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Phase transitions are considered in a ferroelectric located in an external electric field near the 
Curie temperature. It is shown that states of three types are possible: homogeneous, stripe, and 
hexagonal domain structures. The spectra of small oscillations in the stability region of each of 
these states are determined. In the absence of a field, a ferroelectric can go over from the homo- 
geneous state only into a stripe domain structure via a second-order phase transition. In an 
external electric field, a ferroelectric goes over first from the homogeneous state into a state with a 
hexagonal-domain lattice via a first-order phase transition. With further lowering of the tempera- 
ture, the hexagonal structure turns into a stripe one. 

PACS numbers: 77.80.Bh, 77.80.Dj 

INTRODUCTION 

It is well known that ferroelectrics break up into do- 
mains below the phase-transition point. This is due to the 
need for decreasing the energy of the polarizing field, and 
periodically disposed regions (domains) with oppositely di- 
rected spontaneous polarization are produced as a result. A 
decrease in the period of the domain structure lowers the 
energy of the depolarizing field and increases simultaneous- 
ly the energy of the polarization inhomogeneity, so that 
there exists a definite period that minimizes the electric-field 
energy and the gradient energy. 

Far from the phase-transition temperature, the de- 
polarizing field is localized near the crystal surface, and the 
transition layers between the domains are thin domain walls. 
At the center of the domains the electric field is close to zero, 
and the polarization is close to spontaneous. In this case it is 
easy to ~a l cu l a t e '~~  the two indicated energies and find the 
period of the domain structure. When the phase transition 
temperature is approached, the depolarizing field penetrates 
into the interior of the crystal. The polarization at the center 
of the domain begins to depend strongly on this field, and the 
field itself depends in turn on the polarization at the center of 
the domain. The calculation of the domain structure in this 
case must therefore be made self-consistent. This was al- 
ready done by one of us.3 The shift of the phase-transition 
temperature, the temperature dependence of the polariza- 
tion, and the singularities of the heat capacity during the 
phase transition were all obtained. 

It must be noted that an exact calculation of the do- 
main-structure parameters is a very complicated problem 
because of the nonlinearity of the obtained equations. Near 
the phase-transition temperature, however, when the ampli- 
tude of the resultant polarization is still small, there exists a 
small parameter proportional to the square of the polariza- 
tion amplitude and making it possible to solve consistently 
the problem posed with arbitrary degree of accuracy with 
respect to the small parameter. In the absence of an external 
field, such a problem was first solved in Refs. 4 and 5 for 
ferromagnetic crystals. It was shown, in particular, that 
within the framework of the Landau theory of phase transi- 

tions a transition from a homogeneous into an inhomogen- 
eous state is of second order for bounded crystal of arbitrary 
shape. Exact analytic expressions were obtained for all the 
thermodynamic quantities near the phase-transition tem- 
perature. 

It is known that in infinite ferroelectric (ferromagnetic) 
crystals there is no temperature phase transition in an exter- 
nal electric (magnetic) field, i.e., the Curie point is an isolated 
singular point on the temperature-field phase diagram. In 
bounded crystals, however, a possibility appears for the exis- 
tence of stable inhomogeneous states and of phase transi- 
tions, in an external field, from a homogeneous to an inho- 
mogeneous state, as well as between different inhomo- 
geneous states. 

One of us has considered also phase transitions from 
homogeneous states in a stripe domain structure in a ferro- 
magnet in an external magnetic field.6 

In this paper we examine the influence of an external 
electric field on a phase transition in a ferroelectric planced 
in a capacitor with gaps. 

1. STABILITY OF HOMOGENEOUS STATE OF A 
FERROELECTRIC IN A CAPACITOR 

We consider a uniaxial ferroelectric crystal in the form 
of a plane-parallel plate of thickness I, placed in capacitor 
with metallic electrodes to which a voltage U is applied. We 
assume that gaps of thickness d /2 are present between the 
electrodes and the ferroelectric. Let the ferroelectric axis be 
perpendicular to the plate surface along the z axis. 

We can then write for the free energy of the system 

where a = (To - T )a1; p > 0, P is the polarization and x and 
x ,  are parameters for the gradient energy, a, - ' is the polar- 
izability in the plane of the plate, E is the electric field 
strength, eUi and ui are respectively the chemical potential 
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and the surface charge density on the i-th electrode, e is the 
electron charge, and Vis the volume of the ferroelectric. The 
integration in the first term of (1) is over the volumes of the 
ferroelectric and the gaps. In the expression for the gradient 
energy we have confined ourselves to terms containing P, , so 
that the longitudinal susceptibilty is considerably larger 
than the transverse near the phase-transition temperature, 
and consequently (P, I ) I P, I .  

