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The plasma produced when a solid target is evaporated by a laser is located in a stationary layer (of 
the Knudsen type) adjacent to the target. The boundary of this layer in the nonstationary flow 
region (the jet itself) is the Jouguet point. Under the assumptions indicated, a theory of the 
stationary layer is presented and the boundary condition for the jet, namely the connection 
between the electron temperature and the degree of ionization at the Jouguet point, is obtained. 
The dependence of these parameters on the gasdynamic flow in the jet is obtained. A comparison 
with experiment is made. 

PACS numbers: 52.50.Jm, 52.30. + r, 47.55.C~ 

When a solid target is irradiated by a laser of sufficient 
intensity, the radiation is absorbed not by the target itself, 
but in a layer of dense ionized plasma produced near the 
target surface. The problem of target evaporation under 
such conditions was solved in Ref. 1, where it was assumed 
that the degree of plasma ionization is given. The evolution 
of the ionization in the course of evaporation was consi- 
dered, e.g. in Ref. 2, where a self-similar solution was ob- 
tained for the expanding plasma. 

It is known3 that in ordinary evaporation the self-simi- 
lar solution is established outside the Knudsen layer located 
near the evaporating surface, and the flow in this layer is 
stationary regardless of the evaporation regime. It is natural 
to assume that a stationary layer of this kind should exist 
also in the case of laser evaporation. Its investigation is in 
fact the purpose of the present paper. 

We consider a planar target (located at x < 0) and as- 
sume, just as in Ref. 1, that all the radiation is absorbed in a 
point x, = 0, where the electron density n,(x) is equal to the 
critical value n, . We neglect the absorption in the more rare- 
field jet. In addition, we assume that the flow in the region 
0 < x  <x, is stationary and that x, is the Jouguet point (i.e., 
the hydrodynamic velocity at the point x, is equal to the 
local isothermal sound velocity). We note that the existence 
of a stationary layer with such properties was noted in Ref. 1 
for a planar geometry and a fixed degree of ionization. 

According to Ref. 4, the rate of the ionization I" 
-1 " ' (m is the number of equivalent electrons in the outer 
electron shell of the ion) is 

S, ( T , )  =lo-' - A$" 
e-B-[cm3/sec]. (1.1) 

Bfa 

Here E, is the ionization potential, f l =  EJT,, A and a are 
constants, and I is the angular momentum of the outer-shell 
electron. 

The rate of the photorecombination I " - '-1 " is ex- 
pressed as follows: 

41+3-m E, '11 Bp% 
a, (T.)  =lo-'' 

41+2 ( ~ y )  g' 
where B and b are constants. 

In the analytic calculations we shall replace m by its 
mean value E = 21 + 1 and approximate the dependence of 
the ionization potential on the degree of ionization by a pow- 
er-law function: 

The constants E, and k, as incidentally also the constants A ,  
a, B, and b, are different for different shells. The quantity of 
interest to us 

The stationary region x <x, can be regarded as the re- 
gion of plasma formation, while the nonstationary region Can then be written in the form 

x > x, , where the plasma is described, e.g., by a refraction Te - ' I  e-8 
( 1  =so ( - 1  z - " { ~  - rzZk - wave, as the plasma-jet region. We shall focus our attention 0 

(1-5) 

on the formation regions, and determine how the electron 
temperature T,(x) is connected with the degree z(x) of plas- Here 
ma ionization at the point x, . This connection is the bound- 
ary condition for the solution of the problem of plasma ex- so= lo-8% - (1.6) 

pansion in the jet region. 

1. IONIZATION, RECOMBINATION, AND THERMAL 
CONDUCTIVITY The constant quantities Eo, k, and So for ions with dif- 

The physical processes that occur in the plasma-forma- ferent outer electron shells are listed in Table I. The headings 
tion region are determined by ionization, recombination, 2s-2p in this table pertain to ions with ground state configu- 
and thermal conductivity. rations ls22sm (m = 1 - 2) and ls22s22pm (m = 1 - 6),  and 
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TABLE I. 

