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The theory of coherent states is used to solve the problem of polarization induced by a charged 
particle moving in a semi-infinite electron gas. The structure of the polarization fields inside and 
outside the medium is analyzed in the long-wave approximation by taking into account the 
contributions of both surface and volume single-particle and collective excitations for an arbi- 
trary position of the particle trajectory relative to the interface. The subsurface transition regime 
is investigated and it is shown that the effects due to excitation and polarization of the surface 
plasmon system, as well as to features peculiar to the interaction between the particle and the 
volume modes in the presence of a metal-vacuum interface, alter significantly the properties of the 
wake potentials inside the metal at a distancez 5; v/wo from the surface (w, is the plasma frequency 
of the electron gas and u is the particle velocity; it is assumed that u, ( v ( c) compared with the 
situation in an infinite medium. The energy losses and their fluctuations are determined for a fast 
charged particle reflected from a metal sample when part of the particle trajectory passes through 
the interior of the sample. The plasmon part of the energy losses in the case of normal incidence 
and backscattering is found to undergo oscillations that depend on the scattering depth in the 
subsurface layer. 

PACS numbers: 72.30. + q 

1. INTRODUCTION 

An interesting trend connected with the specific influ- 
ence of the polarization of a medium on the bremsstrahlung 
and expansion of fast molecular ions passing through thin 
solid films has recently developed in the physics of interac- 
tions between charged particles and matter. ' -5  A central po- 
sition in the theory of effects of this kind is occupied by the 
question of the polarization potential induced in the medium 
by one of the particles of a cluster moving in the medium and 
acting on the other particles of this cluster. There are also a 
number of other subtle phenomena6 due to the onset of a 
nonequilibrium distribution of the charge in the "wake" of a 
charged particle moving through the medium. At present 
the properties of the corresponding wake potentials are actu- 
ally sufficiently well understood only in one simplest case of 
motion of a point charge in an infinite homogeneous electron 
gas.7 

Yet it is perfectly clear that the properties of the polar- 
ization potentials near the surface of a metallic sample 
should be substantially altered by two effects: (1) The onset 
of an induced surface charge that modifies substantially the 
field on both sides of the surface. (2) Since the fields of the 
elementary volume excitations do not leave the metal,' gen- 
eration of volume modes sets in in practice only at the instant 
when the particle crosses the surface of the sample. This is 
equivalent to instantaneous turning on of the interaction 
with these modes and implies the existence of some nonsta- 
tionary transition regime. A consistent analysis of the sur- 
face effects in the problem of the polarization of a metallic 
medium by a moving charged particle is in fact the subject of 
the present paper. 

It is known that an immobile charged particle placed 
near a metal produces a distributed surface charge whose 

field outside the metal is equivalent to the field of the elec- 
trostatic image. The field inside the metal is completely 
screened and is equal to zero. Motion of the particle is simul- 
taneously accompanied by motion and deformation of the 
electrostatic-image field. Since the eigenstates of the electro- 
magnetic field + surface charge system are described by sur- 
face plasmons, the screening of the field of a moving particle, 
due to the distribution of the induced surface charge, should 
naturally be regarded as a problem of excitation of surface 
plasmons. In this case the motion of the surface charge is the 
response of the system of surface plasmons to an external 
action and manifests itself both in the polarization of the 
vacuum and in excitation of this system. 

Suzuki et have recently reported the results of an 
analysis of surface polarization effects accompanying the es- 
cape of a fast charged particle from a metal into vacuum. 
Unfortunately, the expressions for the polarization poten- 
tials, obtained in their paper by a Green's-function tech- 
nique, give the correct result only for the case of escape nor- 
mal to the surface. It is impossible to indicate the source of 
the error, since their paper does not contain the detailed 
calculations and cites only the final results. It appears that it 
is necessary also to review the results of a later paper by 
Ohtsuki et al.," who used the erroneous expressions of Ref. 
9 to investigate the singularities of the motion of fast charged 
particles traveling inside a metal at a small angle to the sur- 
face. 

The method used by us to calculate the fields excited in 
a medium by an external particle is based on the theory of 
coherent states." The gist of the method is to reduce the 
problem of finding the polarization field to the problem of 
the state of a system of oscillators, each of which is acted 
upon by a certain alternating external force. The simple form 
of the corresponding Hamiltonian of that interaction makes 
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it possible to write down the exact solution for each oscilla- 
tor in the form of the so-called coherent state, which is then 
used to calculate the polarization fields produced by the ex- 
ternal particle that executes the specified motion. This ap- 
proach presupposes exact knowledge of the structure of the 
electromagnetic fields connected with the elementary exci- 
tations of various types. 

