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It is shown that the mass current in superfluid Fermi liquids with arbitrary Cooper pairing is 
determined by the coordinate- and momentum-dependent phase @ (k,r) of the spin matrix deter- 
minant of the order parameter AaB. In those superfluid liquids in which the @ (k,r) field has vortex 
singularities, e.g., in He3-A, the mass current contains, along with the traditional term pv,, an 
additional term contributed by these vortex singularities. For all superfluid Fermi systems, in- 
cluding He3-B, the vortex in coordinate space may "flow out" into k space by moving in six- 
dimensional (k,r) space; as a result, the core singularity of the vortex is removed. In all Fermi 
superfluids, phase slippage is realized by motion of the vortices in (k,r) space, including in particu- 
lar the motion of vortices in ordinary space and the motion of point vortices (boojums) over the 
Fermi surface. 

PACS numbers: 67.50.Fi 

1. INTRODUCTION d d  d d  ----- ) &=-2n (1 rot 1) (kl) 6 (k,) , k,=k-I (kl) 
The expression for the current in the A-phase of super- (dk dr dr dk 

fluid He3 has the following form at T = 0:' (1.5) 

In addition to the usual term, which is proportional to 
the superfluid velocity v, , and the solenoidal contribution 
which is natural for a fluid possessing an intrinsic angular 
momentum fi1/2 per atom, this expression contains an addi- 
tional term, in which the coefficient Co is equal to the fluid 
density p (in the presence of symmetry between particles and 
holes near the Fermi surface). Many phenomena and hither- 
to unsolved problems are associated with the existence of 
this third term. For example, because of this term, only the 
variations of the local intrinsic angular momentum of the 
liquid turns out to be defined.' In spite of numerous efforts 
(see, for example, Ref. 3), because of the term with Co, it has 
not yet been possible to obtain the equations of dynamics of 
the A-phase from the Lagrangian or Hamiltonian forma- 
lisms, while for the other superfluid liquids (He3-B, He II), 
these methods have been applied su~cessfully.~" The very 
existence of the term with Coin (1.1) is connected with singu- 
larities in the wave function of the pair at kJI1, namely it is 
expressed in terms of the phase of the order parameter AaB 
=A, 

i = i  ( a ~ j o , ~ r ,  Ar=Ao ( k l k ,  A'CiA") = 1 Ar 1 e'Qk (1.2) 

in the following fashion: 
1 -- 1 a a  a a  

Col (1 rot 1) = - 
2 

C k k n k ( a k ~ - d l d k  ) @k, (la3) 

where n, is the quasiparticle distribution function and is 
equal to 

nr=28 (kp-k)  (1.4) 

in the first-order approximation. The difference of the term 
with Co from zero is due to the fact that the difference of the 
mixed derivatives of @, is not equal to zero but has a delta- 
function singularity 

In some studies, the singularities in the wave function of 
a Fermi liquid of the A-phase type are ignored, and, the third 
term of the current (1.1) does not appear at all (see, for exam- 
ple, Ref. 17). Frequently, opinions are expressed that these 
singularities are either a consequence of an incorrect transi- 
tion to the limit of infinite volume, or are connected with the 
fact that BCS theory operates with plane waves and not with 
the eigenfunctions of the angular moment~rn ,~  or else that a 
weak departure from the A-phase, brought about, for in- 
stance, by fluctuations or by an inhomogeneity, can remove 
these singularities, so that the inconvenient third term drops 
out and the unsolved problems disappear along with it. 

To determine the stability of the third term relative to 
small changes in the order parameter near the A-phase, we 
derive an expression for the current in the case of an arbi- 
trary phase in a Fermi liquid with an arbitrary type of pair- 
ing, i.e., for any matrix of the order parameter AaP(k,r). 

