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We consider the distribution of the director of a cholesteric liquid crystal (CLC) in planar cells on 
whose walls the director orientation is maintained rigidly along the normal to the boundary. At a 
cell thickness LC, = 2K3,P /K2,, where Pis the pitch parameter of the free CLC, a transition of the 
FrCedericksz type takes place from a stable homogeneous homeotropic distribution (for L < LC,) 
to a stable twisted distribution (for L > LC,). Application of the Noether theorem to the variation 
equation has yielded a conservation law for the specific moment of the transmitted force and for 
the analog of the pressure. This resulted in an exact equation for the helix profile. 

PACS numbers: 6 1.30.C~ 

1. INTRODUCTION 

We consider a cell with a nematic liquid crystal (NLC) 
in which the walls make the orientation strictly normal to 
the boundary (see Fig. 1). The free energy in the absence of 
external field is then reached when the director has a homo- 
geneous homeotropic orientation: n(r) = e, = const, where 
the z axis is perpendicular to the walls. This statement is 
valid regardless of the cell thickness L. 

Assume now that a chiral (i.e., a right-left-asymmetric) 
impurity is added to the nematic and transforms the NLC 
into a cholesteric liquid crystal (CLC). At low density of the 
additive, the "wave number" q of the twist of the free CLC is 
small (q = 2?r/P, where P is the pitch of the free homogen- 
eous helix of the CLC). It is clear that at qL(1 the chiral 
additive could distort the homeotropic orientation of the di- 
rection inside the cell only weakly. On the other hand, at 
qL)1 a nearly homogeneous helical structure, with pitch 
P = 2?r/q, should be established in practically the entire vol- 
ume of the cell. 

A change of the parameter qL from values qLgl  to 
qL) 1 can be obtained also at a fixed chemical composition 
of the CLC, by simply changing the thickness (Fig. 2). Small 
variations ofqL can be obtained also be varying the tempera- 
ture or the hydrostatic pressure. 

This raises the question of describing the transition 
from one picture (at qL( 1) to the other (qL) 1). We have 
shown earlier' that up to the parameter value 

q L d  (qL) c,=nK33/K22, 

a strictly homogeneous homeotropic orientation remains 

stable. A helical perturbation sets in starting with (qL ),, . 
This behavior of a cell of CLC with homeotropic pinning of 
the director on the walls was called in Ref. 1 a FrCedericksz 
transition without an external field. 

We determine and investigate here the exact stationary 
structure of a CLC in such a cell. To do this we use essential- 
ly the free-energy symmetry with respect to rotations about 
the z axis and to translations along the z axis. This has made 
it possible to obtain with the aid of the Noether theorem two 
integrals of the variational equations, viz., the analogs of the 
z components of the pressure and of the specific moment of 
the force. The use of these integrals made it possible to solve 
the problem exactly in quadratures. 

2. THE NOETHER THEOREM AND THE CONSERVATION LAW 

We assume the free energy F [erg/cm3] per unit volume 
of the CLD in the form 

F='/,KII (div n) 2+1/zKzz (n rot n+ q )  2+11rKss [n rot n] ', (1) 

where n(r) is the unit vector of the director and Kii are 
Frank's constants. We represent n(r) in the form 

n (r) = (e, cos q+e, sin q )  sin B+e, cos 0 (2) 

and confine ourselves to a problem homogeneous in the (x,y) 
plane, i.e., we assume n(r) to depend only on the coordinate 
z:8 = 8 (z), e, = e, (z). Equation (1) takes then the form 

FIG. 1. Cell with nematic liquid crystal and with homeotropic orientation FIG. 2. Cell with cholesteric liquid crystal with homeotropic orientation 
on the walls. on the walls: a) aL( 1, b) qL,  1. 
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1 Q f  [ K , ,  sinz O+Ks, cos2 01 + ?( -) sin2 0 
2 dz 

The Euler variational equations that follow from (3) are 

and we do not expand them in greater detail because the 
resultant equations are too unwieldy. The homeotropy of the 
director orientations on the walls z = 0 and z = L corre- 
sponds to the boundary conditions 

0 (z=O) =o, 0 ( z=L)  =o. (6) 

It is easily seen that both (1) and (3) are invariant to two 
transformations that commute each other: to translations 
along the z axis and to rotations about the same axis: 

cp' ( z )  =cp (z-6z)  , 0' ( z )  =0 (2-62) , (7) 

cp' ( z )  =cp ( z )  -a, 0' ( z )  =0 ( 2 ) .  (8) 

According to the known Noether theorem (see, e.g., Ref. 2) 
this leads to the existence of two integrals of the variational 
equations 

dp= 0, do d F  d q  dF +- 
= dz 8 (de ldz )  dz a (drpldz) - F ,  

dz 

d m  
-=O, m =  

d F 
dz d (drpldz) 

The quantityp has the dimensionality (dyncm-') and is the 
analog of the pressure (more accurately, of the zz component 
of the stress tensor); m has the dimensionality dyn/cm in 
analogy with the z component of the moment of the force 
transmitted through a unit area normal to thez axis. We note 
that it would be quite difficult to deduce the form of the 
integralp(z) without using Noether's theorem. 

