaction ep (rij). In this paper we 
consider the case when t i j  is of the same order or even larger 
than wi. Under these conditions, at short distances or at high 
temperatures, the electrons behave as non-localized, and at 
low temperatures the states on the Fermi level have a large 
localization length LC. This situation is realized in three- 
dimensional samples near a metal-insulator transition, and 
in two-dimensional and one-dimensional samples also in the 
case of a weak d i ~ o r d e r . ~ . ~  In one- and two-dimensional con- 
ductors the localization length LC is large if the mean free 
path I or the transverse dimension d exceed the electron 
wavelength @,I>, p ,  d> 1). 

A large localization length means that the electrons are 
mobile at distances r 5  LC. These mobile electrons screen 
strongly the Coulomb interaction, and therefore in the case 
considered the dielectric constant E> 1. In two-dimensional 
and one-dimensional samples the Coulomb interaction at 
the largest distances is effected through vacuum and does 
not depend on E,  but there is an intermediate range of dis- 
tances that are larger than the transverse dimension d of the 
plane or wire but smaller than ~d (20  ) or & ' I 2  d (ID ), for 
which the electric interaction deviates greatly from Cou- 
lomb's law. As a result, at the lowest temperatures the con- 

We obtain in this paper the functions a(T, 8') in films, 
MOS FET, wires, and three-dimensional conductors at a 
disorder close to a metal-insulator transition. 

2. GENERAL RELATIONS 

At absolute zero temperature, sufficiently dirty con- 
ductors cease to conduct electric current. Their conductivity 
o is zero. For samples of finite size, the conduction is by 
tunneling and depends exponentially on the dimension, so 
that 

0 a exp {- LIL,) . (1) 
The localization length LC depends on the degree of disorder 
and on the dimensionality of the sample. It will be calculated 
below for different concrete cases. It is frequently large com- 
pared with the distance between the electrons. At distances 
small compared with LC, the system behaves as a conductor, 
and at large distances as a dielectric. The dielectric constant 
of such a dielectric is large, E -  L f . At low temperatures the 
conductivity has an activation character. An electron with 
an energy close to the Fermi surface hops from a region of 
size LC into another region, located at a distance x,L, from 
the first. The conductivity is proportional to the probability 
of these hops. This probability is equal to the product of the 
probability of the tunneling by the activation probability 

The activation energy consists of the energy scatter EM 
(Refs. 1, 2) and the Coulomb-interaction energy ep (x) (Ref. 
31, Eb(x) = E,(x) + ee,(x). 

The overwhelming contribution to the conductivity is 
made by hops over a distance x, determined from the condi- 
tion that the exponent in Eq. (2) be a maximum 

ductivity obeys the ~hklovskii-~fros lawS log(T) = - (To/ 0-exp {-X~/L,--E, ( x o )  IT) ,  
T)'", but in a wide temperature range there is satisfied a law where x, is detemined from the equation 

(3)  

close to the Arrhenius law log(T) = - E,/T. The large 
length of the hops leads to a strong dependence of the con- I I d  

--+--WE ( )-0. 
LC I d x  O x ' -  

(4) 
ductivity on the electric field g. 
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The form of the function Ea (x) will be obtained below in 
different cases. At large distances, the principal role is 
played by the Coulomb interaction 

E,--ecp ( x )  =eZ/ex .  (5) 

Substituting (5) in (3)  and (4) we obtain 

and 

o-exp{- ( T , / T )  "'), To=4eZ/eL, .  (7) 

This law is valid at the lowest temperatures, whenx, defined 
by Eq. (6) ,  is large and Coulomb's law (5) holds. In films and 
wires, at large distances, the electrons interact through vacu- 
um, therefore the dielectric constant E in (5) must be replaced 
by unity. 