We shall show that the current is uniquely determined 
by the phase @ (k,r) of the determinant of this matrix, while 
the terms of third order in (1.1) appear only if the six-dimen- 
sional (k,r) space contains a vortex, in the circuit around 
which @changes by ~ T N ,  where N is an integer. The A-phase 
is one of the Fermi liquids in which the phase @ has vortices 
in k space even in the homogeneous state. The maximum 
number of possible vortices in k space depends on the type of 
pairing and is equal to 0,2,4,6 ... for s,p,df ,... pairing, respec- 
tively. the A-phase has ink space one vortex with topological 
charge N = 2. Inasmuch as the topological charge of the vor- 
tex cannot be removed by small changes in the order param- 
eter, the vortex cannot be annihilated by any small deforma- 
tions of the A-phase, i.e., the inconvenient term in the 
current (1.1) is stable. This term is removed only by large 
order-parameter deformations in which the superfluid state 
is moved far from the A-phase. For this it is necessary that 
the vortex with N = 2 be split into two vortices with charges 
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N = 1, which are then turned antiparallel to one another and 
annihilate. The A-phase is transformed into a vortex-free 
state of a planar type or into a B-phase with current j = pv, . 
The expression for the terms of the third type in the current 
in arbitrary phase depends only on the points of intersection 
of the Fermi surface with the vortices. We shall call these 
points boojums, in analogy with the point singularities on a 
surface in coordinate space.9 Phases having an identical ar- 
rangement of boojums have an identical expression for the 
current. 

Also connected with the properties of the phase @ is the 
question of the structure of the vortex cores in the superfluid 
liquids. This question has now become important for B- 
phase He3 because of the experimental discovery of a phase 
transition in the rotating vessel. This transition is presumed- 
ly brought about by rearrangement of the structure of the 
vortex core.'' We shall show that in He3-B a vortex in coor- 
dinate space can, passing over the six-dimensional (k,r) 
space, transform into two vortices in k space, as a result of 
which the singularity inside (the core) is removed. The vor- 
tex core acquires a continuous complex structure, which is 
characterized by a topologically invariant degree of map- 
ping (the number of times the boojum traverses the whole 
Fermi surface). It will also be shown that all phase-slippage 
processes in superfluid Fermi liquids, if only they are not 
connected with disruption of the order parameter, constitute 
motion of vortices in the six-dimensional (k,r) space. Parti- 
cular cases are the motion of vortices in ordinary space and 
the motion of boojums on the Fermi surface. 

2. CURRENT IN A SUPERFLUID FERMl LIQUID 

Let us consider a superfluid Fermi liquid consisting of 
atoms with spin 4, in which Cooper pairing of the ordinary 
form takes place; these are combination of pairing with an- 
gular momenta I = 0,1,2, ... The matrix of the order param- 
eter has the following form: 

a (n) =i&,d, (n) +&d (n)&, n=k/k, (2.1) 

where do(n) is an even, and d(n) an odd, function of the mo- 
mentum k corresponding to pairing with spins 0 and 1. The 
scalar function do in the states s, d and g takes the respective 
forms A, A, nink,Aik,, ninkn,n, and so on, while the spin 
vector d, in the statesp and f takes the forms Aaini , Aavk ni n, 

,n,, etc. 
For calculation of the current in a system with arbitrary 

Cooper pairing, we used the well-known expression for the 
current in terms of the Green's function 

k n 

Here 

Gab (k, r, u.) = J d3pGab (r, P, rnn)e-ikp, 

and in the Green's function GaB ( p,r,w,) = Gd(rl,r2,0, ) we 
separated in standard fashion the dependence on the "fast" 
coordinates p = r, - r, of the relative motion and the 
"slow" coordinates r = (r, + r2)/2 of the mass center. 