The boundary condition 8 = 0, superimposed on at 
least one of the boundaries, predetermines a zero value of the 
specific moment of the force, m(z) = 0. In other words, a 
homeotropically oriented surface cannot transmit a z com- 
ponent of the moment. 

3. EXACT SOLUTION OF THE PROBLEM OF THE HELIX 
PROFILE 

Using the equality m(z) = 0, we can write the expression 
for the conserved quantity p in a shorter form 

This enables us to find in terms of quadratures the law gov- 
erning the variation of 8 (z): 

We have introduced here the notation 

A K - K K  A== (K33-K22) lK33, (13) 

and actually 0 <A, <A, < 1 in all liquid crystals. The p(z) 
dependence is given by an expression that follows from the 
conservation law m(z) = 0: 

where t9 (z) is defined by (12). It is interesting to note that in 
the single-constant approximation we have 

cp ( 2 ,  Ai=A2=O) -rp  (z=O) =qz (15) 
regardless of the actual variation of 8 (z). 

Before proceeding to investigate the problem of a finite- 
thickness cell, we examine the limiting case of a half-space 
O<z < + a we have 

0 ( z )  =n/2+const.  exp [ -qz  ( K 3 3 / K l , ) ' h ] .  

Therefore the constant p is zero (no "pressure" is transmit- 
ted at infinity). A tp  = 0 the variation of 8 (z), defined by Eq. 
(12), becomes a universal function of qz and of the two di- 
mensionless parameters A ,  and A,. This universal function 
can be easily obtained with a computer for each concrete 
liquid crystal, using the equation 

( l - A ,  sin2 @)'"(I -A2  sin2 @)'" 

cos $ 
d@ 

We indicate here only the asymptotic behavior of 8 (p = 0, qz, 
A ,, A,) at qz< 1 and qz> 1. In the former case 

0 ( z )  = Q Z ( K , ~ I K ~ ~ ) ' " ,  q z K l ,  ( 174 

and in the latter case (at qz> 1) 

0 ( z )  ='/2n-A exp [ -qz  ( K 3 J K i i )  I t 3 ] ,  (17'3) 

Similarly, in the semi-infinite problem (i.e., a t p  = 0), p(z) is 
given by the universal function 

where 8 (z) is defined in (16). Again, at small and large qz we 
have 

r p  ( z )  - rp  (z=O) = ( K Z ~ I K ~ ~ )  qz, p a l ,  (204 

cp ( z )  - rp  (z=O) =qz-B+ 0 {exp [ -qz  (K331Kii)"'] ) , q z w  I, 

(20b) 
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( 2 0 ~ )  
To determine the dimensionless constants A and B we have 
introduced here the notation 

The quantity B is the "incomplete twist" of the angle e, near 
the homeotropically orienting boundary, and is connected 
with the presence of one more than one constant (B = 0 at 
A ,  = A, = 0). In the single-constant approximation have for 
the semi-infinite problem @ = 0) 

sine ( 2 ,  p=o, A,=A,=o) =th ( q z ) ,  cp  ( z )  -cp  ( z=o)  =qz. 

(21) 

4. CELL OF FINITE THICKNESS 

The constant p for a cell with homeotropic orientation 
on both walls (z = 0 and z = L ) can be determined from the 
equation 

which expresses the symmetry property relative to the center 
of the cell. It follows then from (1 1) that 

2 p  (8,) =-q2KZzKs3 cosZ Om/ (Kz z  sin2 Om+KSs cosZ Om), (23) 

where 8 (z =. L /2) = 8, denotes the maximum value of the 
angle 8, and 8, is defined by the equation 

under the assumption that 8, #O. At qL) 1 the solution of 
this equation is of the form 

where the constant A coincides with the constant A from 
(17~) .  The total twist to the angle p(L ) - p (0) at qL) 1 is 

cp  ( L )  -cp ( 0 )  =qL-2B. (26). 

In the intermediate case qL-4 to 6, Eqs. (12), (14), and 
(26) must be solved numerically. We note here the single- 
constant case, when Eq. (23b) takes the form 

2K(sin 8,) =qL. (27) 

Here K (z) is a complete elliptic integral of the first kind. 

5. FREEDERICKSZ TRANSITION WITHOUT AN EXTERNAL 
FIELD, AND HYSTERESIS 

The homogeneous orientation of a CLC is the solution 
of the stationary balance conditions (4) and (5) at any cell 
thickness L. 

FIG. 3. a) For use in the solution of Eq. (27) that determines the equilibri- 
um angle 0 ,  in the single-constant case; b) the function 0,(qL ). 

