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The problem of the thermoelectric effect in a superconducting ring is considered within the 
framework of the macroscopic Ginzburg-Landau theory. An exact solution is obtained for the 
model case of a homogeneous superconducting cylinder with a prescribed normal-excitation 
current I,. It is shown that the total circumfluent current I  and the magnetic field H ,  in the cavity 
of the cylinder arise as the response to the prescribed external current I , .  A profound analogy is 
found to exist between the behavior of the thermoelectric system and the behavior of a hollow 
superconducting cylinder in an external field. Both systems are characterized by the presence of 
quantum levels, which specify the possible number m of flux quanta frozen in the cavity. It is 
shown that even in the absence of an external field it becomes possible, as the temperature is 
raised, for a thermoelectric ring in them = 0 state to go over spontaneously into states with m > 0. 
The "giant" thermoelectric effect observed in a number of experiments is interpreted as being due 
to transitions of the system to higher levels, i.e., to m+m + 1 transitions. It is shown that a 
thermoelectric ring should go over into the normal state not at the critical temperature T,, but at 
some T r  < T,. The possible hysteresis effects and the role of impurities, fluctuations, and inho- 
mogeneities in a thermoelectric system are discussed. A number of predictions are made which 
can be verified in experiment. 

PACS numbers: 74.30. - e, 72.15.Jf 

§I. INTRODUCTION 

The problem of the thermoelectric effect in supercon- 
ductors has recently been discussed intensively in the litera- 
ture. Here we shall mention only a few points, referring the 
reader to Ref. 1 for details and the history of the problem. 
The effect in question consists in the fact that a current arises 
in a superconducting ring made up of two dissimilar metals 
when the soldered joints are maintained at different tem- 
peratures TI and T,. Outwardly, this effect is entirely similar 
to the ordinary thermoelectric effect that occurs in a normal 
circuit, with the only important difference that the thermo- 
electric power is equal to zero in a superconducting ring in 
the steady state." ' In view of this, the nature of the current 
generated in the superconducting circuit is somewhat of a 
puzzle, and different viewpoints have been expressed apro- 
pos of this in the literature. According to ideas first put for- 
ward in Refs. 2 and 3, and subsequently repeated often in the 
literat~re,"~ the thermoelectric current in a superconduct- 
ing ring has a purely quantum character, since it is connect- 
ed with the phase difference of the wave function in the su- 
perconductor. Such a phase difference is, by assumption, 
produced when the ring is heated, which leads to the appear- 
ance of a superconducting current proportional to the phase 
gradient: j aVp. An entirely different viewpoint is ex- 
pressed in Ref. 1 (see also Ref. lo), where the appearance of 
the thermoelectric current is related to the acceleration of 
the superconducting condensate by the nonstationary elec- 
tric field that arises in the superconductor as it is heated, i.e., 
the classical character of the appearance of the thermoelec- 
tric current is emphasized. According to the latter point of 
view,'." the thermoelectric current has essentially the same 
character as the ordinary Meissner currents that arise in a 

superconductor located in an external magnetic field. In the 
present paper we shall adhere to this later point of view. Let 
us note in this connection that the difference between these 
two approaches is not purely terminological, since the inter- 
pretation of the thermoelectric current as being due solely to 
the appearance of a phase difference in the superconductor 
leads sometimes to plain errors (see the critical comments 
made in Ref. 10 in connection with Pickett's incorrect pa- 
per9). 

Thermoelectric currents have been observed in hetero- 
geneous superconducting rings in a number of experimental 
 investigation^.^-' But if in the first measurements, per- 
formed by Zavarit~kii,~ there were observed thermoelectric 
fluxes at the level of where @, = 2 X lo-' G-cm2 is 
the flux quantum (which, on the whole, was in accord with 
the magnitude of the effect expected on the basis of the theo- 
retical estimates [for greater details, see Ref. I)], much larger 
fluxes were often observed in the subsequent measure- 
m e n t ~ " ~  (see, in particular, Ref. 8, which reports the obser- 
vation of fluxes at the level of lo2 @,-lo3 @,, i.e., at a level 
several orders of magnitude higher than the theoretical esti- 
mates). The nature and temperature dependence of this "gi- 
ant" thermoelectric effect in superconductors still remain 
unelucidated. Thus, it is postulated in Ref. 6 that the parasit- 
ic effects connected with the uncontrolled external magnetic 
flux trapped in the circuit can play a role; in Ref. 9 an at- 
tempt is made to relate the observed giant thermoelectric 
flux to strong currents generated on the outer surface of the 
superconducting ring [the presence of such currents is ar- 
gued in Ref. 9 by the necessity to satisfy certain phase rela- 
tions (see also Ref. lo)]; in Ref. 11 a kinetic theory is pro- 
pounded according to which strong secondary currents are 
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generated on the inner surface of the ring2' as a result of the 
presence of nonequilibrium effects; and in Refs. 1 and 10 the 
possible role of the inhomogeneity at the soldered joints is 
discussed. The lack of a clear understanding of the experi- 
mentally observed effects is due, in particular, to difficulty of 
a consistent theoretical investigation of an inhomogenous 
superconducting system that is in a nonequilibrium state 
(i.e., in the presence of a temperature gradient) and with 
allowance for the significantly different geometric factors 
that characterize specific 

In the present paper we consider the thermoelectric ef- 
fect in a superconducting ring within the framework of a 
simplified model that allows us to obtain an exact solution to 
the problem in the entire temperature range extending right 
up to T = Tc. The formulation of the problem is as follows. 
Let us first consider a homogeneous normal ring at a tem- 
perature T (the role of the inhomogeneity is considered lat- 
er). We specify the total current I, circulating inside the 
ring; a magnetic flux @, is then prescribed in the normal 
ring. The question arises: What total current I and magnetic 
flux @ will be established in the ring if it goes over into the 
superconducting state at T <  Tc under the conditions of the 
prescribed normal-excitation current I,. 