The theory of surface excitations, based on the use of 
the long-wave approximation, makes it possible to find the 
structure of the electromagnetic field of a long-wave surface 
excitation and to determine the surface part of the polariza- 
tion field in the most interesting region of the distances from 
the entrance surface, which satisfy the condition 

(p, is the Fermi momentum of the electron; the z axis is 
normal to the surface). 

As for the volume part of the polarization potential, the 
structure of the electromagnetic fields of both long-wave and 
short-wave volume elementary excitations can be deter- 
mined on the basis of the general theory of the dielectric 
constant of homogeneous systems. The use of the method of 
coherent states makes it possible then, in the case of an infi- 
nite medium, to obtain directly the known results for the 
wake potential, and in the presence of the boundary also to 
investigate the resultant transition regime. 

Knowing the state of the system of elementary excita- 
tions of a metal at an arbitrary instant of time we can also 
calculate directly the energy losses and their fluctuations for 
a charged particle that moves along a given trajectory of any 
type. The solution of this problem is of particular interest in 
connection with the problem of reflection of charged parti- 
cles from a metallic surface. Lucas12 recently investigated 
the question of the energy lost to excitation of surface plasma 
oscillations when a particle moves outside a metal near its 
surface along a reflecting trajectory. Similar results for this 
case were later obtained by NGiiez et a1.I3 within the frame- 
work of the specular-reflection model. In a real situation, 
however, part of the reflected trajectory always passes 
through the volume of the sample, and the question of the 
energy lost to generation of surface and volume excitations 
under these conditions has remained open to this day. 

The results reported below have a general asymptotic 
character, since relation (I), which defines the region of their 
applicability, mans actually also that they are independent 
of the concrete structure of the surface of a pure metallic 
sample. 

2. STRUCTURE AND QUANTIZATION OF 
ELECTROMAGNETIC FIELDS OF ELEMENTARY 
EXCITATIONS IN A SEMI-INFINITE ELECTRON GAS 

We consider in this paper nonrelativistic motion of ex- 
ternal charged particles. This enables us to confine ourselves 
to a study of only longitudinal polarization fields, since ef- 
fects connected with excitation of transverse electromagnet- 
ic waves, when nonrelativistic particles are stopped in homo- 
geneous and nongyrotropic media, turn out to be smaller by 
approximately a factor v2/c2 (Ref. 14). For longitudinal 
fields, the vector potential can be chosen equal to zero (Cou- 

lomb gauge) and the problem reduces to a calculation of the 
corresponding scalar potential p. 

It is known15 that surface excitations of different types 
appear in the solution of the problem of an electromagnetic 
field interacting with a semi-infinite medium. By virtue of 
the translational symmetry of the problem, the dependence 
of p on the coordinates x and y and on the time t ,  for particu- 
lar solutions, takes the form exp (i(kll p - wt ) 1 ,  where 
p = (x, y) and kll is the corresponding two-dimensional wave 
vector. At large distances from the boundary plane z = 0, 
both inside (z > 0) and outside (z < 0) of the medium, the po- 
tential p '"I connected with the surface excitations should sa- 
tisfy the usual Laplace equation, and consequently 

cp("'=g exp {-k,, l z  1 + i  (k,,p-o,t)), (2) 
where the constant g, generally speaking, can have different 
values for positive and negative values of z. Near the bound- 
ary z = 0 there exists a thin near-surface layer, inside of 
which the dependence of p (') on z differs from (2) because it 
contains a distributed induced charge. For a semi-infinite 
electron gas having the usual metallic density, the dimension 
that characterizes the thickness of the transition layer is the 
quantity z, [Eq. (I)]. 

However, as already noted, of greatest interest in our 
case is the calculation of polarization fields at sufficiently 
large distances Izl > z, from the boundary, where the princi- 
pal role is played by the components of the fields with small 
kll . Under these conditions, the structure of the fields in the 
subsurface transition region turns out to be inessential, and 
the problem of determining the potential e, Is) in this region 
can be solved by stipulating at the boundary z = 0 the usual 
continuity of the normal component of the electric-induc- 
tion that corresponds to the field (2), and the continuity of 
the tangential component of the electric-field intensity. On 
the other hand, when calculating the electric induction in 
the case of long-wave field it is natural to assume that the 
properties of the medium are described everywhere, all the 
way to its boundary, by a dielectric function corresponding 
to an unbounded medium (the long-wave approximation). 
As a result we arrive at a dispersion equation that determines 
the dependence of the frequencies w, of the surface excita- 
tions on the twodimensional wave vector kl,  : 

where&(w;kIl ,kz) is the longitudinal dielectric constant of the 
unbounded medium and corresponds to the frequency w and 
to a three-dimensional wave vector k = (kll  ,k,); L is the nor- 
malization length in the z direction. 