3s - 3p to the configurations 1 ~ ~ 2 ~ ~ 2 ~ ~ 3 s "  (m = 1 - 2) and 
ls22s22p63s23pm (m = 1 - 6). The values of Eo and k were 
determined by least-squares averaging of the ionization po- 
tentials cited in Ref. 5. For Ca and Ti we have also construct- 
ed a single continuous function that approximates the de- 
pendence of the ionization rate on the ion charge for the 2s- 
2p and 3s-3p shells jointly. The parameters Eo, k, and So 
were determined with the aid of this function. Their values 
for Ti are given in Table I in the column headed 
(2s - 2p) + (3s - 3p), and for Ca in Table I11 below. In this 
case, the dependence of the ionization potential on the ion 
charge, E, = Eo(z + l)k, is approximate. This dependence, 
however, enters in the theory only via the ionization rate, so 
that this manner of specifying E,(z) allows us to use the the- 
ory parameters Eo, k, and So without incurring appreciable 
errors. The close values of 8' for both approximations (see, 
e.g., Table 111) mean that consideration of two shells results 
in an error that at any rate is not larger than the case of one 
shell. At the same time, the accuracy obtained thereby is 
higher, since the ionization can be taken into account during 
its earlier stages. The quantities z,,, and z,, describe the 
limits of the variation of the ionization multiplicities z, 
between which an approximation with given definite param- 
eters Eo and k is valid. 

We turn now to the thermal conductivity. According to 
Ref. 6, the reciprocal thermal-conductivity coefficient is 

Here me is the electron mass, ne is the electron density, 7,; is 
the time of electron scattering by the ions, 8, is the cross 
section for this scattering by ions with chargez, and n, is the 

density of these ions. Since di = z2uii, we can express in the 
form 

where the mean values are 

and ni is the total density of the heavy particles. By expres- 
sion ne in (1.8) in terms of?, we have taken into account the 
neutrality condition 

n e = x  knZ=?ni. (1.11) 
L 

If we assume approximately 7 = T2, we can write for tt 

where xo is the thermal conductivity at ? = 1 and Te = Eo 
(see Table I). 

2. BASIC EQUATIONS OF STATIONARY LAYER 

In the derivation of the equations of plasma motion and 
ionization in the region of the plasma formation we shall 
assume that all the plasma components have the same drift 
velocity u. Together with the neutrality condition (1.11) this 
ensures the absence of electric currents. We consider first the 
mass, momentum, and energy transport equations: 

The mass conservation law: 
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wherep is the density and M the mass of the heavy particle; 
we neglect the electron mass. 

The momentum conservation law: 
du dp 

pu- - = 0, p=n.T.+ n,TdZ. 
dx.  dx z 

Here p is the pressure and T f  is the kinetic temperature of 
ions with charge z. Since the ions are heated only by the 
electrons, T f  < T,. At the same time, at a high degree of 
plasma ionization we have n,,n,. We can therefore neglect 
the ion pressure and put p = n, T,. 

The energy conservation law: 

where y > 5/3 is the effective adiabatic exponent that takes 
the energy loss to ionization into account. 

Equations (2.1)-(2.3) contain the following unknown 
functions: u, ni, n,, and T,. The thermal conductivity de- 
pends according to (1.12) onzand T,. Noting that ni = n,E, 
it is convenient to choose the functions u, n,, T,, and z as the 
unknowns. It is now clear that we are lacking one equation. 
To derive it we write down the electron-number balance. We 
note for this purpose that in electron-impact ionization pro- 
cesses z+z + 1 each electron has a probability S, of "creat- 
ing" one more electron, while in photorecombination 
z-z - 1 an electron z has an "annihilation" probability a,. 
Therefore, using the definition (1.4), we have 

Introducing the mean values (1. lo), we write approximately 

We then obtain the missing fourth equation 

We now rewrite all four equations in terms of the cho- 
sen variables, simplifying the notation: Z+z, T,+T, n,+n. 
From (2.1) and (2.2) we have 

Using (2.7), we can rewrite (2.6) as 

If we neglect the energy flux into the target, the total energy 
flux (thermal + gasdynamic) is zero, and (2.3) takes the form 

Equations (2.7)-(2.10) constitute the complete system of 
equations for the variables u, n, z, and T. 