Actually, we limit ourselves below to a sample having 
the form of an infinite-along the z axis-hollow cylinder 
with inside radius r, and outside radius r,. In the case of a 
cylindrical normal sample, it is easy to find that the total 
circulating current I, is connected with the field HI, inside 
the cavity by the relation I, = cH,, / 4 ~ ,  the normal-current 
density j , being distributed along the radius of the cylinder 
according to the law. 

Q r2 c Hi,  
= I.= J j , , ( r ) d r = Q l n - ,  Q = -  

ri 4n ln ( r2 / r i )  

Under ordinary conditions the normal thermoelectric cur- 
rent I,, is proportional to the temperature difference T2 - TI 
between the soldered joints, and arises only in an inhomo- 
geneous sample: I, = (6, - bb)(T2 - TI), where 6 ,  and b, 
are the thermoelectric coefficients of the metals a and b. In 
our model the normal current is assumed to be uniform (i.e., 
to be independent of the azimuthal coordinate): 
I,, = b (T, - T,), where b = const. 

We shall, in considering the superconducting cylinder, 
assume that the sample is homogeneous and is at a definite 
temperature T. This allows us to ignore the nonequilibrium 
effects due to the presence of a temperature gradient under 
real conditions. Actually, we assume that in the present case 
the nonequilibrium effects play a minor role, and can be ne- 
glected. In fact, the temperature gradients are usually small 
(VT- lop2  K/cm), and it is difficult to expect the strong 
effect observed in experiment to be due to such a small devi- 
ation from equilibrium (see, however, Ref. l l). Some justifi- 
cation for disregarding the disequilibrium state is also that 
we shall be interested in those aspects of the behavior of the 
superconducting system which do not depend on the specific 
mechanisms underlying the onset of the normal-excitation 
currentj, in the superconductor. Below we shall assume that 

the currentj, [or, equivalently, the quantity H,, in (l . l)]  is a 
specified external parameter. In order to approximate real 
conditions, let us set 

Here T, is some characteristic temperature (TI plays the role 
of the temperature of the cold joint under real experimental 
conditions); Tc is the critical temperature of the supercon- 
ductor (if under real conditions T,, < Tcb, where TCa and 
Tcb are the critical temperatures of the superconductors a 
and b respectively, then in the model under consideration 
T, = T,,); the temperature T corresponds to the tempera- 
ture of the hot joint (under real conditions TzTca) .  At 
T = T, (which corresponds to the absence of a temperature 
gradient) we have H,, = 0; at T = Tc we have H,, = H yi, 
where H(:, is the maximum field strength attainable in the 
ring in the normal state. Typical values are H \'jl- 1 G and 
Tc - TI - lop2 K. 

Below we shall have to take into account the tempera- 
ture dependences of the London depth SL(T) and the coher- 
ence length { ( T )  of the supercond~ctor~~"~:  

here x is the parameter of the Ginzburg-Landau theory and 
lo is the correlation length at T = 0. The expressions (1.3) 
correspond to the case of pure superconductors. In the case 
of dirty superconductors we haveI2.l3 

where I is the mean path; x, > x, for materials with I 4 lo. 
The penetration S,(T) depth'an important role in the 

electrodynamics of superconductors: it determines the 
screening of the field. Allowance for the temperature depen- 
dences ( 1.3) or (1.4) allows us to describe the passage T-+Tc, 
6,-m to the normal limit, at which the metal becomes 
transparent to the field. Under real conditions only a small 
part of one of the superconductors near the hot joint, and not 
the entire superconducting ring, becomes transparent at 
T+Tc. We shall first study the homogeneous case, which 
allows us to understand better some important characteris- 
tics of the behavior of the system in question; the role of the 
inhomogeneity will be taken into account in 5 6. 

So, let us state once more the main points of the model 
problem. 

1) We consider a homogeneous superconducting cylin- 
der at a temperature T close to Tc . 

2) We assume that the normal current (1.1) in the super- 
conducting cylinder is prescribed to depend on the tempera- 
ture according to (1.2), and to be independent of the angle 
coordinate. 

3) We assume that the depth of penetration of the field 
into the superconductor depends on the temperature accord- 
ing to (1.3) or (1.4). 

4) We seek the total current I (or the magnetic flux @ ) in 
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the superconducting cylinder as the response to a specified 
external normal current I, . 

We shall solve the formulated problem within the 
framework of the macroscopic Ginzburg-Landau theory of 
superc~nductivity.'~ In $2 we obtain the functional describ- 
ing the behavior of the superconducting cylinder under con- 
ditions of a prescribed normal current. In $3 we solve the 
electrodynamic problem of determining the total current I 
for a prescribed normal current I,. Section 4 is devoted to 
the self-consistent determination of the order parameter $ of 
the superconductor and the determination of the magnetic 
flux in the cavity of the cylinder as functions of the tempera- 
ture in the entire temperature range. We also consider in this 
section a number of hysteresis effects that occur in the ring, 
and briefly discuss the possible role of the fluctuations. In $5 
we consider the transition of a thermoelectric ring from the 
normal into the superconducting state. In $6 we take the 
inhomogeneity of a real thermoelectric circuit into account. 
In the Conclusion we discuss briefly the results obtained in 
the paper and their connection with experiment. 