The equations of state that follow from (1) are 

Here Ef is the electric field intensity in the ferroelectric. 
The distribution of the polarization and of the electric 

field should satisfy the Maxwell equations 

div D=O, E=--Vq, (3) 

where D = E + 4nP is the induction and q, is the potential. 
From (2) and (3) we obtain an expression for P, : 

(4) 
 where^^ is the dielectric constant in the plane of the plate. It 
can be shown that when a(4n (this is always the case for 
ferroelectrics), we can neglect the derivatives with respect to 
z in the right-hand side of (4), and we arrive at the following 
equation for P, : 

~ ~ E , - ~ v , ~ P , =  0,' ( H V ~ ~ P , + ~ P , - - P P , ~ )  ( 5 )  

with the boundary conditions 

where Ed is the electric field in the gap. 
Using Eqs. (2) and (3) we transform (1) into 

The free energy (7) for a homogeneously polarized ferroelec- 
tric (P = Po) takes the form 

We have put here E, = U / l ;  U = U ,  - U,. Minimizing F, 
with respect to Po, we obtain an equation for Po: 

We consider now the stability of the homogeneous state 
of the ferroelectric. We assume that a certain homogeneous 
polarization P, is present in the ferroelectric, and we intro- 
duce a small periodic inhomogeneous increment P,(x,z):  

Pi ( x ,  z )  =P,+Pl ( z )  cos kx. (10) 
Substituting (10) in the equation (5) for the polarization, we 
obtain in equation for P,(z) 

4nP,"(z) + e,k2(&-xk2)P, ( z )  =0, (11) 

where 5 = a - 3PPi. We seek the solution of (1 1) in the 
form Pl(z) = P,cosqz, after which we obtain an equation that 

connects E,  q, and k: 
t i = ~ k ~ + 4 n q ~ / ~ , k ~ .  

In addition, the solution (10) must satisfy the boundary con- 
ditions (6). To this end, we write out the expressions for the 
intensities of the inhomogeneous part of the electric field EY' 
in the ferroelectric: 

(*) - k EM - -(ti-xk2) Pi sin qz sin k x  
9 

and ES) in the gap: 

&','dl) = [a ie -k ( z - l /2 )+a  e k ( z - i / 2 )  ] cos kx ,  

F ( ' )  2 xd - [ a i e - k ( ~ - ~ / 2 ) - a  e k ( ~ - i ~ 2 )  I sin kx. 

We then obtain from the boundary condition an equation 
that relates q and k: 

q tg (q1/2) =elk t h  ( k d / 2 ) .  (13) 
The system (12) and (13) can be easily solved in two limiting 
cases, kd(1 and kd) 1. Expressing k in terms of q from (1 3) 
and substituting in (12), we obtain 

4zd a = -- y (ctg y+h2 t g  y ) ,  k d ~ l ,  
I 

(14) 
ti=4n&, (ctg2 y+yZy2 tg2 y )  , k d B  1, 

where y = ql/2;A = x / m , d  ';y2 = X / T E ~  22 '(1.Thevalue 
of q at which the homogeneous state of the ferroelectric first 
loses stability is determined from the condition that &(a&/ 
dy = 0) be a minimum. Minimizing expressions (14) with re- 
spect toy, we obtain for y the equations 

(2y-sin 2y )  cos' y=h2(2y+sin 2y )  sin2 y, k d K l ,  (15) 

2y2y (2y+sin 2 y )  sin' y=cos4 y, k d B l .  (16) 

If A ' > 1/3 (d < df =(37t'/m1 )'I2), Eq. (15) has a single root 
y = 0, corresponding to the homogeneous state (q = k = 0). 
A second-order phase transition takes place then in a short- 
circuited crystal at a temperature at which a = aY'54nd / I ,  
and there is no phase transition at all at U $0. At d > df  Eq. 
(1 5 )  acquires, besides the root y = 0, a second solution y $0, 
which corresponds to a transition into an inhomogeneous 
state (k,q # 0). Thus, for 0 < d - df  ( d f  we obtain 

It can be seen from (17) that at d >  df  the transition to the 
inhomogeneous state takes place at & = af < ay'. It follows 
therefore that the inhomogeneous state becomes favored 
over the inhomogeneous. We note that d, = (3x/ 
mL ) ' I 2 -  10V8 cm, so that in a real situation the gap width 
d)d f .  This is exactly the case we shall consider hereafter. At 
dgd,, as follows from (1 5) and (16), 
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FIG. 1.  Stability region of homogeneous state on the (E,, T) phase dia- 
gram. The value of Tf corresponds to a = q; T ,  - a = 6n-d / I  - af /2; l )  
homogeneous state, 2) inhomogeneous state. 