In the limit of small kll 4 p,/fi, when the spatial disper- 
sion can be neglected and we can put ~ ( w , k )  = 1 - wi/w2, 
Eq. (3) leads to a well known that connects the 
frequency of the surface plasmons with the frequency w, of 
the volume plasma oscillations: 

In the general case Eq. (3) has also solutions that corre- 
spond to other surface-excitation types. Thus, in the ran- 
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dom-phase approximation there follow from (3) a number of 
solutions that describe single-particle surface excitations. 
The dielectric constant ~ ( o , k )  should in this case have, of 
course, a "microscopic" form with conservation of the sum 
over the electronic states. We emphasize that this circum- 
stance is of fundamental significance for the theory of sur- 
face excitations. 

In fact, it is easy to verify that the use of a "macroscop- 
ic" expression for ~(w,k), in which the summation over the 
electronic states is replaced by integration, on the one hand, 
leads to a complete vanishing of the branch of the single- 
particle surface excitations, and on the other, adds to the 
dispersion law of the surface plasmons a nonanalytic term, 
linear in kl l ,  with a complex coefficient. In the literature 
there are several attempts to understand the structure18 and 
the cause19 of the appearance of this term in w, (kll )within the 
framework of the hydrodynamic model. Our analysis shows, 
however, that the surface plasmons arise in the theory as an 
auxiliary concept, convenient for the description of the sys- 
tem of a large number of single-particle surface excitations 
with respect to which the problem of the nonanalyticity of 
the dispersion law does not arise. 

In the analysis that follows we start from exact micro- 
scopic properties of the dielectric function. At the same 
time, the final results for the polarization fields, as we shall 
see, can be expressed in terms of a "macroscopic" dielectric 
constant of integral type, and by the same token we can es- 
tablish its important and final place in the theory. We shall 
also verify that at least in the case of fast external charged 
particles (u ) u,) the employed long-wave approximation 
makes it possible to describe with high accuracy the surface 
polarization effects of interest to us. 

For what follows it is convenient to normalize the fields 
of the elementary excitations in such a way that the energy 
corresponding to double the real part of the field (2) be equal 
to the quantum energy fh , .  Using the known expression for 
the energy of a longitudinal monochromatic field in a nonab- 
sorbing medium (see, e.g., Ref. 14), we write the normaliza- 
tion condition in the form 

a 
J%E* (rr, t ) ~  (r, t )  - [me  (o ,  r, r f )  ] = h a ,  

d o  (5) 

where E(r, t ) is the intensity of the electric field with poten- 
tial (2). In the long-wave approximation it is easy to obtain 
from this an explicit expression for the "elementary" surface 
field: 

1 de(o,,;  kll, k,) 

8 o s a  

Here S is the normalization area of the interface, the index a 
numbers the branches of the surface excitations, and 
w, = o,, (kll ) are the frequencies of these excitations. In the 
derivation of the formula for gill, in explicit form we used the 
condition (3). In the case of long-wave surface plasmons 

g:,, =nfio,lk,,S, 

where w, is given by (4). 

In the absence of external perturbations, the arbitrary 
field due to the surface modes of the excitations can be writ- 
ten in the form of a superposition of "elementary" fields of 
the type (6): 

(8) 
where the coefficients akl,, depend on the time in accordance 
with the equations 

akll a+o,aZa~,,a=O. 

Calculating the energy E, of the "free" field (8) in the medi- 
um, we must obviously obtain the energy of the system of 
surface elementary excitations. Recognizing that the energy 
of the aggregate of excitations with given kll and a is deter- 
mined by the energy of an individual monochromatic field 
component of the type 2 Re(akllag, til, (r, t ) )  , and taking into 
account the normalization condition (5) for the "elemen- 
tary" field p t;, (r, t ), we get 

Following the universally known scheme," we can in- 
troduce canonically conjugate variables that are connected 
in standard fashion with the quantities aklla and atl,, and 
quantize the field (8). As a result we arrive at a surface-field 
operator 

x [ar a exp ( i k  11 p - ios,t) -1- H.c. ] (10) 

where 84, and 8,11, are the usual Bose creation and annihila- 
tion operators for the surGce quasiparticles. In accordance 
with (9), the Hamiltonian H of a system of free surface exci- 
tations is represented in standard form: 

In the presence of external charged particles that execute a 
specified motion, additional terms appear in the Hamilton- 
ian of the system and describe the interaction of the surface 
excitations with the external particles, 

R:"'= J jj (r, t )  6. (r, t )  ar. 

Herep(r, t )is the charge density of the external particles, and 
the operator @,(r, t ) is defined by (10). 