92. THE THERMODYNAMIC POTENTIAL OF THE SYSTEM 

To solve the formulated problem within the framework 
of the Ginzburg-Landau theory, we must derive an expres- 
sion for the thermodynamic potential of the system under 
the condition that a normal excitation current j, is pre- 
scribed in the superconductor. Let us, proceeding similarly 
to the case of a superconductor in a prescribed external mag- 
netic field,153'6 write down the change in the energy of the 
superconductor: 

HereA Q is the heat rise in the sample; the second term is the 
flux of the Poynting vector through the inner surface of the 
sample (He = 0 at the outer surface); and the last term is the 
work done on the prescribed current j, by the electromag- 
netic forces. Evaluating the surface integral, we find that it is 
equal to 

Here H, is the field inside the cavity, V, is the volume of the 
cavity, V, is the volume of the superconductor, and 
V = V, + V, is the total volume occupied by the cylinder. 
Setting E = - c-'dA/dt in the last term in (2.1) (we assume 
that no charge is produced in the system, and that the Cou- 
lomb potential is equal to zero), and using the inequality 
AQ(TAS (T = const is the temperature, and S is the en- 
tropy, of the sample), we reduce (2.1) to the form 

where Fs = i9 - TS is the free energy of the superconduc- 
tor. Thus, the functional whose minimum corresponds to the 

equlibrium state of the system when T = const, j, = const, 
and He = 0 is 

Here we have used the usual-in the Ginzburg-Landau the- 
o ~ Y ~ ~ - ~ ~  --expression for the free energy F, of the supercon- 
ductor, F,, is the free energy of the normal metal in the 
absence of a field, B = curl A is the magnetic field, P i s  the 
order parameter, a and p are temperature dependent coeffi- 
cients, and e* = 2e and m* = 2m are the charge and mass of 
a Cooper pair. 

The variation of (2.2) with respect to P * yields the usual 
equation for the order parameter: 

ie' -av+pIvIy- v + - A )  Y=O, ( hc 

while the variation with respect to A leads to the equation 

4n 
rot rot A= - (j.+ j,) , 

C (2.4) 

where the current density standing on the right-hand side is 
the total current density j = j, + j,, with 

Using (2.5), we can rewrite the expression (2.2) in the 
form3' 

(2.6) 

where 

the integral term in (2.7) corresponds to the superconductor- 
condensation energy with allowance made for the order-pa- 
rameter gradient. Using the chain of equalities 

we can eliminate the field B from (2.6), and express every- 
thing in terms of the vector potential A: 
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Further, introducing the modulus and the phase of the order 
parameter, i.e., setting Y = feiq, f = I Y I, and expressing A 
in terms ofj, and V p  with the aid of (2.5), we write (2.8), (2.5) 
in the form 

The expressions (2.9)-(2.11) are exact, and are obtained from 
(2.2) and (2.5) by identity transformations; they are valid for 
our arbitrary dependence of Y (or f )  and j, on the coordi- 
nates. Further, we limit ourselves to the consideration of the 
model case of a homogeneous superconducting cylinder, in 
which f = I Y / does not depend on the coordinates, while j, is 
given by (1.1) and does not depend on the angle coordinate 6. 

It is well known that a hollow superconducting cylinder 
is a quantum system whose state is characterized by a whole 
number m that indicates how many flux quanta can be 
trapped in the cavity of the cylinder. (Flux quantization in 
hollow cylinders has been the subject of many papers, the 
recent ones among which are Refs. 17-20.) It is convenient to 
introduce the number m through the relation Y = feIme, 
where the phase p of the wave function has been chosen 
(apart from unimportant vector-potential-gauge-dependent 
terms (see Refs. 1-10)) to be equal to m6, 0 being the azi- 
muthal coordinate: 0 < 6 < 2 ~ .  The phase gradient in cylindri- 
cal coordinates can then be written in the form V p  = m/r. 
We notice that, when the quantities j, = Q /r and V p  = m/r 
are substituted into (2.9), the factor l/r is canceled by the 
factor r contained in the volume element dv = 2.rrrdr. There- 
fore, if we express A in (2.9) in terms of j, and V p  with the aid 
of (2.11), we are left in (2.9) with integrals of the type 
I, = Sj,dr, which are equal to the total superconducting cur- 
rent flowing around the cylinder. Further, taking account of 
the equality 

where I  = I, + I,  is the total circumfluent current and H I  is 
the resultant field in the cavity of the cylinder, we reduce, 
after simple transformations, the functional (2.9) to the form 

where A = m*c2/4~e*2f2 (A is the depth of penetration of 
the field into the superconductor). Within the framework of 
the model under consideration (f = const, j, = Q/r), the 

functional (2.13) is exact; it is expressed in terms of the as yet 
unknown quantity H I ,  the total field in the cavity of the 
cylinder. 

53. DETERMINATION OF THE FIELD HI. ROLE OF THE 
QUANTUM LEVELS 

To determine the field H I ,  we must turn to Eq. (2.4). In 
cylindrical coordinates, this equation has the form 

its general solution is 

Rcm ,E 
A = - i a l ,  

e'r 
13.21 

where I ,  and K,  are Bessel functions of imaginary argu- 
ments, and we have set 

H,,h2 2n hc 
meR = m i  

n r r  @Q =-. 
The arbitrary constant a and b are determined from the 
boundary conditions for the magnetic field: 

(the second condition in (3.3) corresponds to the absence of a 
field outside the cylinder). As a result, the solution (3.2) is 
expressed in terms of the field strength H I  in the cavity. The 
condition 

$ Adl=nr12H, 

(the contour integral is taken along the inner surface of the 
cylinder and .rr< HI is the magnetic flux in the cavity) gives 
us another equation from which the quantity H ,  can be de- 
termined. Finally, we shall have 

Thus, the field in the cavity is known when the quantity 
H I ,  and the value of m are known. Let us recall that the 
quantity H I ,  varies with temperature according to (1.2). The 
penetration depth2 also depends on the temperature; there- 
fore, the field H I  in the cavity of the cylinder essentially 
depends on the temperature T (which in the adopted model 
corresponds to the temperature of the hot section of the ther- 
moelectric circuit). At T = T,, the penetration depth is infi- 
nite, i.e., A ( T  = T,) = a, the order parameter vanishes, i.e., 
f ( T  = T,)  = 0, and the field H I  = H:, . 
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Substituting the obtained expression (3.4) for H I  into 
(2.13), we obtain the system's thermodynamic potential ex- 
pressed as a function of the temperature. It is convenient to 
introduce the difference between the functionals 

ti@=@, (T) - 0 0 ,  (3.6) 

where @, = @,(T = T,) = @, I f = ,  is the thermodynamic 
potential of the system when the order parameter is equal to 
zero, i.e., when the cylinder is in the normal state. If 6 0  < 0, 
this indicates that the superconducting state is favored (i.e., 
possesses a lower energy), but if a@ > 0 it is advantageous for 
the system to go over into the normal state. Determining the 
quantity 6@ with the aid of (3.6), (2.13), and (3.4), we obtain, 
after obvious transformations, the expression 

where @, = V, { - a f 2 + p f 4 ) ,  V,=T(< - 6 )  being 
the volume occupied by the superconductor (we assume that 
the length of the cylinder along the z axis is equal to unity). 
The quantities D and Dl are defined in (3.5), 

(herep, is the value ofp when f = 0). When f = 0, the quanti- 
ty a@ = 0. 