Solving Eq. (9)  simultaneously with the equation 6 = af we 
obtain on the (Eo,T)  phase diagram the line on which the 
homogeneous state loses stability: 

2 
Eo = (a -a , )  

3138 

which is shown in Fig. 1 .  From (19) it follows that at 

the homogeneous polarization is stable at all temperatures. 
At E, < E m ,  a phase transition into the inhomogeneous state 
is possible. It is interesting that in a zero field the homogen- 
eous state is stable not only in the paraphase (a < a f ) ,  but 
also in the temperature region a > 6 r d  / I  - a f / 2 .  This is 
well known experimental fact. If the crystal is polarized in a 
field and cooled to temperatures low enough compared with 
the Curie temperature, the single-domain state remains sta- 
ble also in a short-circuited crystal. When the crystal is heat- 
ed it breaks up first into domains, and only then does the 
polarization vanish at the Curie point. 

2. INHOMOGENEOUS STATES OF THE FERROELECTRIC 

In the preceding section, in the analysis of the stability 
of the homogeneous state, we have assumed the inhomogen- 
eous addition to be infinitely small. To describe the domain 
states we must recognize that the amplitude of the inhomo- 
geneous part is finite. The distribution of the polarization in 
a plate with a periodic domain structure is described in the 
general case by two reciprocal-lattice vectors, k, and k,. The 
polarization can be expressed in terms of a double Fourier 
series with z-dependent coefficients: 

+ - 
P. ir, z )  = C A U  ( z )  exp [ i (mki+nk2) r] . 

m,n--oo 
(20) 

This distribution can have twofold, or sixfold symmetry 
axes. These axes correspond respectively to a stripe domain 
structure, a quadratic domain lattice, and to a hexagonal 
domain lattice. 

Near the phase-transition temperature we can confine 
ourselves in expression (20) for the polarization to first order 
in the amplitude of the domain structure 
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where the vectors k, form a Wigner star, and n is equal to the 
order of the lattice symmetry. The free energy connected 
with the inhomogeneous part of the polarization is given by 

+I11 

Pi=- ($141) dzf ( z ) ,  
-112 

where 

f ( z )  =SlsPi4 ( z )  for n=2, 

f ( z )  =8/J'i' ( z )  for n=4, 

f ( z )  =3PoPi3 ( z )  +'5/8Pi' ( z )  for 12=6. 

A. Stripe structure 

For a stripe domain structure Eq. (5) takes the form 
3 

4nPiN ( z )  +elk2 (a-xk2)  P ,  ( z )  - - p&,k2Pt3 ( 2 )  =O.  (22) 
4 

If we seek the solution in the form of a series 

Pi ( z )  =p+a cos qz+b cos 2qz+c cos 3qz+. . . , (23) 

then the principal term in (23), if the conditions pa2/af  and 
,8P 'O/af ( 1 are satisfied, is a cos qz. The remaining terms in 
(23) are small to the extent that the parameters indicated 
above are small. Thus, for example c /a  = - 3,8a2/6+. 

Substituting the solution (23) in Eq. (22) and recogniz- 
ing that it follows from the boundary conditions it follows 
that ql-n-, we obtain an equation for the amplitude a: 

g/,aF~2=&-./.k2-./.k;/k2. (24) 

The free energy (21) then becomes equal to 

F,=- (9/2.76) pa'. (25) 

The free energy (25) is a minimum at the maximum a2, 
reached when k = kf [see (18)l. From (24) we then obtain 
(Fig. 2) 

g/,6pa2=a--tlf=A& (26) 

An expression for af was obtained above. Substituting a2 
from (26) in (25) we obtain the free-energy increment due to 
the inhomogeneous part of the polarization: 

F,=- ( A a )  ' /9p .  (27) 

It follows from (27) that the jump of the heat capacity in the 
phase transition from the homogeneous state to the stripe 
structure i s  equal to 

where C, is the heat-capacity jump in an infinite crystal. 

B. Hexagonal lattice 

For the state with hexagonal lattice Eq. (5)  takes the 
form 

4n .13 
-Piu ( z )  + (a -xkz)  Pi (2 )  -3pP,Pi2 ( z )  - - pPi3 ( z )  =0. 
clkZ 4 

We seek the solution of Eq. (28), just as for the stripe struc- 
ture, in the form (23), after which we have the equation 
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where X ,  = 1 /4rd .  It can be seen from (37) that when the 
instability point is approached the susceptibility alsa has a 
square-root divergence. 

