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The existence of biaxial fluctuations in nematic liquid crystals may lead to peculiar effects in 
sound absorption. Allowance for such fluctuations noticeably increases the absorption coefficient 
in the high-frequency region and, under certain conditions, may lead to an additional maximum 
in the neighborhood of the nematic-isotropic liquid transition. The temperature behavior of the 
absorption coefficient may give additional information about the character of the phase transi- 
tion. 

PACS numbers: 61.30. - v, 64.70.Ew, 43.35.Bf 

An extensive literature has been devoted to the investi- 
gation of various ultrasonic processes in liquid crystals (see, 
for example, the bibliography in Ref. 1). This is due both to 
the presence of an interesting and quite complicated physical 
phenomenon and to important applications. At present, a 
number of processes have been studied that are responsible 
for absorption of ultrasound near the phase transition from 
nematic liquid crystal to isotropic liquid. These processes 
are connected with Landau-Khalatnikov relaxation of the 
modulus of the order parameter, with a critical increase of 
the coefficients of bulk viscosity, and with the so-called ex- 
cess heat capacity. The last originates because of the fact that 
near the phase transition, the fluctuations of the order pa- 
rameter Q have a strong spatial correlation. During passage 
of a sound wave, a periodic modulation of the temperature 
occurs, and the change of the order parameter is not able to 
follow this modulation. The relaxation of the order param- 
eter makes an additional, frequency-dependent contribution 
to the heat capacity. Since the velocity of sound is connected 
with the ratio of the specific heats, as a result a complex 
value of the sound velocity is obtained; its imaginary part 
corresponds to absorption. 

A convenient method of calculating the surplus heat 
capacity was proposed by Fixman2 for the case of mixtures 
and was generalized to liquid crystals by Imura and ~ k a n o . ~  
In liquid crystals the order parameter has a quite complicat- 
ed structure, and therefore fluctuations of all its components 
contributed to the excess heat capacity. 

A very important fact is that the various absorption 
mechanisms mentioned above can, in principle, be separated 
experimentally. Thus, for example, the Landau-Khalatni- 
kov absorption occurs only below the transition tempera- 
ture; increase of the viscosity coefficients leads to anisotro- 
pic absorption, while the effect connected with excess heat 
capacity leads to isotropic. There are still absorption pro- 
cesses due to change of the conformation of the molecules, 
but they are unimportant in systems consisting of sufficient- 
ly short and rigid molecules. A recent analysis4 of experi- 
mental data on sound absorption in CBOOA showed that in 
the nematic phase, the most important processes are those 
connected with the excess heat capacity. Therefore we shall 
hereafter consider only these processes. 

References 3-6 considered the excess heat capacity due 
to fluctuations of the modulus of the order parameter and of 
the director.. Such flucutations lead to bell-shaped depen- 
dences of the amount of absorption on the frequency, with 
maxima approximately in a single frequency range (of the 
order of a fraction of a MHz). The resultant dependence 
should therefore have the same form and should be simply a 
somewhat broadened bell-shaped curve: 

where a, is the amount of absorption per wavelength, and 
where T is a characteristic relaxation time. 

In actual fact, the a, (a) dependence is more complicat- 
ed. Along with the maximum in the frequency range men- 
tioned above, there is a new rise, and often even a complete 
second maximum in a frequency range of order 10-100 
MHz. A typical a, (a) curve for butyloxyazoxybenzene' has 
the form shown in Fig. 1. The experimental data of Refs. 4-6 
also exceed the calculated theoretical curves in the higher- 
frequency range. In Refs. 5 and 6, this systematic deviation 
was attributed to increase of the viscosity coefficients in the 
critical range. But the proposed mechanism predicts only a'  
monotonic increase of the absorption and cannot explain the 
existence of an additional maximum on the high-frequency 
tail of the absorption curve. 

In the present paper, a new mechanism is proposed, 
which in our opinion may be responsible for the increase and , 

for the presence of an additional maximum of a, (a) in the 
high-frequency range. This mechanism is connected with 

a,, 10-'s/cm 

FIG. 1 .  Absorption curve for butyloxyazoxybenzene according to data of 
Ref. 1 (o in MHz). 
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biaxial fluctuations of the order parameter, which were not 1 dK d A  
taken into account in Refs. 3-6 and which are important  AS^)=---;^ ( 2 ~ )  [ q 2 ( = )  GI  a3q ( 5 )  

precisely in this frequency range. It was shown in Refs. 7 and 
8 that the presence of biaxial fluctuations can lead to pecu- 
liarities in the scattering of electromagnetic waves. It is of 
interest to consider also their effect on sound absorption, 
which may provide additional possibilities for experimental 
detection of biaxial fluctuations. 