The plan for solving these equations is the following. 
We specify the values of z and T at the point x = x, and 
designate them z, and T, . We know the value n, of n at the 
point x. The velocity u, at this point can be expressed in 
terms of z, and T, , inasmuch as by assumption x, is the 
Jouguet point: 

u.~= (If z.) T.IM=z.T.iM. (2.11) 

It follows now from (2.7) and (2.8) that 

nu/z=ntu./zI, (2.12) 
n n. 

M - u2+nT=M - u.'+n.T.. 
z z. (2.13) 

From this we can express u and n in terms of T and z and the 
parameters T, and z, (which are as yet unknown). Substi- 
tuting these expressions in (2.9) and (2.10) we obtain the sys- 
tem 

dz/dx=F(z, T; z,, T.), dT/dx=G(z, T; z., T,) .  (2.14) 

We are interested in a solution of the systemz(x) and T ( x )  for 
which 

The first condition is connected with the fact that near the 
target the degree of plasma ionization is much less than the 
mean value. The cause of the second condition is that near 
the target the kinetic energies of all the plasma particles are 
of the order of the atomic energy, i.e., much less than the 
average plasma temperature. 

The system (2.14) determines a family of trajectories in 
the (z, T )  plane, along which thex varies. The equation for the 
trajectories is 

dT/dz=H(z, T ;  z,, T.), H=G/F. (2.16) 

The condition (2.15) means that the trajectory correspond- 
ing to the sought solution must pass through the point (0,O). 
At the same time, if z, and T, are chosen, the trajectory 
passing through the point J = (z, , T, ) is uniquely defined, 
and it need not necessarily pass through the point (0,O). For 
this to be the case, it is necessary to impose some connection 
between z, and T,. That this connection is unique follows 
from the fact that there are three free parameters, z, , T, , 
and x, , but only two conditions (2.15). The connection 
between z, and T, is indeed the boundary condition for the 
region of the nonstationary plasma flow mentioned in the 
Introduction. 

3. PHASE PORTRAIT OF THE FORMATION REGION 

Let us determine the trajectories of the system (2.14) in 
the (z,T) plane. It can be seen from (2.10) that in the entire 
(z,T) plane we have dT/dx >O. We turn now to (2.9); the 
function y, reverses sign on a certain curve C in the (z,T) 
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FIG. 1 .  Characteristics of plasma formation region. 

plane; this is the coronal equilibrium curve. Ionization pre- 
dominates above this curve and dz/dx > 0, while recombina- 
tion predominates below and dz/dx < 0. We thus have d T /  
dz > 0 above C and dT/dz below, while on the curve C itself 
dT/dz = UJ. 

If T-0, it can be seen by using (1.7) and (1.12) that 
H-  T -2 -+~o .  It can be seen from these same expressions 
that if z-0 then H - z ~ +  '-0. In other words, dT/dz = UJ 

on the z axis and dT/dz = 0 on the Taxis. 
Bearing the foregoing in mind, we can construct the 

typical characteristics shown in Fig. 1. In particular, it is 
clear from the figure that the point J cannot lie below C, for 
then the trajectory arrives at J from the regionz > z, instead 
of from the region z -- 0. 

Let us see how the character of the trajectories changes 
with change in thermal conductivity. 

Let x+ UJ . We then have d T  /dzz  0 everywhere except 
in a small vicinity of the curve C and a small vicinity of the z 
axis. The characteristics will have the form shown in Fig. 2a. 
All the characteristics departing from the region of small z 
and T "hug" the curve C, so that this curve, near which the 
point J i s  located, can be taken to be the sought trajectory. In 
this case the boundary condition is 

This is physically obvious. If x is increased, to maintain the 
heat flux constant we must increase the formation-region 
thickness x,. The time of flight of the plasma through this 
region is then increased enough for ionization-recombina- 

FIG. 2. Characteristics of plasma formation region in the case of high (a) 
and low (b) thermal conductivity of the plasma. 

tion equilibrium to be established in this region. This is pre- 
cisely the circumstance described by the fact that the charac- 
teristic hugs the equilibrium curve. 

Let now x-0. We then have d T / d z - + ~ ~  everywhere 
except in a small vicinity of the Taxis. Characteristics of this 
type are shown in Fig. 2b. Now the charcteristics departing 
from the region of small z and Tmove abruptly upward and 
it is clear that a noticeable degree of ionization z will be 
reached only far above the curve C. This means that the 
recombination can be completely neglected. In this case the 
plasma is not fully ionized, i.e., z, is smaller than the degree 
of ionization at the temperature T,. 