FIG. 2. Temperature dependence of the amplitude of a stripe (1 )  and hex- 
agonal (2) domain structure. The dashed curves show the instability re- 
gion, and the arrows show the points of transition from one state to an- 
other. 

It follows from the boundary condition P,(z = + 1/2)=0 
that 

q l~n+4PPaal  ( a - x k 2 )  , (30) 

and from (29) we obtain the temperature dependence of the 
wave amplitude (see Fig. 2);. 

The free energy for a hexagonal structure, as follows from 
(21), is 

It follows from (3 1) and (32) that the hexagonal structure is 
produced via a first-order phase transition with temperature 
hysteresis. The domain structure sets in at Ah = 0 and van- 
ishes at A5 = - a,. Comparing the free energies for the 
stripe and hexagonal structures we find that the thermody- 
namic phase transition from the stripe to the hexagonal 
structure occurs at 

Aa= (14+61 /a  C C ~ ~ I ~ . ~ ~ ~ I P O ~ ,  (33) 

with the stripe structure favored when Aii < 16.54f12,. 
From (32) it follows that the free energy of the hexagonal 
structure becomes comparable with that of the homogen- 
eous state at 

A&=- (2048/405n2)  pP,2=-8/,a,, (34) 

and the instability of the hexagonal structure, with transi- 
tion into the homogeneous state, sets in at 

AB=-ao. (35) 

The heat capacity of the system with hexagonal structure is 

It follows hence that when the stability-loss line is ap- 
proached the heat capacity has a square-root divergence. 

The susceptibility of the system is in this case 

3. OSCILLATION SPECTRUM OF DOMAIN STRUCTURE 

In the preceding section we have considered static sdu- 
tions for the polarization distributions in a stripe and hexag- 
onal domain structure. The stability analysis for each struc- 
ture is simplest to carry out by investigating the polar- 
ization-oscillation spectrum. 

The equation of motion for the polarization can be writ- 
ten in the form 

where p is a coefficient corresponding to the effective mass 
and f is the force that arises when the polarization deviates 
from the equilibrium position: 

Using expression (1) for the free energy, we get from (38) and 
(39) 

p P , = E z , - x V ~ ~ P ~ + ~ P ~ - ~ P ~ ~ ,  = E - a  (40) 

The equations of motion (40) and Maxwell's equations con- 
stitute a system that determines, together with the boundary 
conditions, the spectrum of the polarization oscillations. 
This system of equations can be reduced to single equation 
for p, : 

where p, is the small deviation of P, from the equilibrium 
position. 

We consider first the spectrum of the stripe structure. 
The static distribution of the polarization is subject in this 
case to the relation [see (23) and (26)] 

Pz ( x ,  z )  =Pa+Pt ( 2 )  cos k,x, Pt ( z )  =blS(Aalp) ' i= cos qz. 

The term 3 pP; in (41) plays the role of a certain periodic 
potential forp, with harmonics kf and 2kf. 

We seek the solution forp, in the form7 
w 

Substituting the solution (42) in (41) and gathering terms 
with like harmonics, we obtain a system of equations for 
'J'" (4: 

(37) We seek the function Pn (z) in the form 
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Y ,  ( 2 )  =an+bn cos qz+cn cos 2q2, (44) 
after which we obtain a system of equations for the coeffi- 
cients a,, 6, , and c, : 

[4nq71el (kn2+Q:) + x  (knZ+Q,Z) -ac+A8- -pa2]  

- +A" (b,-,+ b,,,) 

+2Po (PA") '" (2an-,+2a,+I+c,-l+c,+i) =0 ,  

[ x  (knz+ Q,2) - c ~ ~ + ~ / ~ A & . - p o ~ ]  a,+'/,A" (2an-,  
(45) 

+2a,+,+c,-,+c,+,+2cn) +2Po (PA") '" ( b,-i+b,+i) =0 ,  

[16nqZ/~ , (kn2+Q,Z)  + X  (knZ+Qy') - a c + 1 1 3 A ~ - p ~ Z l ~ n  

+z/sAti (an++ an+z+ 2an+cn-z+cn+Z) 

+2Po (PA") '" (b,-i+ b,+i) S O .  