For a description of the proposed mechanism, we shall 
use an expression for the free energy with allowance for_biax- 
ial fluctuations, which was obtained by Pokrovskii and 
Kats.' In its general form, this free energy requires a quite 
cumbersome expression. We shall use the one-constant ap- 
proximation (allowance for the difference in the Frank mo- 
duli greatly complicates the calculations but does not change 
the qualitative picture). In this case, the expression for the 
free energy has the simple form 

where the parameters 5, and 5, describe the fluctuation of 
the director, 5, and l4 describe the biaxial fluctuation, K is 
the Frank modulus, and A is the characteristic energy neces- 
sary for excitation of the biaxial fluctuation. 

Following Fixman's method, we calculate the add 
tional entropy resulting from the biaxial fluctuations: 

G,=( I E ~ ~ ~ > = ~ ~ T / ( K ~ ~ + A ) ,  

where G, is the equilibrium correlation function. We repre- 
sent the changes of the coefficients K and A and of the corre- 
lation function during passage of a sound wave in the follow- 
ing form: 

aK a A 
K+K + - (AT)  .e-'"', A+A+ - (AT)  ue-iot, 

dT dT 

G (q ,  t )  - G ( q )  +Gi ( q ,  a )  e-'"'. 

On substituting these expressions in the equations of motion 
for the correlation functions, 

V I  (" t ) .  =- ( K ~ ' + A )  G ,  (q,  t )  , 
at 

we get 

here vi are effective-viscosity coefficients, and (AT), is the 
local change of temperature. 

The dynamics of biaxial fluctuations in the general case 
is quite complicated because of interaction with the hydro- 
dynamic degrees of freedoms; here, however, we have ne- 
glected for simplicity this interaction with other modes, as 
was done in Refs. 4-6. 

The excess entropy due to passage of the sound wave is 
obtained by substitution of (4) in (2) and transition from a 
summation over q to an integration: 

(here we have set Y, = v4 = vo and have allowed for the con- 
tribution of both correlation functions). 

On calculating the excess heat capacity 
AC *(w) = T (dAS,/dT), wefinally havethefollowingexpres- 
sion for the absorption coefficient: 

yo=C,"C,", 

where q,,, is the upper limit of the integration with respect 
to momenta. The imaginary part of the integral in (6) can be 
represented as the sum of three terms: 

I,=-p-" [t-I arctg(P-":) -L+A] , 

I.=p'"{t-' arctg(P-'")- [2+ ( t 2+ l )" : ]  L- [2- ( t 2 - i - l ) 'h ]A) ,  
I -pat: {tp-'"-t-l 

J - arctg(p-") + [3-t2+2 ( t 2 + l ) " ]  L 

+[3-t2-2 ( t2+ 1 )  "1 A ) .  (7) 
[ (t2+1)"-11" 1+ (28)'"[  ( I f  t2)"-1]"+p(t2+1)'" 

I, = In 
2% 1- ( 2 p ) ' " [ ' ( 1 + t ~ ) ' ~ - l ] g + p  (t2+1)'b * 

We have specially chosen this form of expression be- 
cause it is convenient for comparison with the results of 
Refs. 3,4, and 6, and furthermore it permits easy description 
of cases of phase transitions of various types. 

As has already been mentioned above, absorption on 
fluctuations of the modulus of the order parameter and fluc- 
tuations of the director is described by approximately the 
same frequency and temperature dependencies; therefore it 
is sufficient for us to make a comparison of the results ob- 
tained with the results of Nagai6 for absorption on fluctu- 
ations of the director. In this case the absorption coefficient 
has the following form6: 

where B coincides exactly with the coefficient of the integral 
in (6), and where F(x)  is a standard function1': 

x'l. 1+ (22)  "+x 
F ( Z ) = X { ~  -2"[ln' + 2 arctg - 

1- (2s) %+x x- I 

x = wv,/Kq;,, , and Y, is the effective viscosity for a mode 
corresponding to fluctuations of the director. It is obvious 
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that for comparison of the results it is necessary to compare 
only (7) and (9). 

We first consider the case A = const, which corre- 
sponds to the Landau approximation. Then the absorption 
due to biaxial fluctuations is described by the one term I, 
only of formula (7), which naturally coincides with (9) in the 
case A = 0. Far from the transition point, the value of Kg,!,,,, 
exceeds the value of A ,  which has order of magnitude lo6- 
lo7 erg/cm3; this corresponds t oP  < 1. But with approach to 
the transition point, the coefficient K decreases (K- Q '), and 
as a result the parameter P increases and may take values 
P> 1 .  