As for the volume excitations in a semi-infinite medi- 
um, in the long-wave approximation the dependence of the 
frequencies wg(q) on the total vector q is determined by the 
zeros of the volume dielectric function ~ (o ,q ) .  It is easily seen 
then that the electric induction for the volume modes in the 
medium must be equal to zero, and consequently the fields of 
the volume excitations cannot leave the medium (the refine- 
ments contained in Ref. 8 are of no importance for the region 
of large distances from the boundary surface, which is of 
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interest to us) and are represented by expressions of the type 

~ 2 )  (r, t) =A90 0 (z) sin (qzz) exp {i[qllp-oe (qltl)  (13) 
Here 8 (2) is the unit step function 

The normalization coefficients A,, are determined by the 
condition (5) with an intensity E(r, t ) corresponding to the 
field (13), and are equal to 

where 0 is the normalization volume. 
The quantization of the field due to the volume excita- 

tions leads to the "volume" field operator 

where & $ and &,, are the operators of the creation and anni- 
hilation of volume elementary excitations oftypefl that obey 
the Bose commutation relations. The Hamiltonian of the 
system of volume excitations, which takes into account their 
interaction with external particles, is formally of the same 
form as in the case of a system of surface excitations. 

When describing systems of surface and volume ele- 
mentary excitations within the framework of the long-wave 
approximation, a number of far reaching beautiful analogies 
can be easily discerned. In particular, if we introduce with 
the aid of the relation 

a "surface" dielectric constant ~ ~ ( w , k ~ ~  ) that depends on the 
frequency w and on the two-dimensional wave vector k l l ,  
then, on the one hand, the frequencies of the surface elemen- 
tary excitations are determined by the zeros of the function 
&,(w,kll ) [see Eq. (3)], and on the other, the factors gklla [Eq. 
(6)], which determine the structure of the surface field (8) and 
play the most important role in the theory, will be expressed 
in terms of frequency derivatives of the "surface" dielectric 
constant, in full accord with the expressions for the structure 
factors A,, (14) of the volume excitations. 

3. SURFACE PART OF POLARIZATION POTENTIAL FOR A 
POINT CHARGE ENTERING THE METAL ALONG A NORMAL 
TO THE SURFACE 

We assume that an external point particle with charge 
Ze moves along the z axis with velocity v and crosses the 
vacuum-metal interface at the instant of time t = 0. For the 
Hamiltonian of the interaction of the system of surface exci- 
tations with such a particle we have from (12) (we use the 
interaction representation throughout) 

To find the state of the system at an arbitrary instant of 

time, we use the solution of the problem of the motion of a 
quantum oscillator under the influence of an alternating ex- 
ternal field. We denote by the symbol Ivac) the ground state 
of the system of surface excitations at t = - CQ . Then, at the 
instant of time t, the state of the system will be described by 
the direct product of the so called coherent states (see, e.g., 
Ref. 11) of the type 

where the complex functions Q,,,, (t ) and Qklla(t  ) are defined 
by the expressions 

x j exp (io.. (k,) tr-k,v I t' 1 } dt', 
- m (19) 

t 

We emphasize that I !?(t)) (18) is the exact dolution of the 
corresponding time-dependent Schrodinger equation, which 
satisfies the condition I !? ( - CQ )) = I vac) . 

The surface polarization field p,(r, t ) should now be 
defined as the mean value of the operator (10) averaged over 
the obtained coherent state of the system of surface excita- 
tions. Since the mean values of the operators rikiIa(t) and 

(t ) in this state differ from zero and are equal respective- 

ly to Q,,,, (t ) and Q (t ), we have for p, (r, t ) simply 

When analyzing the obtained expression, we change 
from summation over a at a fixed kll to integration over the 
frequencies, in acordance with the formulas 

1 -  d&.(a-ykll) 1-' = - - jdof (a )  ~m 1 Cf(asa) [ do,, 
a 0 

F. (0 ,  k,,) ' 

(21) 
where E,(o,kll ) is the "integral" dielectric function obtained 
from the microscopic expression by integrating over the 
electronic states. Relation (21) is proved in the same manner 
as used in the theory of oscillations of an impurity atom to 
prove the formula for the transition from summation over 
the shifted frequencies to integration (see, e.g., Ref. 21). 

By substituting in (20) the values of Q,,,, (t ) calculated in 
accordance with (19) we arrive, after integrating over the 
directions of the vector k i l t  at the expression 

2kllv +8 (t)- sin a t  Im 
1 

a 1 E;(o, kll)' 
(22) 
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The integral of the first term in the curly brackets with re- 
spect to the frequencies can be calculated in the explicit for 
and yields 