Owing to the large value ofx,, the conductivity depends 
strongly on the electric field $. In an electric field, the acti- 
vation energy decreases and in formulas (2)-(4) we must 
make the substitutions p-q - $x, E,-Ea - egx.  In first 
order, x, does not depend on the field and the dependence of 
the conductivity on the field is determined by the formula 

o (8) =o (0) e-eE%/T. (8) 

In stronger fields it is necessary to take into account the 
field dependence, determined from (4). In this case the de- 
pendence of the conductivity on the field can be obtained by 
making in (3)  and (4) the substitution LC -'-LC -' - eg/T. 
In particular, in the case defined by Eq. (7), we obtain 

These laws are valid so long as the activation energy in the 
field is positive for substantial hops. In a strong field this 
energy vanishes. With further increase of the field, the hops 
take place over the nearest distance, where the activation 
energy is zero: 

E.(xl) - e 8 x s = 0 .  (10) 

In this case the conductivity is independent of temperature, 
and its dependence on the field is determined by 

At very low temperatures and relatively weak fields, we can 
use in (10) formula (5). As a result 

In strong fields, just as at high temperatures, hops over short 
distances are important, where formula (5) is not valid. The 
temperature and field dependences are in this case different 
for samples with different dimensions, which we now pro- 
ceed to discuss. 

3. CONDUCTIVITY OF THIN FILMS 

In films of normal metals of thickness d the mean free 
path I, at a sufficiently high temperature, the conductivity is 
metallic and is described by the Drude formula. Wth de- 

creasing temperature, the conductivity decreases because of 
quantum effects6.' and is equal to 

00 (T) -- 2nzh [ l n + + ( l - ~ ) l n -  "' 1 1 , (13) 

where a, (T) is the temperature-dependent conductivity of a 
film of quadratic form, a, is the residual conductivity with- 
out allowance for the logarithmic corrections, 
L, = (DT,)"~ and L, = (DC~/T)'" are the diffusion lengths 
traversed respectively during the dephasing time T, - T - P  

and fi/T. The function F(p,(x) depends on the ratio of the 
Fermi momentum p, to the reciprocal Debye-screening 
length x, and determines the force of the Coulomb repulsion 
for electrons on the Fermi surface. 

Equation (13) is valid so long as the logarithmic correc- 
tions term is smaller than the Drude term. When the tem- 
perature is lowered, this relation is violated and the film goes 
over into the localization regime. The localization length can 
then be estimated at 

where a, = e2/2?rzfiz0. 01 (kf2 )- '. The temperature 

1 
T.=DL,-' - - T exp - -- z: 2 2 F )  

is the temperature scale such that at T >  T. the conductivity 
depends logarithmically on the temperature, and at T < T, it 
is determined by activation processes. 

To determine the temperature dependence of the con- 
ductivity in the hopping-conduction region, it is necessary, 
as shown in Sec. 2, to solve the problem of the electrostatic 
potential q(r) of a charge placed in such a film. It must be 
understood here that over dimensions r(Lc the field in the 
film is screened, with a screening length x - '(xZ = 471.e2v, v is 
the state density), while at larger distances r)Lc there is no 
screening: 

The potential of an electric charge e placed in a film of thick- 
ness d having dielectric constant E,  at a distancep)d inside 
the film, is equal toX 

Here J,(x), R 0 ( x )  and N,(x) are the Bessel, Struve, and 
Neumann functions, C = 0.55 ... is the Euler constant, E ,  and 

648 Sov. Phys. JETP 56 (3), September 1982 A. I. Larkin and D. E. Khmel'nitskil 648 



and E, are the dielectric constants of the media on the two 
sides of the investigated film ("substrate" and "vacuum"). 

In the case when the film thickness d is of the dorder of 
one monatomic layer, Eq. (17) can still be used if ~d is re- 
placed by x2L f ,  where %, = 4ne2v,, and v, is the state den- 
sity per unit area. 

Using (1 7), (3), and (4) we obtain the temperature depen- 
dence of the film conductivity 

a ( T )  --exp (-T,/T), (18) 

where To depends logarithmically on the temperature 

Equations (18) and (19) are valid if the length x, of the 
hop satisfies the conditions L,%x,%~d + E2), which are 
satisfied at temperatures. 