Finally, introducing in place off = I !P I the reduced or- 
der parameter 1C, with the aid of the re la t ion~l~- '~  

(3.9) 

we write (3.7) and (3.4) in the following final form 

(3.11) 

The functional F, (3. lo), describes the behavior of the 
system studied by us as a function of the temperature, and 
will be investigated in detail below. But certain important 
characteristics of the behavior of this system can already be 
seen from the expression (3.10). Indeed, we assume, as is 
usually done in the investigation of thermoelectric phenom- 
ena in superconductors, that m = 0, i.e., that there is initial- 

ly no frozen flux inside the cylinder (the field h, = 0 when 
T = TI). The switching on of the normal current j, , i.e., the 
establishment of the field h,,(T> TI), leads to the appear- 
ance in (3.10) of the large positive contribution proportional 
top2h t, , which quickly makes the state with m = 0 thermo- 
dynamically unstable, i.e., F > 0 (let us recall that h yL in 
(1.2) is of the order of 0.1-1 G, the characteristic values of 
h yA are of the order of lo3-10' for r, -0.1-1 cm, i.e., 
h \: > 1; the quantityp in (3.10) is of the order of unity, and 
the quantity q is small (see below)). Since it is advantageous 
for the system to be in the state with the minimum value 9, 
it can, when the quantity h ,, attains a value h ,, z 4, go over 
into the state with m = 1, thereby lowering its total energy. 
As the temperature is raised further, and h,. (T)  increases, it 
becomes energetically advantageous for the system to un- 
dergo m-+m + 1 transitions into states with higher and 
higher values of m. These transitions (which occur at 
h,, z m  + 4) minimize the term in (3.10) proportional to 
(m - ph ,, )', which is always 5 a. The presence of the small 
parabolicqh :, term in (3.10) gives rise to a situation in which 
the positive contribution of this term can, as h ,, increases, so 
exceed the energy of the system that the superconducting 
state becomes disadvantageous (Y > O), and the system has 
to go over into the normal state. Thus, the superconducting 
state cannot exist at very large h,, (or j,). An important 
feature of the above-described picture is the conclusion that 
the normal component of the thermoelectric current in the 
superconducting ring can induce spontaneous transitions 
into states with large m, which correspond to large numbers 
of flux quanta trapped in the ring, even in the absence of an 
external magnetic field. As can be seen from (3.1 I), the ap- 
pearance of large m leads to an additional increase in the 
internal field h,, and this allows us to hope that we can de- 
scribe the experimentally observed giant thermoelectric ef- 
fect as being the result of such transitions. A more detailed 
investigation of this question is carried out below. But let us 
note the following here. 

Qualitatively, the described behavior of a hollow super- 
conducting cylinder in the presence of a prescribed normal 
current j, is entirely similar to the behavior of a hollow su- 
perconducting cylinder located in an external magnetic field 
H, parallel to the axis of the cylinder. This system has been 
investigated in a number of papers. In particular, the 
m+m + 1 transitions that occur in an external field between 
the quantized levels are investigated in detail in Refs. 17-19. 
The oscillations, connected with these transitions, of the 
sample's critical temperature as a function of the external 
field H, have been experimentally and so have 
transitions between levels with different m.24-26 

A great similarity between these two cases is clearly 
revealed when we compare (3.10) and (3.11) with the corre- 
sponding expressions for a cylinder in an external field:4' 
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Here H I  is the field in the cavity, H, is the external field, 

h2=8L2/$2, pi2=r12/h2, p22=r22/k2, 

the quantities D and D l  are defined in (3.9, and 

Dz=Kz(pz)Zo(~i)-Iz(pz)Ko(pi). 

We see that the formulas (3.10) and (3.1 1) with h,, re- 
placed by h, respectively coincide with (3.12) and (3.13) up to 
small differences in the parametersp and q, which character- 
ize the screening properties of the system. Thus, the normal 
component of the thermoelectric current (i.e., the quantity 
h,, in (3.10)) plays the role of the external field h, in (3.12), 
the problem of determining the total thermoelectric flux in 
the system in the case of a prescribed j, does not differ essen- 
tially from the problem of finding the field inside the cavity 
of the cylinder in a prescribed external field h,. This similar- 
ity further justifies the viewpoint, expressed in the Introduc- 
tion, that the thermoelectric effect has essentially an electro- 
dynamic (Meissner-type) character. Moreover, the 
important role of the phase factor elme, which is evidently 
due to a purely geometrical factor (i.e., to the fact that the 
system is doubly connected), and is in no way connected with 
the temperature gradient, is now clear. 

94. DETERMINATION OF hl AS A FUNCTION OF THE 
TEMPERATURE. HYSTERESIS 

The functional 3 ,  (3. lo), depends on the temperature 
and the reduced order parameter $. According to the Ginz- 
burg-Landau theory of superconductivity,'2-14 the param- 
eter $for a given temperature should be determined from the 
condition for a minimum of the functional: d 3 / d $  = 0. The 
$ value obtained from here should be substituted into (3.11) 
(let us recall that il = 6,(T)/$), after which the field 
strength h, inside the cylinder is determined as a function of 
the temperature. In the general case this program requires 
the performance of rather tedious numerical computations. 
In a number of limiting cases the problem gets simplified. 