4. BOUNDARY CONDITION FOR PLASMA JET 

The solution program indicated in Sec. 2 is most conve- 
niently carried out by transforming to the dimensionless var- 
iables 

N=n/n., s=u/u,, 0=T/T., %=z/z.. (4.1) 

In these variables, Eqs. (2.12) and (2.13) take the form 

Ns=t, s+N0=2. (4.2) 

Hence 

The necessary solution is chosen from the following 
considerations. In order for absorption to take place actually 
at the point x, it is necessary that at x < x, (i.e., between the 
target and the critical point) we have n > n, , i.e., N >  1. If we 
choose for s the solution with the minus sign, then on going 
from x = 0 to x = x, the value of s increases from zero to 
unity, since f and 0 increase from zero to unity, in accord 
with the meaning of the problem. Since both s and 8 increase 
with increasing distance from the target, N  decreases to 
N  = 1 at x = x, , thus ensuring satisfaction of the condition 
N >  1. 

We have thus 

i.e., now s and N  are known functions off and 0. 
We now rewrite (2.16) in the dimensionless variables 

and confine ourselves to the case when the recombination is 
negligible. This is done as follows. We transform in (2.9) and 
(2.10) to the dimensionless variables and separate these equa- 
tions. We express next the resultant parameters u, , T, , and 
z, in terms of the paramaters p, and E defined as follows: 

P,=E,*/T.= (Eo/T.)z,k=~-lz,k, (4.7) 

&=T,/EO. (4.8) 

In addition, we introduce a parameter that describes the tar- 
get, 
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The values of M and A for different ions are given in Table I. 
The indicated transformations yield 

where we have introduced the functions 

which depend on the variables 

p=p.e-lgk, g=eg. 

Since the calculations are semi-quantitative, the exact 
value of y is not very important, and we assume y = 5/3. The 
parameter q is independent off and 8 and is defined as 

3/k (W+3)lk(k+*), 
q=h- E P. (4.14) 

The right-hand side of (4.10) contains, besides the varia- 
bles f and 8, the two parameters q andP, . The condition for 
the existence of a trajectory that connects the points (0,O) and 
(1,l) in the (<,8) plane yields the connection between q and 
8, , i.e., according to (4.14), the connction between E and P, . 
Substituting here (4.7) and (4.8), we obtain the sought con- 
nection between T, and z, . 

It will be made clear below that the experimental condi- 
tions correspond to qgl. We consider therefore only this 
case. An analysis of (4.10) at small q shows that the trajector- 
ies of interest to us, which arrive in the vicinity of the point 
(f = 1,0 = 1) from the region of small f and 8, lie close to the 
curve = p, , i.e., near the parabola 8 = f k. These trajec- 
tories are shown in Fig. 3. It can be approximately assumed 
that the trajectory leaving the point (f = 0,B = 0) and arriv- 
ing at the point (8 = 1, < = 1) coincides with the parabola 
8 = < k. In this approximation, the derivative along the tra- 
jectory at the critical point is 

It follows from (4.15) and (4.10) that 

FIG. 3. Characteristics of the plasma formation region at 941. 

This indeed is the sought connection between q and P, at 
small q. Returning to the variables E and P, , we can rewrite 
(4.16) in the form 

In the derivation of (4.17) we have neglected the quanti- 
ty a 5 1 in (4.1 1). This is correct if P)1. We note that the 
condition 0) 1 follows from (4.16) at qg 1, inasmuch as the 
typical values of k are close to unity. 

Equation (4.17) is the sought boundary condition that 
connects the temperature T, with the degree z, of the plas- 
ma ionization on the boundary of the region of formation of 
the plasma and the plasma jet. This equation contains the 
parameters of the plasma and of the target (via A, E,, and k ), 
but not the radiation power. We show one more form, some- 
times more convenient, of the boundary condition, 

which is obtained from (4.17) by expressing E in'terms of P, 
and z, with the aid of (4.7). The proximity of the trajectory 
to the p = P, curve means that in the region of plasma for- 
mation the ratio Ez/T is a (large) constant. 