At small kll using the Lindhard expression for E(w,k) (Ref. 
22), we get 

es(ikllv, kll) -2 

where k ,  = Gdv, is the Thomas-Fermi wave number. If 
the velocity is high, v > v,, then 

e. (ikl,u, kll) -2+oo2/ (kl~v)~, (25) 
and in the case of low velocities, u + 0, 

B. (ikllv, kll) =2+kTF2/2kl12. (26) 

The integral, with respect to the frequencies, of the sec- 
ond oscillating term in the right-hand side of (22) can be 
calculated with sufficient accuracy at small kll with the aid 
of the following considerations. We note that the function 
Im l/Es(w,kll) has at small kl l  a sharp peak in the vicinity of 
the point w = w,, with a width r that depends linearly on kll . 
This becomes obvious after representing the quantity 
E,(w,kil ) at kll - 0, w z w ,  accurate to terms of first order in 
kll , in the form 

e, (a,  kll) =2-w,2/02+Z(w) kll, (27) 
where 

z ( a )  =z, ( a )  +i12 (u) = - JC ~ ~ [ e ( w ; ~ , k ~ ) - e ( a ; ~ . ~ ) l .  
- m 

(28) 

It follows from (27) that in the vicinity of w = o, 

where 

r(k11) ='/20,12 (0.1 ~ I I .  

The expression in the right-hand side of (29) can be re- 
garded as the imaginary part of the reciprocal dielectric 
function '(w,kll ), corresponding to the presence in the sys- 
tem of only one type of surface excitation-surface plasmons 
having at small kll energies liw, [ 1 - ~ll(ws)kl l  ] and finite 
lifetimes r = f i / r  (kll I. The damping of these excitations is 
not due to their decay into some other excitations, and has an 
entirely different physical meaning. Indeed, the surface plas- 
mons appear as a concept that describes effectively the result 
of generation of a large number of undamped surface excita- 
tions. In the course of time a packet made up of these excita- 
tions and equivalent to one surface plasmon spreads out be- 
cause of the difference between their energies and momenta. 
These processes of spreading of the packet is perceived by 

the observer as the damping of the surface'plasmon. In the 
Lindhard approximation we easily obtain from (28) and (30) 

Using (23), (25), and (29) and retaining in the second 
oscillating term of (22) terms up to first order in kl, in the pre- 
exponential factors, we arrive at the result 

In (32) we singled out explicitly the potential corre- 
sponding to the electrostatic-image field of the charge. The 
second integral term is a correction and decreases at large 
distances like v20;  2(lzl + ult It vanishes as v --+ 0, but 
becomes substantial at high velocities v ) u, and cancels out 
the electrostatic-image field at distances from the surface 
which satisfy the condition lzl + vlt I Sv/w,. The physical 
meaning of this cancellation is that the electrons in the sub- 
surface region, located at short distances (comparable with 
v/w,) from the external particle, do not have time to be dis- 
placed enough to produce around themselves in vacuum a 
polarization field equivalent to the electrostatic-image field. 
At the same time, the electrons located farther, which ac- 
quire only small displacements, turn out to be perfectly ca- 
pable of "keeping up" with the rapidly moving particle. 

After the particle crosses the interface (t > 0), free oscil- 
lations of the surface charge set in and are responsible for the 
appearance of the time-oscillating terms in the polarization 
field (32). The additional oscillating force, due to these 
terms, during the initial period of time 0 < t < P/O after the 
entry, exerts a retarding action on the external particle. 

In the case of small v, Eq. (22), with allowance for (23) 
and (26), determines the field of the slowly moving polariza- 
tion charges that "follow" the displacement of the external 
charge. In particular, for a charge that is at rest at a distance 
lzol from the surface, the polarization field (22) takes the 
form 

For the case of a charge at rest outside the metal, it 
follows from (33) that the polarization field in vacuum is 
determined, as it should, by the field of the electrostatic im- 
age, and inside the metal it is equal to the self-field of the 
charge taken with a minus sign. Thus, the total field inside 
the metal is zero in this case. This statement does not pertain 
to the narrow subsurface layer, where the total field de- 
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creases like (lzl + I z , ,~ ) -~ .  The correction to the field of the 
electrostatic image in vacuum behaves in similar fashion, in 
full accord with the results of the analysis23 of the situation 
with a charge at rest outside the metal. 

We note that the total energy of a charge lying on the 
surface, z = 0, is estimated according to (33) at 
- n-Z 'e2 k,/4. 

4. VOLUME FIELD IN THEPRESENCE OF AN INTERFACE AND 
THE TOTAL POLARIZATION POTENTIAL 

In analogy with the situation with surface excitations, 
the evolution of the wave function of a system of volume 
excitations will be described by the direct product of the 
corresponding coherent states. Repeating the arguments of 
Sec. 3, we easily obtain with the aid of (15) the volume part of 
the polarization potential 

- 

B,s,,,qz>o 

exp ( - - ip t )  -exp (-ioe(q) t )  

crv-w3(q) 

exp (iqvt) -exp ( - i m p  (q )  t )  - 3 +C.C.} . 
qv+we ( q )  (34) 

Replacing the summation overfi by integration with respect 
to w in accordance with the volume analog of (21), we can 
write (34) in the form 

where 

is the field of a unit point charge moving with velocity v 
along the z axis in an infinite homogeneous medium, if the 
interaction of this charge with the particles of the medium 
was turned on instantaneously at the instant of time t = 0. In 
other words, the volume part of the polarization potential 
inside the metal, in the presence of a plane boundary with a 
vacuum, is determined by a superposition of two fields pro- 
duced in the infinite metal by the point charge itself and by 
its mirror image, just as if they were produced at the instant 
t = 0 at the point r = 0 and then moved apart from this 
point. 