We shall be particularly interested in the case of a thick- 
walled superconducting cylinder, when the following in- 
equalities are valid: 

pi=$ri/6L ( T )  Bl,  A = @ / ~ L  

d=rz-ri, d l r i ~ l .  

Using the expansions of the Bessel functions for large values 
of the arguments, we find 

Substituting these expansions into (3.10) and (3.1 I), and tak- 
ing into account the terms - we obtain 

c,=(m-hi,) 2+2/,dlhi,2, ~ ~ = - 2 m ~ 6 ~  ( T )  /ri, 

(4.2) 

FIG. 1.  Dependenceofh, on t = T - TI  for pure In: x = 0.2, h,,(O) = lo5, 
r ,=0 .6cm,d=0 .02cm,~o=3X10-5cm,T ,=4 .000K,and  
T, = 4.007 K. The dashed curve is the experimental curve obtained by 
van Harlingen eta/.' 

It is easy to find the condition dY/dJI = 0 for a minimum of 
the functional (4.2), determine from it the value $, = $(T), 
and then find h , (T) .  In Fig. 1 the continuous curves depict 
the dependence h,(T) in the m = 0, m = 100, m = 200, and 
m = 300 states for pure In [see the formulas (1.3)] with 
x, = 0.2. The other parameters are indicated in the caption 
for Fig. 1, and correspond to the actual conditions of the 
experiment of van Harlingen et u I . , ~  which corresponds most 
closely to the cylindrical-sample model being considered by 
us. The dashed curve shows the h,(T)  dependence found by 
van Harlingen et aL8 The open circles on the theoretical 
curves indicate the points where the minimum of the func- 
tional F passes through zero: F($,) = 0, Yf($,) = 0. The 
crosses indicate the points where the minima of 3 disap- 
pear, being replaced by a point of inflection: F1($,,) = 0, 
3"($,,) = 0. In the temperature range between the points 
$, and $,, we have F,, ($) > 0, i.e., a state with a given m is 
metastable against the transition into the normal state. A 
solution with a given m terminates at the point JI,, and a 
transition into a state with a higher m, or into the normal 
state, should necessarily occur. 

Figure 2 shows the analogous curves for extremely dirty 
In with tc, = 20 [1= 3 x lo-' cm; see (1.4)]. It can be seen 

FIG. 2. Dependence of h ,  on t = T - TI for extremely dirty In: x = 20, 
I = 3X lo-' cm. The remaining parameters are the same as in Fig. 1.  
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that the contamination of the sample leads to a significant 
enhancement of the effect, which is due to an increase in the 
penetration depth 6, (T  ). 

We should, in discussing the results presented in Figs. 1 
and 2, bear in mind that a comparison of the theory with 
experiment can be carried out only conditionally. The effect 
depends strongly on the geometric dimensions, on the pres- 
ence of impurities in the sample, and on H ?A. An actual 
experiment is performed on an inhomogeneous sample, 
which may also be important (role of the inhomogeneity will 
be discussed in greater detail in $6). But some qualitative 
features can already be seen from Figs. 1 and 2. Since the 
experimental curve clearly lies above the theoretical curve 
corresponding to the state with m = 0, we can draw the con- 
clusion that transitions to higher-lying m > 0 levels are ap- 
parently realized in experiment. This prediction of the the- 
ory can, in principle, be experimentally verified. Indeed, so 
long as the system at T >  T ,  is in the m = 0 state, the state 
changes with temperature reversibly; in particular, we re- 
turn to the h, = 0 state when the temperature decreases to 
T = TI. But if the transition was into an m # O  state, we re- 
turn to another state h, = m when the system cools down to 
T = T,. These hysteresis transitions are arbitrarily marked 
in Figs. 1 and 2 by arrows. 

The thermodynamic theory constructed above cannot 
predict the temperature at which the jump from the m into 
the m + 1 state occurs. It only indicates the limits of the 
temperature interval within which such a jump can occur. 
Figure 3 schematically shows on an enlarged scale the de- 
pendences h,(T) with allowance for the possible m-tm + 1 
transitions. The stepped curve (a) corresponds to the transi- 
tions that occur when the system consistently chooses the 
lowest energy state. These transitions occur at half-integer 
values of h,, = m + 4 [in other words, the curve (a) corre- 
sponds to thermodynamic-equilibrium transitions]. Thus, 
under conditions of thermodynamic equilibrium, the depen- 
dence h,(T) has the form of the curve (a), and moreover 
h,(T) zh,,(T). Let usnote that, in the caseofa hollow cylin- 
der located in an external field, the situation with h, zh,, 
i.e., the situation in which the external field penetrates fully 
into the cavity, corresponds to the state in which the energy 
has its minimum value. This indicates that the states with 
m # O  in the case when ho = 0 (i.e., the states with frozen-in 

FIG. 3. Schematic level-to-level transition curves as determined by: a) the 
energy minimum; b) the points where the fluctuation barrier disappears; c) 
the points where F' = 0, Fmi, = 0; d) the points where the solutions 
terminate, i.e., where F' = 0, F" = 0. The continuous curve is an experi- 
mental curve; the dotted curve corresponds to the case m = 0, $ = 1. 

FIG. 4. Schematic drawing of the fluctuation barriers; ( X  ) is an arbitrary 
parameter of the fluctuations. 

flux) cannot be realized under equilibrium conditions. But 
we know that this is, in fact, not the case: Such states are 
quite stable and exist for indefinitely long periods of time, 
even though they are metastable, i.e., energetically disad- 
vantageous. In other words, under real conditions the sys- 
tem does not go after the lowest energy states. 

If the system went after the states in which the func- 
tional F,, = 0 (the energies of the superconducting and 
normal states are equal in this case), the transitions would 
proceed along the stepped curve c) in Fig. 3 (see also the open 
circles in Figs. 1 and 2). Finally, if the system underwent a 
transition every time the value a 3/~3$~ = 0 was attained 
(i.e., at every one of the inflection points of the functional, 
which correspond to the termination of the superconducting 
solutions of a given number m),  the transitions would occur 
at the points marked by crosses in Fig. 1. 