We now obtain the ionization and temperature profiles. 
We transform over in (2.9) to the dimensionless variables and 
integrate along the trajectory from x = 0 to a certain arbi- 
trary x. Noting that this integrationP= 0, and 0 = 6 k, we 
obtain after simple transformations 

where 

Equation (4.19) determines the functionf (x), i.e., the ioniza- 
tion profile. The temperature profile is 8 (x) = 6 k(x). We put 
in (4.19) x = x, and f = 1, and use the boundary condition 
(4.18), in order to express z, in terms of P, . As a result we 
obtain the thickness of the formation region 

The integral I, (6 ) was obtained by numerical integration for 
the value k = 1.4, which is typical of the Zo2p shells of the 
ions from Ca to Cu (see Table I). Figure 4 shows the profiles 
of the ionization, temperature, electron density, and gasdyn- 
amic-flow velocity of the plasma. It must be noted that the 
derivative of the electron density with respect to the coordi- 
nate, &/ax, and the acceleration, du/dt = u, 2sds/dx, are 
infinite at the critical point. As indicated in Ref. 2, this is due 
to the assumption of a 8-like absorption of the laser radiation 
on the critical surface. 

We note that a degree of polarization amounting to 0.9 
of the maximum is reached at a distance 0.35x,. 
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5. DEPENDENCE OF THE TEMPERATURE AND DEGREE OF 
IONIZATION OFTHE PLASMA ON THE GASDYNAMIC POWER 
OF THE PLASMA JET 

FIG. 4. Profiles of the degree of ionizationz/z, (curve 2), the temperature 
T/T, (curve 3), thedensity n/n, (curve l ) ,  and the velocity u/u, (curve 4) 
of the thermodynamic flux in the formation layer. 

It follows from Table IV below that the characteristic 
values x, lie in the range 10(z, (20. For these z, , at tem- 
peratures T, from 150 to 500 eV, the parameter p, ranges 
from 4 to 2 (see Table 111). In this case q takes on values 
0.01 - 0.2. Although q is indeed small, typical values of p, 
are not very large. This is due to the exponential factor eS* in 
(4.16). The error due to neglecting a in (4.11) can therefore 
reach 30%, since a 5: 1. A much better accuracy could be 
obtained by investigating the phase portrait numerically. 

Let us estimate also, using Ca as an example, the role of 
recombination, by comparing the terms in the curly brackets 
of (1 3). For Ca we have b -0.5 and r ~ 0 . 8  X according 
to Ref. 4, so that in the considered region of the parameters 
the first term is of the order of and the second of lop4, 
i.e., the recombination is indeed insignificant. This conclu- 
sion follows also from the plots given in Ref. 7 for the ioniza- 
tion equilibrium with account taken of dielectron recombin- 
ation. It is seen from them, for example, that at T = 2.50 
eV = 2.9 x lo6 K the fraction of ions with z = 11 is less than 
1% and ions with large z predominate. This means that at 
these temperatures recombination is insignificant for ions 
withz = 11. 

To find the distribution of the temperature and of the 
degree of ionization of the plasma over the jet, we must solve 
the equation that describe the plasma expansion, with the 
boundary condition (4.18). However, the temperature and 
degree of ionization in the base of the jet (i.e., at the location 
of its junction with the formation region) can be obtained 
only by knowing the total gasdynamic power of the jet. The 
gasdynamic flux W can be obtained by calculating it at the 
section x, ; using (2.1 I), we obtain 

We express T, in terms o f p  ; we introduce the characteris- 
tic flux 

Wo=3n,Eouo 
(5.2) 

and the dimensionless parameter w = W /  W,. We have then 
from (5.1) 

This equation together with (4.18) comprises a system from 
which we can, given W, obtainz, andp, and then find&, i.e., 
T, , with the aid of (4.7). Eliminating z, from this system, we 
obtain an equation for determining P, from w: 

Having obtained from this P, , we calculate z, and T, from 
the formulas 

-W2/ (3k+ i )  .- ~ f ' ( ~ ~ + ~ )  9 (5.5) 

T . = E , W ~ k / ( 3 k + i ) B . - i / ' 3 k + ' )  (5.6) 