Using the Kramers-Kronig relations, we can reduce the 
field (36) to the form 

which demonstrates the possibility of calculating p,(r, t )  
with the aid of the usual "macroscopic" considerations. 
Here p , ,  is the Fourier transform of the charge density 
e ( t  )S(r - vt ). 

Regarding the field (36) at large distances from both the 
charge itself and from the point where the interaction is 
turned on, we estimate first the contribution of the single- 

particle excitations with small q. Under the condition 
r ) v, t, the t-dependent exponentials in (36) can be expand- 
ed in a series and the first three terms retained, and the corre- 
sponding contribution can be written in the form 

where the index p numbers the single-particle excitations. 
The summation overp can be carried out with the aid of the 
rule 

and leads to the result 

Here fiw,, (q) is the energy of a plasmon with momentum q. 
In the random-phase approximation22 it is easy to find 

that the first term of the expansion of the right-hand side of 
(40) in powers of q is the term of order q2, and (38) takes the 
form 

where f (q) is the certain continuous function that ensures 
convergence of the integral with respect to q and has the 
property f (0) = 1. It follows from (41) that the contribution 
of the single-particle excitations with small q to the potential 
(36) at large r ) v, t falls off like r-6 

The contribution of the single-particle excitations with 
large q-p ,  can turn out to be much more substantial; this 
contribution is dictated by the corresponding singularities of 
the dielectric constant. If we start from (41), this contribu- 
tion oscillates in space with an amplitude that decreases, as 
in the case of the known Friedel oscillations, like 

Actually, however, the approximation leading to (41) is in- 
correct for single-particle excitations with large q, and inte- 
gration over the frequencies and over the directions of the 
vector q in (36) leads to an effective weakening of the singu- 
larities o f E ( ~ , ~ ) ,  and consequently to a faster decrease of the 
contribution of such excitations compared with (43). 

The foregoing considerations allow us to state that out- 
side the subsurface layer of thickness z,, and at large dis- 
tances from the particle compared with z,, the volume part 
of the polarization potential is determined only by the plas- 
mon contribution, which can be calculated with the aid of 
the relation 

wherep, is the maximum plasmon momentum, and 
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With the random-phase approximation as the example, 
when 

we can see that allowance for the dependence of the function 
Fand of the plasmon frequency a,, on the momentum q is of 
no importance for the calculation of the potential (36); -in 
particular, on the symmetry axis z we can easily obtain under 
the formulated conditions 

pev . ooz' 20 ( z )  0 (z ')  In -sin - 
0 0  V 

a e-Elz ' l  

-2 Jdg ooz 
ooz' + signzci-s in-  

v  ~ 2 + o o Z / v Z  v V 
0 

where z' = z - ut. 
The integral in (47) is a function that changes monotoni- 

cally from its maximum value 7m0/2u at z' = 0 to zero, and 
its asymptotic value at lz'i % v/w, is l/lzll. This part of the 
polarization potential ensures screening of the Coulomb 
field at large distances from the moving particle. The last 
two terms in (47) constitute the contribution due to the in- 
stantaneous turning on of the interaction with the medium. 

Using (47), we obtain for the volume potential (35) on 
the z axis 

I :' PCV ooz' 1 1 
cpv(z, t )  -Ze0(z)  2 - 0 ( z ' ) l n - s i n + - - -  

00 v l z f v t l  lz'l 
v 

z, lz'l B -. 
0 0  

On the other hand, the total polarization potential in the 
medium, which takes into account the contribution of both 
the surface and the volume excitations, is determined at 
large distances from the surface and from the particle on the 
z axis by the expression [see (32)] 

- 
o o z Z  

"" ", + * (s in mot-I2 sin - . 
I2  

The fact that the potentials of the "volume" and "surface" 
electrostatic images of the charge cancel each other in the 
obtained expression confirms the important role of the sur- 
face polarization in our problem. 

The foregoing analysis shows that a stationary regime 
with a polarization potential typical of an infinite medium, 

is reached within a time t > w; '. The difference between 

p (r, t ) and the "stationary" value (50) is due to excitation of 
surface and volume modes of oscillations at the instant when 
the particle crosses the vacuum-metal interface. The influ- 
ence of the additional terms in the vicinity of the particles 
becomes weaker like z-' with increasing distance from the 
particle to the boundary. At t < w; ' the surface effects play 
an important role and alter substantially the polarization 
field near the particle compared with the situation in an infi- 
nite medium. 

