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The flexoelectric effect is considered in a nematic liquid crystal in an electric field above the 
threshold for the formation of a modulated structure. The dependence of the structure period on 
the field strength is determined from thermodynamic considerations. The defects produced in the 
flexostructure are investigated and their main properties determined. It is shown that the re- 
quired field dependence of a modulated structure is made possible by defect production. 
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1. The study of the nonlinear behavior of modulated 
orientational structures above the threshold of their forma- 
tion in liquid crystals meets with certain difficulties because 
of the large number of parameters of such systems. The 
change of the flexoelectric periodic structure is of particular 
interest, since this structure exists in a dielectric liquid crys- 
tal in a wide range of electric fields above the excitation 
threshold, in contrast to the dissipative modulated struc- 
tures, which have in an electrically conducting liquid crystal 
several instability modes at a slight excess above the thresh- 
old of the first mode. This feature of the flexoelectric effect is 
due to the thermodynamic character of the phenomenon: a 
modulated structure corresponds at all field values to a mini- 
mum of the free energy of a nematic liquid crystal (NMC) 
and preserves the number of orientational degrees of free- 
dom, even though it is strongly distorted above the forma- 
tion threshold. A linear theory of the threshold flexoeffect 
was developed in Refs. 1 and 2. We analyze below the behav- 
ior of an NLC above the threshold Ec in strong electric fields 
EBE,. 

We recall that a periodic flexostructure has two degrees 
of freedom, the angles 8 and q, that describe the deviation of 
the director n from the initial planar orientation. In the lin- 

(1) does take place, as we shall show, also in the nonlinear 
case, and the quantity q = q*(E )corresponds here to the low- 
er harmonic. 

2. We consider for simplicity the case when all the elas- 
tic constants of the NLC are equal, K, = K, the dielectric 
anisotropy e, is zero, and the flexoelectric coefficients sa- 
tisfy the relation f, = - f2 =f: The last condition actually 
only simplifies the equations, since it is easy to verify that the 
flexocoefficients enter in all the expressions in the same com- 
bination (f, - f,). Since the period 2r/q of the system is 
much smaller at E&Ec than the thickness d of the NLC lay- 
er, we can neglect in first-order approximation the deriva- 
tives with respect to the coordinatez in the expression for y. 
Using the relations 

n==COS 0  COS cp, n,=cos 0  sin cp, &=sin 0, 

with allowance for nonlinear corrections up to terms of sixth 
order in the angles1' 8 and p ,  we write down the functional 
3 (Ref. 1): 

ear approximation the angles 8 and p are the functions i - f ~  

0=8, sin ( q y )  cos ( n z l d ) ,  cp=rp, cos ( q y )  cos ( n z l d ) ,  1 1 2 
+ - e q 4 + - ~ ~ q ~ + - e ~ )  r p r ] } .  

where q,, and 8, are the amplitudes of the periodic perturba- 24 3 15 
(2) 

tion, and q is the wave number of the structure (in the unper- 
turbed state, an NLC is a layer of thickness d, planarly ori- The prime denotes here differentiation with respect toy; 8 ( y, 
ented along the x axis, with boundary conditions q, = 8 = 0 z) and p( y, z) can assume values of the order of unity. The 
at z = * d /2; the z axis coincides with the electric-field di- dependences of the angles 8 and q, on the coordinate z are 
rection). The relations between these quantities and the field substituted in the form of the expansions 
E (at E%EC) are 

We emphasize that it is just the boundary conditions that 3tz 3nz 
cp(y,z)=cp(y)cos-+cD(y)cos-f ... . 

cause the phenomenon to have a threshold when the thresh- d  d  
old values of Ec and qc correspond to the minimum of the 
relation E = E (q) and to a stable equilibrium of the system. We solve the problem first by confining ourselves to the first 
Above the threshold this E (q) dependence does not satisfy harmonics in this expansion. We calculate next the correc- 
the condition that the free energy 3 be a minimum in the tions due to allowance for the following harmonics and ver- 
nonlinear approximation. The qualitative proportionality ify that they are small. 
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Integrating in (2) with respect toz, we obtain the expres- 
sion 

where L is the longitudinal dimension of the NLC layer. 
Variation of the functional (4) with respect to the variables 8 
and p leads to a system of equations for the functions 8 ( y) 
and p( y). We seek the solution of the considered nonlinear 
problem in the form 

0(y) =8, cos (qy) +0, cos (3qy) + . . . , 
(5) 

(p ( y) =(pi sin (qy) + ~ a  sin (3qy) + . . . . 
We shall verify below that the minimum of the functional F 
corresponds to the values q -q(E ) = 2~23  /K, pl -el, 
p,-8,.&,. The last inequality justifies the assumption (S), 
while the approximate equalities obtained from considera- 
tion of the preceding approximation in the expansion of F 
in powers of 8 and p can be used in the nonlinear corrections 
contained in expression (4) and in the corresponding equa- 
tions. After substituting expansions (5) in these equations we 
arrive thus at the algebraic relations 

The solution of these equations is written in the form 

The density of the free energy (4) is then 

1 1 9 
F = - 9- = - Kq2 (E) ( - 0,~+0.0550:) . (7) v 4 

From this we obtain a value 8, = 8 7 that satisfies the 
condition aF/a8, = 0, for the minimum of the free energy, 
as well as the corresponding value q = q*(E ): 

10,* 1 =i.304, q* (E) ~0.603p(E), F (q*) =-0.037Kq2 (E) . 