At a temperature T = TI the length x, of the hop be- 
comes comparable with the localization length LC. The acti- 
vation energy is then To(Tl ) - T. > T, . In the temperature 
interval T. > T >  TI ,  hops are produced over a length LC, 
and the activation energy is equal to To (TI) and does not 
depend on the temperature. Alternately, when using (16') 
and (14), this interval can be restricted by the inequality 

(eZ/xZL,Zd) In (xZL,d) -T.>T>T,=eZ(e,+e,)/x4LE4d2. (20) 

At Tg T, the following relation holds 

and coincides with (7) at E ,  = E~ = E. Thus, in films at high 
temperatures T >  T. we have metallic conductivity with 
logarithmic corrections; at TI < T <  T. there is produced a 
region in which the conductivity is described by the Arrhen- 
ius law (18) with an activation energy of the order of T.; at 
T, > T >  T, the activation energy decreases logarithmically 
with decreasing temperature. Finally, at T<T,  the 
Shklovskii-Efros law (21) is satisfied. In a strong electric 
field, the conductivity is determined by the general formulas 
(8)-(1 l), with allowance for the law governing the decrease of 
the electric potential (17). Diffferent regions of fields and 
temperatures are shown in the figure. In the metallic region 

(1) the nonlinearity is connected only with the heating of the 
electron gas.6 In region 11, the conductivity is 

o-exp { - '.-igL0 1. 
To find the field dependence u(Z?) in the region 111, it is 
necessary to replace 1/15, in (18) and (19) by l/Lc - e g / T .  
As a result we obtain 

(23) 
The conductivity is described by Eqs. (7) and (9) in region IV 
and by Eq. (12) in region V. In region IV, just as in region V, 
the conductivity is determined by the activationless hops in 
the electric field, but the length of the hop in this case corre- 
sponds to a logarithmic decrease of p@) (17). As a result we 
have in region IV 

a (8) -exp {-TilegLC [In (&'e8dZ) -C+i] ). (24) 

4. CONDUCTIVITY OF MIS STRUCTURES 

The metal-dielectric junction was investigated in detail 
in layered metal-insulator-semiconductor (MIS) structures 
(see the review by Atkins9). When the general equations of 
Sec. 2 are applied to these structures, it must be remembered 
that the electrostatic interaction of two charges in a surface 
layer in the semiconductor is screened by the metal, and at 
large distances this is a dipole-dipole interaction 

where d is the thickness of the dielectric layer and E, is the 
static dielectric constant of the smeiconductor without 
allowance for the screening influence of the electrons. The 
interaction decreases more rapidly than the distance to the 
first excited level, and 

EamEnr= l/v,rz, 

where v, is the two-dimensional state density, therefore at, 
the lowest temperatures the Coulomb interaction is negligi- 
ble and Mott's law should hold. It follows from (3) and (4) 
that 

o-exp{- ( 0 / T )  I"), 8 = 1 / ~ ~ L , ~ .  (26) 

At short distances the screening of the Coulomb interaction 
is less significant so that in intermediate temperatures, just 
as in ordinary films, a law similar to the Arrhenius law may 
hold. To derive this law we obtain the potential produced by 
the charge at arbitrary distances. This potential satisfies the 
equation 

4ne2 4ne3 
e h ~ =  --S(r)-- avzLOZAcpG (2) 

E. E , 
(27) 

and the boundary condition p(z = - d ) = 0. The three-di- 
mensional coordinate is here r = (2, p). Equation (27) ex- 
presses the fact that the electrons in the semiconductor 
screen the Coulomb interaction, but at large distances this 
screening leads to a redefinition of the dielectric constant 
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[see (16)l. The boundary conditions take into account the where S is the cross-section area. 
influence of the metallic substrate. To determine the electrostatic potential it is necessary 

The solution of Eq. (27) with the boundary condition is to solve the equation 
of the form d20  Aq=-4ne6 ( r )  - 4 n e 2 a v S L , 2 ~  6 (p) . a z (33) 

Here r is the dimensionless coordinate, and z is the coordi- 
(28) nate in the direction of the wire axis.   he solution (33) can be 

represented at p = 0 in the form 

ecg=2e2 
1 

[ i n  ( q d )  -' + =I 2n -'* 
where& is given by (16'), d = (4S/.rr)112 is the diameter of the 
wire, 

the oxide thickness d is small enough, so that x2d41, the 
Coulomb interaction is weak at all distances, and Mott's law 
should hold at all temperatures at which the activation re- 
gime is valid. Even at high temperatures in the metallic 
phase the Coulomb interaction is weak in this case and can 
be disregarded. 