We note that establishment of a stationary regime takes 
place independently of the presence of damping of the quasi- 
particles. The time t ) w; ' needed to make the influence of 
the boundary conditions on the field small near the particle, 
can still be much shorter than the lifetime of the quasiparti- 
cle. 

Of importance in our problem is the establishment of a 
stationary value, corresponding to the potential (50), of the 
stopping force that is exerted on the particle by the medium. 
It is easily understood that the corresponding establishment 
time is estimated at w; '. However, part of this force is due to 
the so called "close" collisions that set in even earlier-with- 
in times of the order of ti/m,v2, where me is the electron 
mass. 

5. POLARIZATION FIELD IN OBLIQUE INCIDENCE OF THE 
PARTICLE ON THE METAL SURFACE 

Let a charged particle move with high velocity u ) v ,  at 
an angle 9- to the plane surface of a metal, crossing the sur- 
face at the instant t = 0 at the point r = 0. Calculations simi- 
lar to those given above lead to the following compact 
expression for the potential due to the polarization and to the 
excitation of the system of surface plasmons, whose disper- 
sion and damping will be neglected in this section: 

t sin o, ( t - z )  
9 s  ( r ,  t )  =-Zeus 

dT [ (~z~+~v~T~)'+(~-v~~T)']"* * - m 

(51) 

where v, and vll  are respectively the normal and tangential 
components of the velocity v of the particle relative to the 
vacuum-metal interface, and w, is the frequency of the sur- 
face plasmons (4). 

The volume field, in analogy with the results of the pre- 
ceding section, is given by the formula 

qY ( r ,  t )=Ze0 ( z )  [ V ( x ,  y, z; t )  - V ( x ,  y, -z; t ) ]  . (52) 
Here V (r, t )is the polarization potential corresponding to the 
instantaneous turning on of the interaction with the medium 
at t = 0 for a unit point charge moving in an infinite metal 
with constant velocity v at an angle 9- to the plane z = 0. 

In particular, when moving in a vacuum parallel to the 
surface at a distancez, from the latter, the total polarization 
field 

Zeo,  
q(I1) ( r ,  t )  =qj")  (r ,  t )  = - - v 

x j d t  sin ( ~ . C / V )  I ( l-z I +  l zo I )  '+ ( ~ ; v / v + ~ - V t )  '1 '% 
(53) 

takes the form of the Vager-Gemmell potential, proposed 
in Ref. 2 for the description of the polarization produced by a 
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point charge in an infinite homogeneous medium of metallic 
type. As shown in Ref. 2, the field (53) is characterized by 
intense oscillations in the wake of the moving particle. When 
using the numerical results cited in Ref. 2, it is necessary, 
however, to bear in mind that the unit of measurement of the 
potential indicated there is approximately three times larger 
than the true value. 

It follows from (53) that the energy losses of the particle 
in the case considered are determined by the relation 

where KO is a cylindrical function of imaginary argument. 
Formula (54) is valid at lzol > z,. With decreasing lzol in the 
regionz, < lzol < d o S ,  the energy losses increase logarithmi- 
cally, and when z, increases in the region lzol > u/w,, they 
decrease exponentially. 

6. ENERGY LOSSES OF FAST PARTICLES REFLECTED BY A 
SEMI-INFINITE METAL 

We analyze now the energy losses and their fluctuations 
when a fast charged particle is reflected from a metallic sam- 
ple. We assume that at t = + the particle is infinitely far 
from the semi-infinite metal, and that at finite t its trajectory 
passes near the surface or through the volume of the sample. 

From equations such as (1 8) follows directly the Poisson 
law for the excitation probability of n surface quasiparticles, 
each of which has a momentum Gll and an energy fiw, (kll ): 

w" (kl,, a )  = Ls(k117 a) I n  exp {-I (k,,, a )  1 . 
n ! 

For the average number of excited quasiparticles of this type 
we have 

Here r,(t )(po(t ), zo(t ) ]  is the radius vector of the external 
particle as a function of the time t, while gkll, is given by Eq. 

(6). 
The probabililty of exciting n volume quasiparticles 

characterized by a wave vector q and energy h s ( q )  has the 
same form (55), with E(kll ,a) replaced by E(q, B ) :  

Ze 
a(q.p)= IT~.4 ~ ~ [ z ~ ( t ) ~ s i n [ q = z ~ ( t ) ~  

-- 
x exp {-ip~p0 (t) +io, (q) t )  dt I I. (57) 

where A,, is defined in (14). For the energy losses of the 
external particle and for the square of their fluctuations we 
easily obtain then 

Here 

Equations (56)-(58) solve in general form the problem of the 
energy lost by a fast particle moving along an arbitrary "re- 
flecting" trajectory, including the situation when part of the 
trajectory of the particle passes through a volume occupied 
by a semi-infinite electron gas. 