As shown by us earlier 1 and as will be demonstrated 
below on the basis of Eq. (24), this solution 8 (z)=O is also 
found to be stable at sufficiently small qL. On the contrary, 
at qL> 1 a solution of the helical discussed in detail in Sec. 3, 
is stable. 

To discuss the distance transitions between such states 
when qL varies from 0 to oo , it is convenient first to consider 
the single-constant case. Figure 3a shows for the case 
K l l  = K2, = K,, a plot of the function 2K (sine, ), the left- 
hand side of Eq. (27), vs. sin 8,. The dashed horizontal lines 
show the right-hand sides of Eq. (27), vs. sin 0,. The dashed 
horizontal lines show the right-hand sides of Eq. (27) for the 
different ordinates qL. It is seen that at q L g r  Eq. (27) writ- 
ten under the assumption 8, # O  has no solution. Conse- 
quently at qL gn- the solution ofthe balance equations (4) and 
(5), in the form 8 (z)=O, is unique and stable (the stability was 
domonstrated in Ref. 1 by a direct analysis of the linearized 
time-dependent problem). At qL > r the solution 8 (z)=0 be- 
comes unstable, but a new solution appears, which turns out 
to be stable. At small excesses of the parameter qL above the 
critical value n- the value of sin2 8, is proportional to the 
excess above threshold, i.e., 

The behavior of the stable value of 8, in the single- 
constant case as a function of qL is shown in Fig. 3(b) and is 
quite similar to the picture of the Frtedericksz transition in 
nematics to which external fields are applied.' 

The actual differences beteen Frank's constants lead to 
qualitative differences in the pictures of the Frtedericksz 
transition in the absence of an external field. Namely, the 
left-hand side of (24) turns out to be at K,, 
- 3(K3, - K2,) <O a nonmonotonic function of sin28 [see 
the solid curve of Fig. 4(a)]. At qL < (qL ), Eq. (14) has no 
solution and the only equilibrium state 8 (z)rO is stable. At 
(qL ), < qL < (qL ), there are three solutions: sine, = a (un- 
stable) and sine, = 0, sine, = b (both stable). Finally, at 
(qL ), < qL the solution 8 (z)=0 becomes unstable, the other 
solution (sine, = c) is stable, and the nontrivial solution 
vanishes. A plot of 8, in the stable state as qL varies in 
succession from 0 to co and back is shown in Fig. 4(b). Thus, 
at K,, - 3(K3, - K2,) < 0 the Frtedericksz transitions with- 
out an external field should have hysteresis. The position of 
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FIG. 4. a) For use in the solution of (24) with allowance for the presence of 
more than one constant; b) hysteresis of Frbedericksz transition with zero 
external field. 

the point (qL ), can be obtained by considering the linearized 
stability test of the trivial solution 8 (z)=O (Ref. 1). It can also 
be obtained by direct calculation of the integral (24) as 
8 , 4 .  The result is 

( q t )  Z=nK331K~z. (29) 

The time-dependent behavior of the perturbations near the 
threshold of the FrCedericksz transition in the absence of an 
external field was considered in Ref. 1. For the region where 
two stable states exist (8, = 0 and 8, #O, see Fig. 4), it is of 
interest to ascertain which of them corresponds to the lower 
value of the free energy. The state of the sample under these 
conditions can be represented in the form of domains of two 
phases, wherein the domains with the lower energy should 
gradually "eat up" the foreign phase. At the same time, the 
onset of two-dimensional circle of a new (even more favored) 
phase calls for consumption of the "boundary" energy. "Su- 
perheating" and "supercooling" effects should therefore be 
observed. 

It is unfortunately impossible to calculate the energy of 
the phase with 8, #O. We consider therefore the problem in 
an approximation in which D /C(l, where 
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In this case 8 is small in the phase-coexistence region: 

The phase-coexistence region is in this case small in terms of 
the parameter D, namely, -p, = D '/4C<p <O. Analysis 
shows that in the solution with 8, #O is more suitable in the 
interval - 3p/4 < p  < UJ , and the solution with 8, = 0 in 
the interval - p,  < p  < - 3p1/4. 

CONCLUSION 

The present results were obtained under the assumption 
that all the structure distortions are one-dimensional [n(r) 
depends only on the coordinate z normal to the cell plane] 
and that the pinning of the director to the walls is ideally 
rigid. The possibility of non-one-dimensional perturbation is 
of great interest, but nothing can be said of it at present. As 
for nonrigid pinning, only the following estimates are possi- 
ble. Let the rigidity of the pinning of the director to the wall 
be characterized by the constant a[erg/cm2]. Then our anal- 
ysis is valid at a&Kii7?L -' on the contrary, at a (Ki i~ 'L  -' 
the cholesteric (as well as the nematic) does not feel at all the 
influence of the walls. 

From the viewpoint of practical applications, greatest 
interest attaches apparently to the hysteresis, as well as to 
the possibility of registering small values of q. 
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