The stepped curve b) in Fig. 3 is in full accord with the 
h,(t ) dependence actually observed in experiment. In order 
to describe this dependence theoretically, we need to find out 
the energy principle governing the m-tm + 1 transitions (or 
the jumps m-tm + n over several steps at one stroke). This 
can be done with the aid of arguments connected with the 
fluctuations in the superconductor. 

Indeed, we can imagine in the spirit of the theory of 
fluctuations that the minima of the functional 3 at a given 
temperature Tare separated by fluctuation barriers (see Fig. 
4), and that the barrier between the states m and m + 1 needs 
only to be overcome for the m+m + 1 transition to occur. 
The theoretical estimation of the height of the fluctuation 
barriers (and, thus, the description of the experimentally ob- 
served dependence h , (T )) constitutes a separate problem re- 
quiring special treatment. Here we limit ourselves to these 
qualitative remarks, and emphasize the fact that special ex- 
periments need to be performed in order to elucidate the 
presence of hysteresis effects in thermoelectric phenomena 
occurring in superconductors, as well as to study them in 
detail. Let us note that, in view of the obvious likeness of the 
thermoelectric phenomena and the behavior of a hollow cyl- 
inder located in an external field, it would have been interest- 
ing to perform a more detailed investigation of the hysteresis 
effects (in particular, the character of the transitions between 
the quantum levels at T-+T,) in a thick hollow cylinder in an 
external field. This would have enabled us to obtain an inde- 
pendent estimate for the height of the fluctuation barrier, 
which, apparently, is the same for both systems. 

Let us, in conclusion of this section, note that, accord- 
ing to the theory, there exists in the vicinity of T, some tem- 
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perature T: (determined by the condition Fm,, = 0, or 
d F/dqh2 = 0, or the condition for the vanishing of the fluc- 
tuation barrier) at which the superconducting solutions van- 
ish. This means that the transition into the normal state, as 
characterized by the complete penetration of the field (i.e., 
by the equality h, = hi, ), should, as the ring is heated, occur 
not at T,, which is characteristic of the super-conductor in 
zero field, but at T r  < Tc. This effect is a direct consequence 
of the interdependence of the order parameter $and the field 
hi,, that arises in the Ginzburg-Landau theory, and is de- 
scribed by the nonlinear functional 3 ( $ , ,  h,,). (Depen- 
dences of this type are well known, and appear in the case of a 
superconductor located in an external field in the depen- 
dence of the penetration depth /2 = 6 ,  (T)/$ on the field.27) 
In the simple London theory (which corresponds to the case 
$ = 1) the superconducting state would have survived right 
up to T = T, (the theoretical dependence h l (T)  for $ = 1 is 
schematically depicted in Fig. 3 by the dotted line [cf. Ref. 
lo)]. The strong effect of h,, on $ at T-+Tc is not surprising, 
since, as T-+Tc, the thermodynamic field Hc,(T) tends to 
zero, while H I ,  ( T )  increases, so that there certainly exists 
some T: < Tc at which Hi, becomes higher than H,, and 
the suppression of the superconductivity occurs. In Figs. 1 
and 2 we show the h,(T) curve obtained experimentally by 
van Harlingen et al. 

55. THE TRANSITIONS FROM THE NORMAL INTO THE 
SUPERCONDUCTING STATE 

state with $#O become possible at this temperature. But as 
long as there is a barrier (the peak in the curve 3) between the 
superconducting and the normal states, the system can re- 
main in the $ = 0 state ("supercooled" normal state). The 
curve 2 corresponds to the temperature at which the peak in 
the curve 3 disappears, and there are no other solutions ex- 
cept the superconducting ones with $=: 1. The curve 2 corre- 
sponds to the conditions dF/d$I, = , = 0, d 'Y/a$' I ,, = , 
= 0 (the supercooling limit). 

To find the temperature Tsc corresponding to the curve 
2, we must have the expression for F in the limit $ 4  1. 
Using the Bessel-function expansions for small values of the 
arguments, we find up to the terms -$4 the expression 

which can be represented in the form F = aqb2 + b$r4, where 

[we have also used the approximation d l  = d /rl( 1 in the 
formulas (5.1) and (5.2)]. The condition F 1 = O  gives 
qb:,, = - a/2b, the maximum point on the curve 3, and the 
condition 9" = 0 yields en, = - a/6b, the point of inflec- 
tion of the curve 3 in the region $4 1. These points merge (the 
curve 2) when a = 0, which provides an equation for the 
determination of the temperature (with allowance for the 
fact that m = h,, at the point Tsc: 

Here7 = 1 - T/Tc and 7, = 1 - T,/Tc; co = 0.74 go in the 
case (1.3) of pure materials and 5, = 0.85 (gol)i in the dirty 
case (1.4). Hence 

Another example illustrating the hysteretic behavior of 
the system under investigation is the transition of the ther- 
moelectric ring into the superconducting state when it is 
cooled from a temperature T >  Tc. To illustrate the agru- 
ments presented below, we schematically depict in Fig. 5 the 
behavior of 3 (q), (3. lo), in the entire interval of variation of 
$: O<$< 1. At low temperatures (T=:Tl, the curve 1) the 
minimum of the potential occurs at $=: 1, and is marked by a 
circle on the curve. As the temperature is raised (the curves 
2-6), the minimum rises; the curve 4 corresponds to the equi- 
librium-transition point F = 0, F' = 0; the cross on the 
curve 5 marks the termination point for the superconducting 
solutions: at higher temperatures the potential has a mini- 
mum only at $ = 0. If we start from a point in the high- 
temperature region (the curve 6), the system will initially be 
at the point $ = 0, and will remain in the normal state until 
the temperature drops so much (the curve 4) that the minima 
becomes Fm,, < 0: transitions into the superconducting 

for Y( 1 we have 

FIG. 5. Schematic plots of F($) for different temperatures. 