Another important parameter of the problem is the ra- 
tio of the effective viscosities for uniaxial and biaxial fluctu- 
ations, vl/vo,  which determines the position of the maxima 
of the absorption curves in both cases. Unfortunately there 
are at present no experimental data enabling one to obtain 
the value of this parameter and its temperature dependence. 
But the very nature of the physics of the phenomena allows 
us to suppose that the effective viscosity for uniaxial fluctu- 
ations, due to a real deviation of the director from the axis of 
preferred orientation, must appreciably exceed the viscosity 
for biaxial fluctuations, due to the appearance in the order- 
parameter tensor of additional components, even far from 
the transition. On approach to the transition point, as is well 
known,' an increase is observed in the viscosity coefficients 
connected with soft modes-uniaxial fluctuations. As regards 
the behavior of the effective viscosity for biaxial fluctu- 
ations, when we allow for the hardness of this mode, such an 
increase, even if it occurs, should be considerably weaker; 
that is, the ratio v,/vo can increase only in the neighborhood 
of the nematic-isotropic liquid transition. 

Figure 2 shows the form of the function I, for several 
values of the parameterp. Here is also plotted the function F 
for the case 7 = Pv,/vo = 10. With approach to the transi- 
tion point, i.e., increase of 7, the curve F (wv,/A ) shifts to the 
left, while the curves corresponding to I, remain practically 

FIG. 3.  Dependence of a, /B on frequency in the cases f l =  0.5 ( 1 )  and 
p = 1 (2) for 71 = 20. 

unchanged. Obviously this will promote formation of a sec- 
ond maximum for the absorption coefficient a, = (F + 13)B 
on the high-frequency tail. Figure 3 shows the firm of a, /B 
for 7 = 20 and for P = 0.5 and 1.  In this case quite distinct 
maxima are observed. 

We note that to the values of p considered there must 
then correspond large ratios of the effective viscosities, 40 
and 20. Thus the appearance of an additional maximum de- 
pends substantially on the value of the ratio of viscosities, as 
we have illustrated in Fig. 4 for the case 0 = 1. But we may 
hope, taking into account what was said above about the 
temperature dependence of this ratio, that in a number of 
materials the necessary conditions may be satisfied in the 
transition range. 

We pass to consideration of a situation in which the 

FIG. 2.  Form of the function I, for B = 0.5 ( I ) ,  B = 1 (2), andB = 2 ( 3 ) .  FIG. 4. Variation of a, /B in the caseB = 1 ,  for various values of v,/v,. 
Dashed curve: the function F for 7 = 10. 1-vl/% = 10; 2-vI/vO = 20; 3-vI/vO = 40. 
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value of A depends on temperature. In this case, the absorp- 
tion may receive contributions from all three terms of for- 
mula (7), depending on their relative values and on the order 
of magnitude of 6. 

As calculations show, the maxima of the curves corre- 
sponding to the functions I, and I, occur at frequencies near 
the frequencies of the maxima of I,, with corresponding val- 
ues of 8 ;  this coincidence improves with increase of 8. The 
values of the maxima are in the following proportion: 

If we assume that the temperature dependence of A has 
the form A - [(T, - T)/T, ] Y,  then the parameter 6 =by; 
and obviously, forb) 1 and not too small y, the functions I, 
and I, may make a noticeable contribution to the absorption 
coefficient and promote formation of an additional high-fre- 
quency maximum. 

In the case of a transition close to an isolated critical 
point, y = 1/26, and A, though dependent on temperature, 
is quite weakly so; therefore the positions of the maxima of 
I,, I,, and I, on approach to the transition point shift toward 
low frequencies much more slowly than does F, and on the 
whole the picture described above is retained. 

In principle, there is also possible a more complicated 
situation, in which the phase transition is close to a fixed 

point of the renormalization-group equations, of the stable- 
focus type.9 In this case y z  1, and in the critical range the 
maximum of the biaxial absorption will, for T-T,, shift 
toward lower frequencies just as the maximum of F does. 
Therefore the occurrence of an additional maximum may be 
determined by the difference in the effective viscosities and 
their temperature behavior. 

' I  In Ref. 6 a typographical error apparently was made, sincein front ofthe 
square brackets in (9) there is an x instead of x1I2. The graph of the 
function F(x)  given there, however, coincides with that obtained by us 
with the corrected formula. 
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