The Green's function is found from the Gor'kov equa- 
tion, which is conveniently written in integral form: 

where S (r,,r,) is the Green's function of the normal metal 
and satisfies the equation 

h 

the dependence of G and S on the frequency w, 
= (2n + l)?rT in formulas (2.3) and (2.4) is omitted for bre- 

vity and E in the (k,r) representation has the form 
E (k, r )  =k2/2-p+U(r), 

A, is given by the expression (2.1). 
By assuming that U(r )  and AaD(k,r) are slowly varying 

functions of r, we expand (2.3) and (2.4) in terms of the small 
gradients 8 /dr (see Refs. 11 and 12). Here it is convenient to 
use the following relations: 

where [ J g ]  is a Poisson bracket: 

We get, in zeroth order, 

S(O) (k, r) =S=ll (iw-E), GLOB' (k, r) =fab-'S, 

Here we have used the fact that A xB = - A A, In first or- 
der, 

St1) (k, r )  =O, 

Gcl) (k, r )  =-l/zie(o) {[f, f-I] (a(") -l+s.[&, i+] 
(2.7) 

+[L, s~]L++Z[S*, ;~+] )G 'o ) .  

Only the last two terms in the curly brackets of (2.7) are 
significant in the calculation of the current (2.2), because the 
first two terms consist of components that are odd either in 
the frequency w, or in E and vanish on summation over w, 
and integration over E (the latter by virtue of the symmetry 
between particles and holes). 

Thus, the expression for the current can be written in 
the form 

j (r) = Sp CLT (- $) C(O) {L[s', d^+l+[& S ' I A ' ) ~ ' ~ ) ,  
k n 
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where 

Q = 7 I-ZS 12= Ez+02 -+ ah+, a = [a, a+ + a [E, A+]. 

We n2w sum over the frequencies. With this aim, we trans- 
form9 to diagonal form by means of the unitary transforma- 
tion U: 

Using the invariance of the trace, we have 

where E : = E' + A :, E: = E' + A are the energies of the 
single-particle-excitations of the liquid, i.e., the eigenvalues 
of the mAatrix e, (o = 0). It is easy to reason that the unitary 
matrix U does not depend on the frequency; therefore sum- 
mation over the frequencies is easily carried out, and at 
T. = 0. we have 

(2.10) 
Here n(Ei) = 1 - &/Ei, i = 1,2 is the energy distribution 
function of the particles in a superfluid Fermi liquid, with 
excitation energy Ei at T = 0. 

h 

Since U does not depend on E, and 

i.e., it does not depend on i, we can assume the quantity n to 
be the distribution function particle energy (1.4) in the nor- 
mal Fermi liquid. Then, 

A 

Carrying out the inverse unitary transformation U - ' under 
the sign of the trace, we have 

- A 12, nl) ( ~ + ) - l )  = + c [ln - , n . 
det A+ 1 

Finally, introducing the phase of the determinant of the ma- 
trix A : 

we write down j in the final form 

Thus, the current depends on the order paramezr only 
through the phase of the determinant of the matrix A.  This 
general expression is identical with the expression obtained 
earlierI3 for the case of the A-phase by a semiphenomenolo- 
gical method. It must be kept in mind below only that @ in 
formula (2.13) is the phase of the determinant of the matrix 
(2. I), i.e., it is twice as great as the @, used in Ref. 13 and in 
formula (1.2);IIn the following, we shall take @ to mean the 
phase of det A ,  so that we shall write the current in the form 

3. CURRENT AND BOOJUMS ON THE FERMl SURFACE 

Thus, for an arbitrary order parameter, the mass cur- 
rent at T = 0 is determined exclusively by the coordinate- 
and momentum-dependent phase @ (k,r) of the determinant 
of the matrix of the order parameter. In this section, we shall 
show that the unusual terms arise in the current only when 
there are singularities in the field of the phase @. Since the 
phase @ varies along a circle, the topologically stable singu- 
larities are vortices. Usually we are dealing with vortices in r- 
space, when @ does not depend on k. These are singular 
lines, circling around which changes the phase by 2aN and 
on which the phase is not defined, while the order parameter 
modulus goes to zero. In the case of the A phase, we have 
encountered vortex located in k space. Actually, the distri- 
bution of the phase @ in the order parameter of the A phase 
[see ( 1.2)] 

is a rectilinear vortex with topological charge N = 2, passing 
through the origin k = 0 and directed along the axis circling 
around the axis, the phase of @ changes by 4a, and A ,  = 0 
on the axis of the vortex (k, = 0). 