The transition temperatures Tc are indicated on the curves 
in Figs. 1 and 2. In the pure case 1 - Tsc/Tc - loF3; in the 
dirty, 1 - T,/T, - 

In Fig. 6 we schematically show the paths followed by 
the system in different temperatures regimes. On being heat- 
ed from T = TI, the system follows the path 1-2-3-4; if cool- 
ing is started at the point 2, the system will proceed along the 
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FIG. 6. Possible paths in different temperature regimes. 

line 2-5, in accordance with the value m = m, at the point 2 
(or along the line 3-7 if the coAing is started at the point 3). 
When cooled from the normal state, the system should fol- 
low the line 4-3-6-8. The point 6 corresponds to the abso- 
lute limit (5.3) of the "supercooled" state; but actually the 
system can go over into the superconducting state at some 
intermediate point 9 (corresponding to the curve 3 in Fig. 5) 
in Fig. 6, and then the path 4-3-9-10 may be realized during 
the cooling. The transition of the system from the normal 
into the superconducting state at the point 9 is clearly caused 
by the fluctuation effects, and is a result of the overcoming of 
the fluctuation barrier. In Fig. 6 we can, above all, see that 
there exists a superconducting-normal state transition point 
T r  < T,, due, possibly, to the fluctuations (see Sec. 4). Thus, 
the study of the hysteresis transitions, including the transi- 
tions from the normal into the superconducting state, is of 
definite interest, and can provide valuable physical informa- 
tion about the fluctuations connected with the transitions 
between the quantum levels in a microscopic toroidal super- 
conducting system. 

56. THE INHOMOGENEOUS CASE 

The theory above describes the behavior of a homogen- 
eous hollow cylinder with a prescribed normal current in the 
superconductor. Under real experimental conditions,' the 
thermoelectric ring is highly inhomogeneous [see Fig. 7(a)], 
a fact which should be taken into account in a comparison of 
the predictions of the theory with experiment. According to 
the viewpoint adopted in the present paper, the purely elec- 
trodynamic aspects essentially predominate in the thermo- 
electric phenomena. Therefore, of greatest importance in the 
investigation of the heterogeneous ring is the fact that the 
superconductors a and b can have significantly different 
London lengths S,, , and wall thicknesses (see Fig. 7). This 
means that there is in the ring a weak spot [indicated in Fig. 
7(a) by the arrow] where the fluctuation processes should 
primarily occur and result in the field's penetrating into the 
ring and the system's going over to the quantum level m. 
Such processes are facilitated in the heterogeneous ring, 
since they do not engulf the whole volume of the supercon- 
ductor (as happens in the homogeneous case), but are local- 
ized at the weak spot. 

To describe the heterogeneous system, we consider a 
ring, shown in Fig. 7(c), with inside radius r,, = r,, = r,, 
outside radii r,, and r,, and, consequently, London lengths 
S,,(T) and S,,(T), and order parameters $, and $,. Let us 

FIG. 7. a) Schematic drawing of a real heterogeneous sample, according to 
Ref. 8; b) plot of the function 6,(x); c) the heterogeneous model. S=: 1 
cm2, d = 0.02 cm. 

assume that the total normal current, or, equivalently, a field 
HI, that depends linearly on the temperature according to 
(1.2), is prescribed in this ring. As in the homogeneous mod- 
el, the temperature T is the same for the entire ring. Let the 
angular dimensions of the superconductors a and b be 8, and 
8,, where, in units of 2a, 8, + 8, = 1. It is clear that the 
field distribution and the total current inside each of the 
superconducting sections 8, and 8, of the heterogeneous 
ring are given by the formulas obtained in $3 for the homo- 
geneous model. It is not difficult to verify that the field in the 
cavity in the heterogeneous case is given by a formula similar 
to (3.4) (as in the homogeneous case, we assume that 
fa = const, fb = const): 

h." k b Z  /Z =oo-+ 0b'-r 
eff Pa 9'6 

the quantities D and Dl are defined in (3.5); the indices a and 
b indicate the superconductors to which the corresponding 
quantities pertain. 

It is convenient, in determining the thermodynamic po- 
tential of the heterogeneous system, to proceed from the for- 
mula (2.9), which is valid in the general case. Further, pro- 
ceeding in much the same way as in the homogeneous case, 
we obtain a formula of the type (2.13): 

Here the P g  are given by formulas similar to the formula 
(2.10). Let us now introduce, as in (3.6), the difference 

= - 0  CP,=@, (6.3) 

the quantity S@ is convenient in the sense that it immediate- 
ly shows which of the states of the system is energetically 
more advantageous: if S@ < 0, then the fully superconduct- 
ing state with order parameters f, #O, f, #O is advanta- 
geous; if, on the other hand, S@ > 0, then the transition into 
the state with f, = 0, i.e., the transition of the weaker super- 
conductor a (T,, < T,,,S,, >a,,) into the normal state, is 
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advantageous. We shall further assume that SLb and fb do 
not depend on the temperature (T(Tcb). Repeating the cal- 
culations that led to the formula (3.7), we find in the hetero- 
geneous case that 

Finally, going over to the reduced units (3.9), we obtain for- 
mulas similar to (3.10) and (3.11): 

An important characteristic of the formula (6.6), as 
compared with (3. lo), is the presence of the factor 1/8, in the 
square brackets in (6.6), a factor which is large for 8, (1. As 
can be seen from a comparison of (6.4) with (6.6), this factor 
is connected with the fact that the condensation energy 
8, @ $) (which is negative and guarantees the stability of the 
superconducting state) in (6.4) in the heterogeneous case is 
8, times smaller than the corresponding energy in the homo- 
geneous case, since the superconductor-normal metal transi- 
tion now effects only a fraction 8, of the entire volume of the 
superconductor. Therefore, the nonlinear field effects 
[which are proportional to the quantity standing in the 
square brackets in (6.6)] play a greater role in the heterogen- 
eous superconductor. Figure 8 illustrates the effect of the 
heterogeneity on the field h ,  in the thermoelectric ring. 