From the system (45) it follows that the frequency w is a 
minimum when the vectors satisfy the condition k t  
+ Q2y = kj .  From this we find that at Qgkf the modes 
n = + 1 become strongly coupled, and at Q=: k f (Q, = kf /2 
and Q,, = v'3kf/2) the modes n = 0 and n = + 1 become 
coupled. Solving the system of equations for the vectors indi- 
cated above, we obtain the frequency spectrum: 

32pSP, k 12 kf 
p o i , ~ = A a  * - (Aa)  for Q, = +, Qv = --i-. (47) 3 n  

It follows from (47) that the stripe structure is unstable with 
respect to a transition into a hexagonal structure at 

A"= (1024/9n2)  PPo2=20ao. (48) 

The oscillation spectrum of the hexagonal structure 
should be found from Eq. (41) with a value of P, 

P ,  (r ,  z )  =Po+P,  ( z )  [cos k,r+cos k2r+cos ( k , + k 2 )  r ]  , (49) 

where P,(z) is determined from (23) and (3 1). 
We seek the solution forp, in the form 

","' 

y n m  ( 2 )  =anm+bn, cos q z f c , ,  cos 2qz, 
(50) 

where k,, = Q + nk, + mk,. 
Near the center of the Brillouin zone (Q<kf ), the most 

strongly coupled modes !Prim are those with the indices (10); 
(TO); (01); (07); (1 1); (Ti) .  Substituting the solution (50) in (41) 
and taking (49) into account, we obtain a system of homogen- 
eous equations for the coefficients b,, , which can be conve- 
niently written in matrix form 

h 

The matrix D and the vector b are given by 

where 

and a is determined from Eq. (3 1). 
From the condition that a nontrivial solution exist for 

the vector b, we obtain the dispersion equations 

det B=0,  (53) 

from which we determine the connection between the quan- 
tities q, Q, and w: 

Here 
27 UJ 

pw,2=-A&. + - 8 pa2 + - n q l f  2xQ2,  

Equation (53) is in fact the dispersion equation for an un- 
bounded medium. The boundary conditions on the surface 
of the plate and on the electrodes lead to the equation 

which yields an additional connection between w and q. De- 
fining pi = (1 - qi I /a), we write down (55) in matrix form 

where the matrix 2") is of the form 
c p i o  0 h L O  
0 c p i h O O  h 

and the quantities pi are defined by Eq. (54).From the condi- 
tion that a nontrivial solution of (56) exist, we obtain six low- 
frequency branches for the polarization oscillations 

The remaining branches of the spectrum have high frequen- 
cies and are separated in energy from the considered low- 
frequency branches by a gap ,urn2-af. We recall that the 
small parameters of our problem are the quantities A&/af 
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FIG. 3. Stability regions near the phase-transition temperatures of the 
homogeneous state (1) and of the hexagonal (2) and stripe (3) domain struc- 
ture on the (Po, T)  phase diagram. 

and a,/af. The instability of the system corresponds to van- 
ishing of some frequency from the presented spectrum. 
From the expression for w: in (57) we can see that w: vanish- 
es at A& = - a,, corresponding to instability of the hexag- 
onal structure to a transition into the homogeneous state. 
This agrees with the results of the thermodynamic analysis 
in Sec. 2 [see (35)]. 

The frequencies o:,, vanish at A& = 80 a,. This corre- 
sponds to a transition from the hexagonal to the stripe struc- 
ture. The complete phase diagram of a ferroelectric in an 
external magnetic field is shown in Fig. 3. We note that w, 
and w, are respectively the longitudinal and transverse 
acoustic branches. The longitudinal sound velocity is t/5 
times larger than the transverse. We have thus found that in 
the absence of an external field only a stripe domain struc- 
ture can be stable. A hexagonal structure can arise only in an 
external electric field and in a limited temperature interval. 
When the temperature is lowered the hexagonal structure 
becomes unstable at a temperature determined by the equa- 

tion Atr = 80a,, and goes over into a stripe structure. We 
have thus found that phase transitions are possible between 
three states: homogeneous state and stripe and hexagonal 
domain structures. A quadratic lattice is not realized at all. 

Examinaton of the domain structure with allowance for 
the anisotropy of the dielectric constant in the plane of the 
plate shows that the anisotropy determines the direction of 
the domain walls and expands the region of existence of the 
stripe domain structure. The domain walls of the stripe 
structure are directed along the axis with the lower dielectric 
constant. A hexagonal structure arises only in sufficiently 
strong fields. In the case of strong anisotropy the hexagonal 
structure may not occur at all, and there exists only one 
phase transition from the ground state into a stripe domain 
structure. Following Ref. 6, we can show that at 
0 <a, < a,, 16af /I577 this transition is of second order, 
and that at a, > a,, a first-order phase transition takes place. 
The point defined by the equalities tr = af and a, = a,, on 
the field-temperature phase diagram is the critical point. 
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