It is easy to see that the vortex in r-space and the vortex 
in k-space are particular cases of the general case in which 
the phase depends both on k and on r, and the vortex is 
defined in the six-dimensional space (k,r). In six-dimensional 
space, the axis of the vortex is itself a four-dimensional mani- 
fold on which the order parameter modulus vanished and 
the phase @ (k,r) changes by 2aN when it traces a closed 
contour around it. The vortices considered above differ in 
the location of this axis and they can transform into one 
another by continuous motion of the axis of the vortex over 
the six-dimensional space (k,r). In the first case, the vortex is 
parallel to k space, while in the second case, it is parallel to 
the coordinate space. In the next section, we shall see that 
the unusual continuous relaxation of the superflow in the A-  
phase due just to the motion of the vortices in the six-dimen- 
sional (k,r) space. 
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The fact that the third term in the current (1.1) in A- 
phase is connected just with a vortex in (k,r) space is already 
seen from Eq. (1.4) since the difference from zero of the 
mixed derivatives of @ (k,r) is a consequence of the vortex 
singularity in the phase @. We shall consider the effect of the 
vortices on the current for an arbitrary Femi  system. The 
antisymmetric combination of the derivatives of @ is ex- 
pressed in terms of an integral along the axis of the vortex, 
and just as in the three-dimensional case we need only take 
into account the four-dimensionality of the axis. Let xi  
= (r,k) be the coordinate in six-dimensional space. Then the 

following formula is valid: 

X j d s rmnp6  (x -x  (q', q', q3, 1') ) . (3.2) 

Here dS '""P is the element of volume of the four-dimension- 
a1 hyperspace occupied by the axis of the vortex, x i  = x i  (7") 
are the points of this hyperspace, N is the topological charge 
of the vortex, equal to two for the vortex in the A-phase, 
e,,, is an absolute antisymmetric object in six-dimension- 
a1 space. The validity of the formula (3.2) is easily confirmed 
by integrating both parts of Eq. (3.2) over an arbitrary two- 
dimensional surface intersecting the axis of the vortex. Actu- 
ally, let dS be an element of this two-dimensional surface; 
then the left-hand side of the equation is transformed by the 
Stokes formula into an integral over the line dS ' encircling 
the vortex: 

and the integral of the right-hand side reduces to an integral 
over the entire volume of six-dimensional space of the 6 
function, and is equal to 2~-N. 

Let the four-dimensional set of points of the vortex axis 
is given in the form k = k(l,r), where lis the coordinate along 
the vortex in k space. By setting 7" = (1,r) and taking it into 
account that 

We obtain from (3.2) 

d d  d d  ----- 
( d r  ak d k  dr 

) @ (k,  r) = 2 n ~  dl6 ( k - k  (1, r )  ) (:rot k ) 

and the third term in the current (2.14) is equal to 

After simple transformations of Eq. (3.4), we reduce the 
expression for the current (2.14) to the following form: 

Here 

and Ai = Aii is a symmetric tensor: 

The expression (3.5) is valid for any change ofA (k,r) includ- 
ing such that the state of the system is, transformed from one 
phase into another. 

We now calculate the expression for the current in the 
case in which we find ourselves in some definite phase, but 
the change ofA (k,r) is connected only with motion over the 
degeneracy space of the state, i.e., it is connected only with 
the rotations of the order parameter through an angle 68 (r) 
in orbital space and with a change in the total phase of the 
order parameter p(r) in the considered approximation, in 
which the order parameter does not depend on the time (ro- 
tations of the spin space do not affect the mass current). In 
this case we have 

j=-LiV68,+'/2pVcp+'/,rot L+v,L,+~,  (3.8) 

where3 is the last term in the current (3.5) and L is given by 
the previous expression (3.6). 