By reducing the calculation results we can obtain sim- 
ple power-law relations that connect T,, z,, x,, and u,  
with the gasdynamic flux W, , namely 

where the values i = 1,2,3,4 correspond to T, (keV), z, , x, 
(,urn) and u, (cm/sec). The values of A b and ai for ions from 
Ti to Cu are given in Table 11. Table I11 gives the values of 
z, , T, and W calculated at different 0, for Ca in the case 
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- 

i 

1 
2 
3 
4 

Ni 

2s-2p 

A ~ J  1 a, 

- 
13.2 0.28 - - - I  - - 

Cu 

2s-2p I 3s-3p 

Ao' / a, 1 *a' / a, 

Ti 

2s-2p I ( 2 8 - 2 ~ )  f + ( 3 s - 3 ~ 3  

A.1 1 a, 1 A 3  1 4 

Fe 

2s-2p 

Ao' 1 ax 

- 
13.4 - 
- 

- 
13.3 
- 
- 

0.28 - 
- - 

0.25 
13.4 
5.2 
082 

0 57 
0.28 
0.71 
0.43 

0.25 
13.5 
9.3 

0.83 

- 
030 
- 
- 

- 
0.27 
- 
- 

0 61 
0.16 
0.98 
0.39 

- 
18.9 
- 
- 



TABLE 111. 

when only the 2s-2p shell is taken into account and in the 
case of averaging over the 2s-2p and 3s-3p shells. 

It can be seen from Tables I1 and I11 that in both ap- 
proximations the values of T,  and z, are the same at 
W = l o t2  W/cm2. When two shells are taken into account, 
however, the z ,  (W) is less steep, and the thickness of the 
formation is approximately doubled. 

6. EXPERIMENT 

We have irradiated bulk flat targets of different materi- 
als, in vacuum, by pulses of energy from 1 to 15 J and dura- 
tion 2.5 nsec from a 1.06-pm neodymium-glass laser. The 
focused-spot diameters ranged in the different cases from 
100 to 1500pm. The density of the multiply charged ions in 
the produced plama was determined from the emission spec- 
tra of those ions which were registered in a direction parallel 
to the target plane. The spectra were obtained with a spatial 
resolution along the direction normal to the target, and with- 
out a temporal resolution. The Ti and Cu plasmas were in- 
vestigated with the aid of the spectra in the x-ray region, 
while the Fe and Ni plasmas were investigated in the vacuum 
ultraviolet region. 

A Johann-type spectrograph with a KHP crystal, circu- 
larly bent at a radius 150 mm, was placed in a vacuum 
chamber. The target was inside the spectrograph. The wave- 
length region in which the spectra of Li-like and Ne-like ions 
were observed was 15-25 A. UF-VR x-ray film was used for 
the photography. The arrangement of the spectrograph and 
the experimental setup are similar to those described in Refs. 
8 and 9. 

We determined from the spectrograms the relative in- 
tensities of the spectral lines corresponding to transitions of 
like type in the shells of the different ions, which yielded in 
turn the relative densities of the ions with different charges. 
Account was taken of the fact that in a number of cases these 
lines are optically thick. The necessary probabilities of the 
radiative transitions and rates of excitation by electron im- 
pact were calculated in accord with Ref. 4. From the relative 
ion densities we obtained the average charge of the plasma 

TABLE IV. 

ions. The spectra of the multiply charged Ca, Fe, and Ni ions 
in the 80-200 A range were registered with a glancing-inci- 
dence vacuum spectrograph (R = 1 m, p = 600 lines/mm, 
a = 87, equipped with a gold-coated grating. The average 
charge was determined from the spectral lines correspond- 
ing to the transitions between the configurations 2s2pm + ' 
and 2s22pm (m = 5 - 0), which are characterized by small 
optical thicknesses (T < 1 or T Z  1 for the most intense lines). 
The registration of the vacuum-ultraviolet spectra with spa- 
tial resolution is described in Ref. 10. 

In some cases (see e.g., Ref. 1 I), we tracked the behavior 
of the ion composition of the plasma with increasing dis- 
tance from the target. It was found that, at least startig with 
distances 50-100 pm, the ion composition remains practi- 
cally unchanged with further expansion of the plasma. 