(8) 

We now verify that it is indeed possible to retain in (3) only 
the first harmonics in the coordinate z; to do this we must 
estimate the values of T ( y) and @ ( y), using relations (6)-(8) 

as the zeroth approximation. Substituting (3) in the free ener- 
gy (2) we obtain a functional that depends on the four varia- 
bles 8 (Y), q,(y), T(Y), @ (Y) .  

Assuming that T-048,  we confine ourselves in this 
functional only to the terms quadratic in Tand @. The vari- 
ational equations are then linear in these variables and we 
readily obtain 

T(y) =Ti cos (qy)+ . . . , cf, (y) =@I sin (qy)+. . . , 

with 

It can be seen that allowance for the next higher harmonics 
in the coordinate z cannot change qualitatively the results 
(6)-(8)- 

We have thus found an approximate solution of the 
nonlinear problem and described the modulated flexoelec- 
tric structure of the NLC above the instability threshold at 
E)E,. The spatial period Y = 2?r/q*(E ) of this stripe struc- 
ture is usually proportional to the electric field if E)E,, i.e., 
Y=:?rK /0.6@. [We note that the Y (E )dependenceis similar 
to the X (Y) dependence corresponding to Meyer's orienta- 
tional s t r~c tu re ,~  but in contrast to the latter the deflection 
angles 9 and q, are bounded in the structure considered here.] 

These qualitative results do not change if E, # O  and 
fl+f2#0, provided that the condition IE,K/ 
474 f, - f2)21 < 1 is satisfied. 

3. The director-field distortions given by relations (5) 
can be directly obseved in polarized light as a system of opa- 
que stripes parallel to thex axis, with a period 2r/q along the 
y axk5  The described flexostructure can thus be regarded as 
a special diffraction grating with variable period, q = q*(E ). 
This phenomenon can find practical use (see, e.g., Ref. 4). It 
is therefore important to investigate this structure in greater 
detail, particularly the defects observed in the system of the 
stripe domains.' Defects outwardly similar to edge disloca- 
tions in crystals appeared already at E 2 E,. In stronger 
fields the number of defects increases greatly; they combine 
into clusters that tend to localize the field of the domain- 
structure distortions. 

We determine now the distortion energy of the de- 
scribed flexostructure. To this end we introduce the domain- 
distortion field u(x, y), reckoned along they axis, and express 
in its terms the NLC director inclination angles B (r) and p(r): 

,0= [0, cos q (y-u(x, y )  ) +0, cos 3q (y-U(X, y )  ) + . . .] 
x cos (nzld), 

(P= [(pi sill q (Y-u(x, y) )+ rp3 sin 3q(y-u(x, y ) )  i . . .] 
(9) 

x cos (nzld). 

Substituting these functions in the general expression for the 
NLC free energy, with flexoelectric terms, and integrating 
with respect to the coordinate z, we obtain 
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where @, /,i, and 5 are polynomials of sines and cosines of 
q( y - u). To separate the nonlinearity with respect to u(x, y) 
in explicit form, we make the substitution y' = y - u(x, y). 
We also note that since the scale of the change of the func- 
tions 3, /,, and 8 with respect toy' is at any rate less than 
277-/q, and that of the function u(x, y') exceeds this period of 
the domains, these functions can be integrated with respect 
to dy' separately. We confine ourselves thereby to relatively 
long-wave distortions of the domains. Taking this remark 
into account, we obtain ultimately 

and the remaining parameters are similarly determined: 

The unperturbed free-energy density F , / V  = (0 + R ) of 
the modulated flexostructure coincides with expression (7). 
The energy (10) acts as the "elastic" energy of the two-di- 
mensional crystal made up of the flexoelectric domains. It 
reflects the symmetry properties of any stripe domain struc- 
ture (point group D,,). The components of the stress tensor 
of this effective crystal are 

We consider now an isolated defect, named hereafter dislo- 
cation, in such an effective crystal. We define the Burgers 
vector in the usual manner: 

where b = 277-/q and m is an integer. 
We confine ourselves in the energy (10) to terms qua- 

dratic in u. To satisfy condition (12) we must therefore intro- 

duce in the Euler equation a source in the form of a cut, such 
that a field crossing it acquires an energy mb. For a disloca- 
tion at the point r = 0 

where r is the two-dimensional radius vector, S ( y) is a delta 
function, and O (x) is the step function; O (x) = l(x > 0), 
O (x) = O(x < 0). This equation has in coordinate space the 
solution 

mb Y'"x mb 
uD (r) =- - arctg +-sign (y), 2n 4 

from which it is easy to obtain the stress tensor and the dislo- 
cation energy: 

where a is the cutoff radius. 
It can be seen that the considered defects in the modu- 

lated flexoelectric structure are analogs of edge dislocations 
in an anisotropic solid with zero Poisson coefficient [see Eq. 
(ll)].  The interaction forces between two dislocations 
m(r,) = m,S (r,) and m(r,) = m,S (r, - r) are of the form 

It can be seen from these expressions that it is expedient to 
arrange the dislocations on one line so as to form a wall 
either along they axis or along the x axis. The dislocations 
move apparently only along the x axis, since there is no 
orientational modulation in this direction. For the same rea- 
sons, dislocations with opposite signs form walls mainly 
along they axis. 