The first three terms in (3.8) are typical of the mass 
current in an arbitrary superfluid liquid, including Bose li- 
quids, which possess an intrinsic angular momentum L(r). 
The first two terms in (3.8) are always obtained from the 
Lagrangian formalism (see, for example, Ref. 3), since L, 
6, 8 and - p, 4 p are pairwise canonically conjugate varia- 
bles. From the viewpoint of the Lagrangian approach, the 
canonically conjugate variables Pa and Q, are such that 

{ P a ( r ) .  Qaz  ( r ' )  1 = 6 A  ( r - r ' ) ,  

always enter into the expression for the momentum density 
in the form 

We note that in the general case of an arbitrary change 
ofA (k,r), too, the first two terms in the current (3.5) can also 
be obtained from the Lagrangian formalism. The first term is 
obtained if we assume that - n and 4@ are canonically con- 
jugate variables. The second term is derived if we assume 
that the components of the displacement of the vortex in k- 
space commute exactly as they do for a vortex in ordinary 
space (see, for example, Ref. 14). To be precise, if the vortex is 
directed along the k,  axis, then 

48n2 
{ k x ( z , r ) ,  k ~ ( l ' , r ' ) } = -  6  (2-1') 6  (r-r ' )  . 

n(1, r ) N  

The fourth term in the current (3.8) generally does not con- 
tradict the Lagrangian formalism, since the addition of the 
symmetric tensorAV to the current leads only to a rearrange- 
ment of the symmetric the momentum flux tensor 
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Thus, the last term in both (3.8) and (3.5) is the only term 
in the current which distinguishes it from the expression dic- 
tated by the Lagrangian formalism. We call attention to the 
important fact that this term depends only on those points k 
at which the vortex intersects the Fermi surface, since &/dl 
is a S function differing from zero only on the Fermi surface. 
In what follows, we shall call the points of intersection of the 
vortices with the Fermi surface "boojums," by analogy with 
the point vortices on a surface in ordinary space. This ana- 
logy is justified by the fact that, as we shall see, the boojums 
on the Fermi surface play the same role in the process of 
relaxation of superfluids that boojums play in ordinary 
space. 

We denote by ka ( r )  the positions of the boojums on the 
Fermi surface and write out the current for the general case 
of an arbitrary number of boojums: 

- 1 k, 
=- --r, Ca~.n.(n. rot n,) , n. = - , (3.12) 

8 k, 

where the coefficient Ca is given by the expression 

CG=k2/3n2, (3.13) 

and for a spherical Fermi surface all 

C.=Co=kF3/3n'=p. 

The quantities No are the topological charges of the boo- 
jums. The quantity 2% shows by how much the phase @ 
changes on circling around the boojum on the Fermi surface 
if the boojum is viewed from a region outside the Fermi sur- 
face. 

We also call attention to the fact that the angular mo- 
mentum L(r )  that enters into the current (3.5) is determined 
by the location of the boojums. Actually, let us consider the 
expression (3.6) for L. It consists of two parts, each of which 
has a simple physical meaning if we regard k-space as the 
same as ordinary three-dimensional space R. 

We consider the flow of liquid in a drop of radius 
R,  = k ,  with density 

and with a velocity potential p ( R )  = @ (k + R). Then the 
first term in (3.6) is the angular momentum of the liquid 
expressed in terms of the velocity d p / d  R: 

The second term is connected with the vortex in the liquid. If 
the vortex lies inside the drop the second term is none other 
than the angular momentum of the liquid expressed in terms 
of the vorticity and taken with opposite sign: 

Thus, if the vortex lies inside the drop and boojums are ab- 
sent, then there is no angular momentum either. If the vortex 
emerges on the surface of the drop, no contraction takes 

place and, with the help of simple transformations, we ob- 
tain L in terms of the coordinates of the boojums: 

Thus, the difference of the current form the expression 
dictated by the Lagrangian formalism is governed by the 
boojums. Evidently, the study of the dynamics of boojums 
on the Fermi surface allows us to include boojums in the 
general scheme of the Lagrangian or Hamiltonian formal- 
ism. Leaving this question for future investigation, we pro- 
ceed to consideration of the effect of these boojums on the 
superfluid property of the Fermi liquid. 