In the other limiting case x2d>l, Mott's law is valid 
only at the lowest temperatures T <  T,, while at T >  T, the 
activation conductivity is determined by the Coulomb inter- 
action. Ifd<(L f / ~ , ) ' / ~ ,  then we can use for the electrostatic 
potential Eq. (29), and disregard the dipole-dipole "tail" at 
the largest distances. Under these conditions 
T, = T0(x2d )-3/21n-3x2d. In the temperature region 
To(x2d )-'I2 = T2> T >  TI it is necessary to use the asymp- 
totic form of the function Ko(z) = e-'. The conductivity in 
this region is 

Here Ko(z) is a Macdonald function SE n SE ( ( n d 2 ) ) - ' * e x p { - ~ z ~ ( ~ l n - ) ' }  at 

In this region the conductivity has a power-law dependence 
on the temperature. 

At higher temperatures T >  T,, smaller distances, 
where K,(z)=: - In z + C, become important. In this region 

-Inz+C; z< l  

The dipole-dipole character of the decrease of ep @) at 
' 

the largest distances follows from (28) and (29) if exp( - 2qd ) 
is expanded in powers of qd(1 up to terms of order (qd )'. If 

The general scheme described in Sec. 2 for the calculation of 
the average conductivity cannot be applied to the one-di- 
mensional case. In this case it is necessary to calculate not 
the average conductivity but the average resistance. It is de- 
termined by the places with very large resistance, where 
there is no energy level lower than E over a large length x .  
The probability of existence of such a section is 

2n n S ~ l n  - nd2 

1 
, IzI n ln ( S & / n d 2 )  

(35) 

W ( E ,  x )  -e-VcEX, (36) 

where Y, is a one-dimensional state density, p )Y, = YS, S is 
the wire cross-section area. Without allowance for the Cou- 
lomb interaction, the average resistance was obtained by 
Kurkijarvi.1° Let us determine the change introduced in his 
result by the Coulomb interaction. 

The resistance of a segment of length x is the equivalent 
of two parallel resistances: the tunnel resistance - exp(x/L, ) 
and the activation resistanceexp[(E + ep  - e%'x)/T], where 
p is the Coulomb potential and Z? is the external electric 
field. The average resistance is 

W ( x ,  E )  dE dx 
R= J- exp  ( L x / L , )  +exp {- (E+ecp--ebx) / T )  

' (37) 

{ To T ( x 2 d ) " }  The main contribution to the integral with respect to x is aaexp  -- 
T ln To (31' made by those energies at which both terms in the denomina- 

tor are of the same order, therefore 
The dependence on the electric field is obtained in ac- 

cordance with the general scheme, just as in the case of ordi- R - J  e x p { ~ - v , x ( ~ ~ - e ~ + e 8 ~ ) }  d r .  
nary films. For example, in (31) it is necessary to add under LC (38) 

the sign of the natural logarithm the factor (1 - egL,/T). The integration region with respect to x is bounded in 
this case by the condition 

5. CONDUCTIVITY OF THIN FILMS E=Tx/L,-ecp+e8x>O. (39) 
In metallic films, the localization length corresponds to 

a wire resistance of the order of 3fi/e2- 50 kn. Hence At the lowest temperature, hops over large distances are of 
importance, where the Coulomb potential is equal t o p  = e/ 

Lc-l (PF's), (32) x. 
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Calculating the integral by the saddle-point method, we 
obtain 