The spatial resolution of our spectrograms was mainly 
approximately 50pm. We were therefore unable to measure 
directly the ion composition at the critical point. The experi- 
mental values z, of the average ion charge, given in Table IV 
and in Fig. 5, correspond to a distance 50-100pm from the 
target surface. The described "freezing" of the ion composi- 
tion in the expanding plasma, due to the rapid decrease of the 
plasma electron density and plasma temperature, should 
make these values of z, close to those at the critical point. 

The experimental values of the average plasma ion 
charge are compared in Table IV with the theoretical ones 
calculated from Eqs. (5.7) with the parameters from Tables 
I1 and 111. In individual cases, to reconcile the theoretical 
results with the experimental ones a coefficient g = W/P 
was introduced for the conversion of the laser radiation flux 
P into the gasdynamic flux W. Figure 5 shows the experi- 
mental dependence of the average charge z on the laser radi- 
ation flux incident on the target for a titanium plasma and 
the theoretical dependence calculated under the assumption 
that the total laser-radiation energy was converted into the 
gasdynamic flux (g = 1). 

It can be seen from the figure and from Table IV that the 
theoretical values agree well with experiment at laser-radi- 
ation fluxes P=: 1012 W/cm2. At larger fluxes, the theoretical 

545 Sov. Phys. JETP 56 (3), September 1982 Levinson etal. 545 



FIG. 5. Average charge z vs gasdynamic flux W for a tantalum plasma: 
curve 1-averaging over the 2s-2p and 3s-3p shells, 2-averaging over the 
2s-2p shell only; Cexperimental  points-average charge vs laser radi- 
ation flux density (P) for a titanium plasma. 

values ofL exceed the experimental ones and the theory can 
be reconciled with experiment by introducing r ]  < 1. At 
small values of P, the theory leads to smaller vlaues of L than 
experiment. In Fig. 5, the theoretical plot determined for 
titanium-plasma parameters averaged over the 2s-2p and 
3s-3p shells (k = 3.2; E, = 0.22 eV) describes the experimen- 
tal results better than in the case when only one shell is taken 
into account. 

We note also that measurements of the electron tem- 
perature T,,  carried out in Ref. 8 at a laser (A = 1.06pm) flux 
P = (5-7)x 10" W/cm2 at the target, yielded a value T, 
= 350 eV, which is also quite close to the theoretical calcu- 

lations. 
When comparing theory and experiment, the following 

must be borne in mind. The value of z, is an average over the 
jet and may not be equal to z,, but the two should be close, 
all the more since the experiment points to "freezing" of the 
ionization in the course of the expansion. 

There is also some uncertainty in the definition of the 
power P. It can be assumed, of course, that W = P, since the 
energy consumed in evaporation and ionization of the plas- 
ma is low. In fact, we shall assume a pulse energy Q = 10 J 
and an evaporated mass (of a calcium target) equal to 10W8 g 
(evaporation rate 400 A/nsec at a pulse duration 2.5 nsec 
and a focal spot area 4X lo4 cm2; the target density is 2.8 g/ 
cm3). The number of evaporated molecules is then 8 X 1013, 
and the number of electrons produced upon ionization is 
8 x 1013 x 13 z loL5. Assuming that 700 eV are needed for 
each ionization act, we find that the energy consumed by 
ionization is 0.1 J. Obviously, the evaporation energy is even 
less. If, however, we start from the measured plasma-expan- 

sion rate u = 4.4X 10' cm/sec, the kinetic energy of the dis- 
persing particles is approximately 1 J. In other words, the 
gasdynamic flux Wcan be also much less than the laser P (for 
example, on account of losses to reflection). 

At the same time, the calculations presented are also 
quite approximate. There are several sources of errors. For 
example, there is no full confidence in the values of the ioni- 
zation probabilities S,, especially for the 3s-3p shell, where 
we have assumed the parameters A and a to be the same as in 
the 2s-2p shell. Many inaccuracies are introduced by the 
"analytical" method of the calculation; the condition P, ) 1 
is not very well satisfied; the impossibility of joining the 
shells leads to overestimates of z, at the start of the shell 
ionization if the parameters of the preceding shell is used, 
and to undervaluedz, at the end of the shell ionization, since 
the ionization potentials of the preceding shell are overesti- 
mated. Taking all the foregoing into account, it must be con- 
ceded that in the absence of fit parameters the agreement 
between the theoretical calculations and the experiment is 
fair. 
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