4. BOOJUMS ON THE FERMl SURFACE AND THE 
STRUCTURE OF THE VORTEX CORE 

The number of boojums on the Fermi surface depends 
on the type of pairing and on the state. Inp-pairing in.the A 
phase in k space there is a rectilinear vortex with charge 
N = 2, which corresponds to a pair of diametrically oppos- 
ing boojums with charges N ,  = 2, N2 = - 2.  In the general 
case ofp-pairing, when the system leaves the state of the A 
phase, the vortex can split into two with charges N = 1, 
which .corresponds to two pairs of diametrically opposed 
boojums with charges N ,  = - N2 = N3 = N, = 1. These 
boojums can be annihilated, transforming into a state with- 
out vortices, in which the current has the form 4 pVp .  As an 
example we can cite the transformation of the A phase into 
the B phase. No matter what path is followed by this trans- 
formation in phase space, it is inevitably accompanied by 
splitting and annihilation of the vortices. For example, let us 
consider a single-parameter transformation in which the 
matrix Aa8 depends in the following fashion on the one pa- 
rameter OGag l :  

is(-nx+ (2a-1) inu k 
an, n.+ in, 

(4.1) 

at a = 0, this is the A phase, and at a = 1, the B phase. The 
location of the boojums is determined by the zeros of the 
determinant of the matrix and is given by the formula 

At a = 0 there is one pair of boojums, and a#O the 
boojums are split and are annihilated at a = 4. At 1 )a>J, the 
boojums are absent. 

The topology of the transition from A to B phase 
through the planar phase proposed by CrosslS for the com- 
putation of the surface energy of the boundary separating the 
A and B phases is similar. 

In the case of other pairings, the number of boojums 
changes. Thus, in pairing with orbital angular momentum I, 
the maximum number of pairs of diametrically opposed boo- 
jums is equal to 21, since this number is determined by the 
possible number of zeros of the corresponding Legendre 
polynomials. 

We now consider how the singularity in the core of an 
arbitrary vortex in a Fermi liquid is removed because of the 
boojums, particularly in the B phase of He3. Let the state of 
the vortex have the following form in an arbitrary phase: 
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@ (k, r) =2q (r) S@o (k) ,  (4.2) 

where @,(k) is the phase of the determinant of the order 
parameter in the homogeneous state, and q,(r) the total con- 
densate phase, which has a vortex singularity, for example, 
on the z axis around which the phase p(r) changes by 2aN. 
This is the usual quantized vortex, similar to the vortex in a 
Bose liquid. On its axis, the entire order parameter vanishes. 
For example, in the case of p-pairing, A,, = 0 at 
p=(x,y) = 0; if this is the B phase, the order parameter is 

Aai (r) =C (p)RareiqN7 (4.3) 
where q, is the azimuthal angle of the cylindrical system of 
coordinates, R,, is a constant of the rotational matrix, 
C(p) -+Oasp-+O.  

In contrast with a Bose liquid, a singularity on the axis 
of a vortex can be removed continuously because of the 
strong coupling between vortices in k space and r space 
(these vortices can transform into one another); furthermore, 
the entire vortex in r-space can also be removed under cer- 
tain conditions. We shall show that the continuous vortex 
core that is formed as a result of the removal of the singular- 
ity possesses definite topological charges that are connected 
with mappings on the Fermi surface. 

Let the condition (4.2) be satisfied at large distances, 
i.e., we have asymptotically the usual quantized vortex in r 
space at large distances. We now explain how @ (k,r) should 
vary at small distances in order that there be no singularity. 
We have the following chain of equations: 

Here Cis the contour circuiting the vortex in r space at 
large distances, where (4.2) is satisfied, and let a be a surface 
that bears against this contour, i.e., intersects the line of the 
vortex. The first equality is the definition of the topological 
change of the vortex N, i.e.,the phasep changes by 2rNupon 
circling around the vortex. The second equation occurs be- 
cause of (4.2). The last equality denotes the transition, by 
Stokes theorem, from an integral along the contour to an 
integral over the surface a ,  which is chosen to be the plane 
(x j ) .  The condition (4.2) is no longer satisfied by @ (k,r) on 
this surface. We now make use of the general formula (3.2), 
which expresses the antisymmetric combination of the de- 
rivatives of @ in terms of the parameters of the vortex in six- 
dimensional (k,r) space. Proceeding as in the derivation of 
the formula (3.3), and then transforming from vortices 
k = k(1,r) in k space to boojums k, (r), we obtain 

where N, and n, are the topological charge of the a-th boo- 
jum and the unit vector in the direction of the a-th boojum. 