Thus, at low temperatures, the Arrhenius law should be 
satisfied. The Coulomb interaction leads to the appearance 
in the argument of the exponential of an additional tempera- 
ture-independent large term 2e2v1 -x2S. Formula (40) is 
valid at T <  To/x2S. At higher temperatures, the integral 
(38) is determined not by the saddle point but by the edge of 
the integration region, which can be obtained from the con- 
dition (39). At T0/ln(S&/n-d 2, > T >  To/x2S we have 

R-exp [ (e2L,T) '"1 . (41) 

Equation (41) coincides with expression (7). At T >  To/ 
1n2(S&/n-d 2, account must be taken of the exponential char- 
acter of the decrease of the electrostatic potential (35), while 
at To > T >  T0/ln2(S&/?rd 2, the resistance increases with in- 
creasing temperature in power-law fashion 

R-T(K'~) .  (42) 

At T ~ ( ~ ~ S ) ' / ~  > T >  To we have 

6. THREE-DIMENSIONAL CONDUCTORS 

A large localization radius is realized in a three-dimen- 
sional conductor only when the impurity density n is close to 
the critical density n,(l(n - n,)/n, 141) at which the metal- 
insulator transition takes place. In this region, the similarity 
laws are satisfied," and the localization region LC has a pow- 
er-law dependence on n - n, 

The electrostatic potential is in this case 

Equations (45) show that near the transition &-L,g- '> 1, 
and r ,  -LC. 

At the lowest temperatures, using (5)-(7) and (45), we obtain 

' rmn, r<Lcl 

Ea '12 n-n, 'n - ( )  } - -  - (46) 

ecp ( r )  = 

Formula (46) is valid at T <  E,. At T >  Eo the length of 
the hop is xo -LC, therefore at T > Eo the conductivity does 
not have an activation character, but is determined by scat- 
tering and by Coulomb interaction in the critical region, and 
is independent of 1 n - n, I : 

1 
r>Lc ( insulator ) , rL2-' ' 

e-'/Lc 
(45) 

, rDL, (metal), 
rL2-' 

Thus, in three-dimensional samples near a metal-insulator 
junction there are no grounds for expecting the Arrhenius 
law for the conductivity. 

The dependence of the conductivity on the electric field 
8 is determined by Eqs. (9) and (12), in which the dielectric 
constant E must be substituted. The exponential dependence 
on the field is valid at 

e8Lc<Eo; 8<bo-L,-'n+1'. (48) 

At $ > go the conductivity is independent of In - n, I and is 
equal to 

Here L ( g )  is determined from the relation 
e 8 L  ( 8 ) - L  -9(8). 

7. CONCLUSION 

In the extensive experimental material on the activation 
conductivity of disordered conductors, the case of large lo- 
calization rates is particularly clearly realized in experi- 
ments on films and on MIS structures (see also Ref. 12). In all 
such cases there is a temperature interval in which the Arr- 
henius law is satisfied. The explanation of this law2 was 
usually formulated as follows: there is a mobility threshold 
Eg at which E, < Eg but Eg - E ,  (E,, and the conductivity 
is effected by activation at the mobility threshold. Serious 
objections to this explanation have been raised recently. 
First, weighty arguments have been presented4 in favor of 
the assumption that in the two-dimensional case there is no 
mobility threshold and all the states are localized. Second, 
the very concept of mobility threshold for localized electrons 
was borrowed from the problem of noninteracting electrons 
in a random potential. Recent studies by Al'tshuler and 
Ar~nov' , '~  and by McMillanll indicate that the electron- 
electron interaction alters very strongly the problem, and 
the language of single-particle levels ceases to be correct. 

In the present paper a law close to the Arrhenius law 
was obtained without resorting to the concept of mobility 
threshold. The nonlinearity of the current-voltage charac- 
teristics is observed practically in all the experiments on acti- 
vation conductivity. A study of the field and temperature 
dependences of the conductivity a(T, 8) can provide a check 
on the proposed theory, as well as offer an experimental de- 
termination of such a fundamental quantity as the localiza- 
tion length LC. 
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