In conclusion of this section, let us make the following 
remark. The formulas (6.1)-(6.7) for the heterogeneous case 
are approximate, since they were derived without allowance 
for the fact that the total current j in the vicinity of a soldered 
joint has, besides the component js ,  a component j, in the 
radial direction (which is connected with the difference in 

FIG. 8. The dependence h , ( T )  for the homogeneous (1) and inhomogen- 
eous (2) models; 8, = 1/5. The remaining parameters are the same as in 
Fig. 1. 

the London lengths S,, and S,,). The consistent allowance 
for this effect would have required the solution of the partial 
differential equation (2.4) for the two-variable function 
A(r, e ) ,  which is a complicated mathematical problem. In 
the approximation adopted by us, the component j, is ne- 
glected everywhere, which allows us to directly use the for- 
mulas obtained for the homogeneous case. It is evident that 
the role of the effects connected with the soldered joints is 
minor, especially as we are interested only in the strength of 
the total circumfluent current (or the resultant field in the 
cavity), which does not depend on the presence of the com- 
ponentj,. Let US note that a similar method is used in Ref. 10 
to investigate the thermoelectric effect in a system with a 
somewhat different geometry. 

57. CONCLUSION 

The main result of the above-performed investigation is 
the conclusion that there is a profound similarity between 
the behavior of a thermoelectric system and the behavior of a 
superconducting hollow cylinder in an external field. Char- 
acteristic of both systems is the presence of a topological 
singularity-a cavity-as a result of which each of these two 
doubly connected systems is characterized by a quantum 
number m that indicates how many quanta of flux mQ0 can 
be contained in the cavity. The role of external field Ho is 
played in the case of the thermoelectric ring by the externally 
prescribed normal-excitation current I,. As the I ,  in the 
thermoelectric circuit increases, it becomes possible for 
spontaneous transitions to levels with m > 0 to occur even 
when the external field Ho = 0 and the system was initially in 
the state with m = 0. Accordingly, it is quite probable that 
the experimentally observed8 "giant" thermoelectric effect 
can be explained as being the result of the level-to-level (i.e., 
m-m + 1) transitions of the system. This conclusion can 
easily be experimentally verified, since hysteresis effects, 
which can be observed without difficulty, are inevitably con- 
nected with such transitions. It is quite probable that such 
hysteresis effects have already been observed, but have not 
been correctly interpreted. Thus, Pegrum and Guenault6 re- 
late the experimentally observed strong thermoelectric ef- 
fect and the accompanying hysteresis phenomena to the re- 
manent external field frozen in the field and its effect on the 
penetration depth. From the standpoint of the above-devel- 
oped theory the frozen-in flux is not "spurious," but arises 
spontaneously. In Ref. 5. Zavaritskii, who observed low h ,  
values in his experiment, gives special attention to them = 0 
state, and takes pains to ensure the reversibility of the effect 
under temperature-gradient inversion. Possible irreversibi- 
lity manifestations are rejected as being due to insufficiently 
pure experimental  condition^.^' In view of the foregoing, 
special experimental investigations of the hysteresis effects 
in a thermoelectric ring with the object of verifying the pre- 
dictions made above are desirable. Such experiments are 
made even more desirable by the fact that they can provide 
valuable information about the role of the fluctuation effects 
and about the height of the fluctuation barrier separating 
levels with different m. 
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An interesting prediction of the theory developed above 
is the conclusion that, when the thermoelectric ring is heat- 
ed, the transition into the normal state (i.e., the complete 
penetration of the field) should occur not at T = T,, but at 
some temperature T < Tc . The experimental data reported 
in Ref.. 8 do not contradict this conclusion. 

The formulas obtained in the present paper also indi- 
cate a strong dependence of the effect under discussion on 
the dimensions and geometry of the system and on the pres- 
ence of impurities and weak spots in the ring. The level-to- 
level transitions should clearly be accompanied by nonsta- 
tionary processes (in particular, by the emission of 
electromagnetic  wave^).^' It is also clear that the action of an 
external variable electromagnetic field should facilitate the 
m-+m + 1 transitions. Furthermore, the transition to the 
normal state should be accompanied by the appearance of a 
longitudinal electric field in the metal and other nonequilib- 
rium effects. '~~~ Therefore, further comprehensive experi- 
mental investigations of both the thermoelectric system and 
the related case of a hollow cylinder in an external field in the 
vicinity of the critical temperature Tc are desirable. 

We are grateful to V. L. Ginzburg, A. A. Sobyanin, and 
V. V. Shmidt for useful discussions and valuable comments. 

"We do not consider here the longitudinal electric field arising from the 
interconversion of the normal and superconducting currents at the sol- 
dered joints (for greater details, see Ref. 1). 

"We consider this hypothesis (see Refs. 6 and 11) to be inadmissible, since 
the explanation of the experimentally observed effect requires the exis- 
tence of too high a field in the surface layer. 

"The expression (2.6) assumes a symmetrical form if we formally intro- 
duce integration over the parameter d A': 

Here j,(A) is given by the formula (2.5); the quantity d A' has the meaning 
of an arbitrary variation, and does not, generally speaking, satisfy the 
Maxwell equations. 
4'Formulas of the type (3.12) and (3.13) were obtained by us earlier1' for 

the case of a thin-walled cylinder. The formulas given here are valid for 
arbitrary values of r ,  and r,. Let us draw attention to the presence in 
(3.12) of the parabolic qh ,?J term, which plays an important role, and 
leads to the suppression ofthe superconductivity in high fields. This term 
is missed in a number of papers (see the bibliography in Ref. 17). 

5'Let us also note that Zavaritskiys experiment5 was performed on a sam- 
ple with a significantly different geometry (a thin toroidal ring, and not a 
cylinder, as in the experiment of van Harlingen et a[.'). Apparently, this 
factor leads to additional weakening of the effect under the conditions of 
Zavaritskii's e~periment.~ 

"The question of nonstationary oscillations in a thermoelectric ring with a 
weak link is touched upon in Refs. 28-31. 
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