We further take it into account that the integral on the right 
side of (4.5) 

is an integer that shows how many times the boojum travels 
over the entire Fermi surface, when the coordinatep = (x,y) 
runs over the surface a that intersects the vortex in coordi- 
nate space. This is the topological invariant called the degree 
of reflection of a surface a that,with account taken of the 
given distribution of @ on the boundary, can be regarded as 
equivalent to a sphere on the Fermi surface. 

Thus, we obtain the following formula for the connec- 
tion of the charge of a vortex N quantized, in coordinate 
space and having a continuous core; with the topological 
charges of the boojums N, and v, : 

The coefficient 4 should not disturb us, since the boo- 
jums occur as pairs with diametrically opposed locations 
and with opposite signs ofN, and v, . Therefore the charge of 
the vortex is always an integer. 

We apply formula (4.7) to the A and B phases of He3. We 
first consider a vortex with N = 1 in the B phase. At large 
distances from the vortex, in the pure B phase, there are no 
boojums. If there are also no boojums at small distances, 
then the vortex has the form (4.3) (with N = I), and the mo- 
dulus of the order parameter goes to zero on the axis of the 
vortex. Another alternative is the appearance of boojums on 
the Fermi surface, beginning with distances of the order of 
the coherence length 6. Here only two pairs of boojums can 
be created. One of the possible combinations of topological 
charges N, and v,, which ensures that the right side of (4.7) 
be equal to unity, is the following 

This is the simplest combination and evidently corresponds 
to minimum energy of the vortex. Equation (4.8) means that 
one of the pairs of boojums circuits the entire Fermi sphere 
once, while the location of the other, for example, does not 
depend on the coordinates. How the real configuration cor- 
responds to a minimum energy at a given choice of topologi- 
cal invariants (4.8) is a complicated problem, since it involves 
determination of the minimum in an at least 18-dimensional 
space of the order parameter A,, . We write down one of the 
possible arrangements of the boojums in k space as a func- 
tion of the coordinates, satisfying (4.8): 

ni=-n,=i cos 0 (p) 3-6 sin 0 (p) ,  n,=-n4=i, (4.9) 

where 0 ( p)  is a continuous function, equal to 0 atp = 0 and a 
atp>p, - f. The order-parameter field which realizes such a 
distribution of the boojums, can be represented, for example, 
in the form of anA phase @ = 0) that transforms continuous- 
ly into a planar phase @ = p,) with increase inp, where the 
boojums are annihilated, and then into the B phase @ -+ ). 
Thus, we see that the structure of the vortex core in the B 
phase is rather complicated. Different structures are possi- 
ble, characterized either by different topological invariants 
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or by different orientations of the boojums inside a given 
topological class, or even by different configurations of the 
fields A,, at a given configuration of the boojums. Phase 
transitioqs are possible between the different structures of 
the core, and one of them has been observed experimental- 
ly.lO, 

The vortex with N = 1 can be constructed in the A 
phase in similar fashion. Here a pair of boojums with N, 
= * 2 is already present at infinity. Since a pair of boojums 

with double charge cannot yield unity on the right side of Eq. 
(4.7), the boojums must split up. One of the possible combi- 
nations of the invariants is again given here by Eq. (4.8), and 
the arrangement of the boojums is given by formula (4.9), 
where 0 ( p)  is a continuous function, now equal to zero at oo 
and to .rr a tp  = 0. The construction of one of the realizations 
of removal of the singularity in the vortex core with N = 1 in 
the A phase belongs to Mermin.' In this construction, a 
planar phase is located in the center of the vortex ( p  = 0). 