4. We shall show now that the mechanism whereby the 
period of the considered flexoelectric modulated structure is 
decreased with increasing field is the formation of disloca- 
tions. We note first that in an ideal (defect-free) system of 
domains even a small change of the period changes, as can be 
easily verified, the direction of the director by angles of the 
order of 28 T -T in practically the entire NLC volume. This 
process requires a macroscopically high energy. If, however, 
an increase of the electric field from E, to E leaves the flexos- 
tructure period equal to b, = 2~/q*,, where q*, = q*(E,), 
this means the appearance of a distortion u = y  
(q*(E ) - qo*)/q*(E and of stresses 

( s , , = 0 ~ 0 . 8 f 2 K - ~ 0 ~ * ~ E  ( E - E , ) .  (15) 

These distortions can be completely offset by creation of 
No-0.6fZ (E - E,/TK dislocations, which leads to the ap- 
pearance of additional domains and to a change of the flexo- 
structure period to b = 277-/q*(E ) [see (8)]. When N, disloca- 
tions appear in the NLC volume, the period of the 
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modulated structure becomes equal to 

We consider now a dislocation-creation mechanism si- 
milar tb the Frank-Read source in  crystal^.^ A dislocation 
line with end points secured at the boundaries z = + d /2, 
located on the boundary of the NLC layer, exerts no influ- 
ence on the flexostructure domain period. It  can be pro- 
duced by fluctuation at any inhomogeneity of the director 
distribution on the boundary. Since the Burgers vector (12) 
of the considered defects is always parallel to they axis, this 
dislocation is acted upon by a force only in the x direction, 
due to the stresses (15). This bends the dislocation line. We 
note that since the director orientation is fixed on the boun- 
daries z = f d /2, the dislocation-line segments located 
along this boundary vanish. Therefore, when the line curva- 
ture radius reaches the critical value -d /2 the dislocation 
"breaks away" from the pinned ends and moves into the 
interior under the influence of the force acting on it, altering 
thereby the period of the modulated structure. Thus, each 
such source produces a group of dislocations along the x 
axis; the frontal dislocation in this group can be stopped by 
the opposite boundary of the NLC or by some defect in the 
volume, at a macroscopic distance - L from the source. The 
reverse (blocking) action of a similar group on the source is 
given by the expression ure, - - a1 (2L - I ), where I is the 
length of the considered dislocation cluster and is connected 
with the number of defects in the cluster (N)  by the relation 
N = ~r lu /2!P(q j )b~~ (see Ref. 6, part IV). 

Let us estimate the equilibrium number of dislocations 
in the modulated flexostructure. Since the defects are uni- 
formly distributed over the NLC volume, we shall assume in 
the estimates that the total number of dislocations in the 
entire volume is ND - N 2. The critical stress necessary to tear 
a dislocation away from the source is defined as uc = 2r/db, 
where 7 is the linear tension in the dislocation. If the volume 
contains already ND dislocations, this stress takes the form 

The stress acting on the source is in this case 

(18) 

Taking into account the connection between I and ND - N ', 
which now takes the form 

we arrive at a relation between the number of dislocations 
and the field, determined by the condition ac(uD. In the 
case I(L (when the number of dislocations in each cluster, 
meaning also in the entire volume, is still small), this relation 
takes the form 

Substituting in (19) for the initial field E, the threshold 
value Ec at which an ideal domain flexostructure is pro- 
duced, we can estimate that critical value of the electric field 
at which dislocation production is possible at all, i.e., the 
change of the period of the modulated structure 

This is the field correspondant to the end point of the plateau 
on the plot of b = b ( l /E )  obtained in e~periment .~ 

At large values of the field E)E * the modualted struc- 
ture contains many dislocations. Using the approximation 
1 5  L we obtain the field dependence of the number of de- 
fects: 

We use now the condition qL)qd,l corresponding to 
strong fields and obtain from (21) the qualitative estimate 

We emphasize that it is precisely this value of ND which 
is needed to change the flexostructure period from b (E,) to 
b (E ). Thus, the production of dislocations, grouped in defi- 
nite clusters, leads to a dependence, dictated by thermodyn- 
amic considerations, of the period of the modulated struc- 
ture on the field (see Sec. 2). Namely, at E * > E > Ec the 
domain size changes very little, and at E)E * -Ec the wave 
number of the structure depends linearly on the field. We 
note in conclusion that foregoing analysis points to the inevi- 
table formation of a system of defects in a controllable dif- 
fraction grating (flexoelectric domain structure) when the 
electric field is greatly strengthened. 
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