To reveal the main features of the energy losses in scat- 
tering in a thin subsurface layer, we carry out concrete calcu- 
lations for the case of motion along a symmetrical trajectory 
of the "corner" type, made up of two rays and corresponding 
to entry of the particle from the vacuum into the metal and to 
scattering at a depth z,, followed by escape to the vacuum. 
The particle velocities v = (vll ,ul) and v' = (vll ,  - v L )  respec- 
tively at the entrance and exit sections of the trajectory will 
be assumed constant, with v, > 0. Neglecting the dispersion 
and damping of the surface plasmons, we obtain for the "sur- 
face" part of the energy losses 

2 cos [ (o.-kllvll cos cp) z o / v I ]  -ekllro 
kllZv,2+ (ws-k l lu l i  cos (E)' 

} (59) 

The main contribution to the integral with respect to kl, in 
the right-hand side of (59) is made by the region of small 
kl, 5 w,/v, so that the long-wave approximation used to de- 
rive (59) is adequate in the case of fast particles (v ) v,). 

Ifz, > v/w,, we get from (59) a simple result for the case 
of particle reflection from the surface of the metal: 

x Z2e2 
6'E,I,,=o =-- 

2 Av, 
(Aos)x, 

i.e., in accord with Ref. 12, the surface energy losses and the 
square of their fluctuations increase like l/v, with decreas- 
ing transverse velocity of the particle. 

In the analysis of the inverse limiting case zo ) v/o,, the 
trajectories of the considered type can be broken up into two 
groups. 

1) Trajectories with v, 5, vll . For these trajectories Eq. 
(59) with zo ) v/o,  gives a physically natural result, exactly 
double the value (60) for the case of reflection froma surface: 

ZZez 
lim 6'E,=26'Es I,,=,=n -(Ao.) '. 

roe OD fiv, (61) 

2) Of particular interest are trajectories that are almost 
normal to the surface of the metal and are characterized by 
the relation vll < v. It is clear from (59) that the trajectories of 
this group execute in the region z, ( v2/v l ,o ,  oscillations 
with amplitudes SAEs that are functions of the depth of scat- 
tering zo: 

Thus, in the case when the depth z, spans an odd number of 
"quarter-wave" segments m/2oS, the surface energy losses 
and their fluctuations are close to zero. This phenomenon is 
due to the "resonant" energy transfer from the excited sur- 
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face plasmons to the particle emitted from the metal. 
At very small values of v l l  the dispersion and damping 

of the surface plasmons play an essential role, restricting 
from above the region of values of z, where the oscillations 
SAE, can be observed. The corresponding condition takes 
the form 

I<Z~O,/V<<U/ (vIl+vp). (63) 

An increase of z, outside the region (63) leads to the limit 
(61). 

If the scattering takes place at a point with coordinate 
z, < 0, i.e., when the particle has still not reached the surface 
of the metal, it is necessary to use in place of (59) the relation 

(64) 
which shows that in the region of negative z, at lzl > v/w, 
the total energy losses of the particle and the square of their 
fluctuations decrease like lzol -3. 

In accord with (57) and (58), the contribution of the vol- 
ume excitations to the energy loss of a particle moving along 
a symmetrical "corner" trajectory withz, > 0 is described by 
the expression 

In the analysis of (65), particular interest attaches to the plas- 
mon part of the energy losses, separation of which from (65) 
with the aid of (44)-(46) and allowance for the weak depen- 
dence of the frequency of the volume plasmons on the wave 
vector enables us to write 

Simple calculations in the case of normal incidence (vll = 0) 
under the conditions z, ) v/w, and v ) v, lead to the result 

where 
5c 

y=arctg . 
2 [ l n ( ~ , ~ / ~ , )  -I I 

For the plasmon part of the effective deceleration force we 
have then 

Thus, in the case of backscattering noticeable oscilla- 
tions of the plasmon part of the volume energy losses, as 
functions of the scattering depth z,, are produced in a thin 
subsurface layer of the metal; these oscillations manifest 
themselves particularly strongly in the stopping force (68). 
Simple estimates with allowance for the dispersion of the 
plasmons yield the interval of incidence angles 9z vll /v and 
depth z, where these oscillations take place: 

l ~ z o o o / v <  (6+vFZ/v2) -'. (69) 

At values z@dv larger than the upper limit in (69), we 
can put in the entire reigon of w and q 

and substitution of (70) in (65) leads to total energy losses and 
a stopping force that correspond to motion in an unlimited 
medium. 

As for the energy losses due to single-particle volume 
excitations and for fluctuations of the total energy loss, the 
transition to the corresponding results that are typical of the 
situation in an unbounded medium is realized already at neg- 
ligible depths zo-z,v,/v. 
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