The singularity in the vortex with N = 2 in the A phase 
can be removed in accord with Eq. (4) and without splitting 
of the boojums. Therefore, the system is always in the A 
phase, and this means that the vortex has actually no core. 
Thus we have deduced that the vortices are stable in an A 
phase with even topological charge N. This conclusion is 
very well known.'6*" However, we have arrived at it not by 
the way of investigation of the degeneracy space of the A 
phase, but only from the fact that the A phase contains in k 
space a pair of boojums with double charges. 

5. BOOJUMS ON THE FERMl SURFACE AND PHASE 
SLIPPAGE 

Just as vortices can shed their phase when moving in 
coordinate space, boojums can shed their phase while mov- 
ing on the Fermi sphere. This is actually a special case of 
phase slippage, due to motion of the vortices in six dimen- 
sional (k,r) space. We consider the second case. Let a homo- 
geneous state of a system with flow be given. We choose thez 
axis along the flow; then the function @ (k,r) is given in the 
following form 

@ (k, r) =2rp(z) t c D o  (k).  

Here, as in (4.2), @,(k) is independent of the coordinates of 
the phase of the order-parameter determinant in the ground 
state, while ~ ( z )  is the phase of the condensate and is of the 
form 2mv,z/fi, where v, is the velocity of flow. 

We are interested in the continuous process of relaxa- 
tion of the flow, i.e., in the transition to the same homogen- 
eous state but with another lesser flow. We assume that such 
a process exists in a finite region of z and t. This means that 
outside this region @ (k,r) is given by the formula (5.1). We 
consider the change in q, in going around a contour circling 
the region of phase slippage in two-dimensional coordinate 
space (z,t ). This change, which is equal to 2rN, where N is an 
integer, can be expressed in terms of boojums if we assume 
that in the region of phase slippage, there is no singularity in 
coordinate space. Actually, using formulas (4.4)-(4.6), in 
which the coordinates x and y must be replaced by z and t, we 
obtain 

It is seen from this formula that to shed a single quantum of 
phase, it is necessary that any pair of boojums sweep the 
entire Fermi surface in its motion. In the A phase, where the 
boojums are alreadly present on the Fermi surface and pos- 
sess a double charge, the continuous shedding of two quanta 
of the phase takes place without leaving the A phase. There- 
fore, such a phase slippage mechanism is preferred to the 
motion of singular vortices in coordinate space. In the B 
phase, the situation is reversed. For the existence of slippage 
of the type considered here, creation of boojums on the Fer- 
mi surface is required. For this it is necessaryto destroy the B 
phase in a large volume, to be precise, over the entire surface 
intersecting the channel (since there is no dependence of the 
order parameter on x and y). Therefore, in broad channels, 
phase slippage must take place at the expense of motion of 
vortices in the cross section of the channel. In narrower 
channels with a diameter of the order of the coherence length 
6, one must expect the appearance of the boojum mechanism 
of phase slippage. If this mechanism dominates, the equation 
of motion for the averaged superfluid flow velocity in the 
channel has the following form, in accord with (5.2): 

Here p is the chemical potential. In the A phase, setting 
N, = - N, = 2 and n ,  = - n, = I, we obtain the well 
known equation for v,. 

6. CONCLUSION 

The usual superfluid properties of Fermi systems, in 
which Cooper pairing is realized with nonvanishing orbital 
momentum, are due to boojums-point vortices--on the 
Fermi surface. The presence of boojums on the Fermi sur- 
face produces in the superfluid current, an additional term 
which does not arise in a Bose liquid. Thanks to the boojums, 
the vortices in Fermi systems can have a non-singular core, 
in which order parameter Aai vanishes nowhere, i.e., the su- 
perfluid state is disrupted nowhere. The motion of the boo- 
jums is accompanied by a phase transition between different 
states. 

In the future, it will be necessary to investigate the dy- 
namics of boojums and to ascertain whether Hamiltonian 
and Lagrangian formalisms exist that describe their motion. 

In conclusion, one of the authors (V.P.M.) expresses his 
thanks to P. Muzikar who kindly sent an abstract of his dis- 
sertation. l 2  
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